• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于多尺度循环注意力网络的遥感影像场景分类方法

    马欣悦 王梨名 祁昆仑 郑贵洲

    马欣悦, 王梨名, 祁昆仑, 郑贵洲, 2021. 基于多尺度循环注意力网络的遥感影像场景分类方法. 地球科学, 46(10): 3740-3752. doi: 10.3799/dqkx.2020.365
    引用本文: 马欣悦, 王梨名, 祁昆仑, 郑贵洲, 2021. 基于多尺度循环注意力网络的遥感影像场景分类方法. 地球科学, 46(10): 3740-3752. doi: 10.3799/dqkx.2020.365
    Ma Xinyue, Wang Liming, Qi Kunlun, Zheng Guizhou, 2021. Remote Sensing Image Scene Classification Method Based on Multi-Scale Cyclic Attention Network. Earth Science, 46(10): 3740-3752. doi: 10.3799/dqkx.2020.365
    Citation: Ma Xinyue, Wang Liming, Qi Kunlun, Zheng Guizhou, 2021. Remote Sensing Image Scene Classification Method Based on Multi-Scale Cyclic Attention Network. Earth Science, 46(10): 3740-3752. doi: 10.3799/dqkx.2020.365

    基于多尺度循环注意力网络的遥感影像场景分类方法

    doi: 10.3799/dqkx.2020.365
    基金项目: 

    国家自然科学基金项目 42130309

    国家重点研发计划项目 KZ21KA0002

    国家重点研发计划项目 2020111052

    详细信息
      作者简介:

      马欣悦(1998-), 女, 硕士研究生, 研究方向为遥感影像解译、机器学习.ORCID: 0000-0002-6765-6384.E-mail: Maxy@cug.edu.cn

      通讯作者:

      郑贵洲(1963-), ORCID: 0000-0002-2890-6395.E-mail: zhenggz@cug.edu.cn

    • 中图分类号: P237

    Remote Sensing Image Scene Classification Method Based on Multi-Scale Cyclic Attention Network

    • 摘要: 高分辨率遥感影像场景分类一直是遥感领域的研究热点.针对遥感场景对尺度的需求具有多样性的问题,提出了一种基于多尺度循环注意力网络的遥感影像场景分类方法.首先,通过Resnet50提取遥感影像多个尺度的特征,采用注意力机制得到影像不同尺度下的关注区域,对关注区域进行裁剪和缩放并输入到网络.然后,融合原始影像不同尺度的特征及其关注区域的影像特征,输入到全连接层完成分类预测.此分类方法在UC Merced Land-Use和NWPU-RESISC45公开数据集上进行了验证,平均分类精度较基础模型Resnet50分别提升了1.89%和2.70%.结果表明,多尺度循环注意力网络可以进一步提升遥感影像场景分类的精度.

       

    • 图  1  遥感影像场景分类流程图

      Fig.  1.  Flow chart of scene classification of remote sensing image

      图  2  多尺度循环注意力网络结构

      Fig.  2.  Multi-scale cyclic attention network structure

      图  3  APN作用机制

      Fig.  3.  Mechanism of APN

      图  4  UC Merced Land-Use数据集部分样本示例

      Fig.  4.  Samples of UC Merced Land-Use dataset

      图  5  NWPU-RESISC45数据集部分样本示例

      Fig.  5.  Samples of NWPU-RESISC45 dataset

      图  6  不同尺度组合的图像训练网络的分类精度变化曲线(UC Merced Land-Use)

      Fig.  6.  Classification accuracy curve of image training network with different scale combinations (UC Merced Land-Use)

      图  7  不同尺度组合的图像训练网络的分类精度变化曲线图(NWPU-RESISC45)

      Fig.  7.  Classification accuracy curve of image training network with different scale combinations (NWPU-RESISC45)

      图  8  在UC Merced Land-Use数据集上的类别间错分率对比

      a.单尺度模型的混淆矩阵(OA=98.1%);b. 多尺度模型的混淆矩阵(OA=98.57%)

      Fig.  8.  Comparison of misclassification rates between categories on UCM dataset

      图  9  在UC Merced Land-Use数据集上的易混淆类别

      Fig.  9.  Misclassified samples on UC Merced Land-Use dataset

      图  10  在NWPU-RESISC45数据集上的类别间错分率对比

      a.单尺度模型的混淆矩阵(OA= 90.62%);b.多尺度模型的混淆矩阵(OA= 91.18%)

      Fig.  10.  Comparison of misclassification rates between categories on NWPU dataset

      图  11  在NWPU-RESISC45数据集上易混淆类别

      Fig.  11.  Misclassified samples on NWPU dataset

      表  1  Resnet50网络配置

      Table  1.   Resnet50 network configuration

      layer name 50-layer
      Conv1 7×7, 64, stride 2
      Conv2_x 3×3 Max Pool, stride 2
      $ \left[\begin{array}{c}1\times \mathrm{1, 64}\\ 3\times \mathrm{3, 64}\\ 1\times \mathrm{1, 256}\end{array}\right] $ × 3
      Conv3_x $ \left[\begin{array}{c}1\times \mathrm{1, 128}\\ 3\times \mathrm{3, 128}\\ 1\times \mathrm{1, 512}\end{array}\right] $× 4
      Conv4_x $ \left[\begin{array}{c}1\times \mathrm{1, 256}\\ 3\times \mathrm{3, 256}\\ 1\times \mathrm{1, 1}\mathrm{ }024\end{array}\right] $ × 6
      Conv5_x $ \left[\begin{array}{c}1\times \mathrm{1, 512}\\ 3\times \mathrm{3, 512}\\ 1\times \mathrm{1, 2}\mathrm{ }048\end{array}\right] $ × 3
      GAP, k-d FC, softmax
      下载: 导出CSV

      表  2  两个数据集的相关信息

      Table  2.   Information about two datasets

      Datasets Scene Images per class Total images Sizes Training rate
      UC Merced Land-Use 21 100 2 100 256×256 80%
      NWPU-RESISC45 45 700 31 500 256×256 10%
      下载: 导出CSV

      表  3  基于UC Merced Land-Use不同尺度特征的分类精度

      Table  3.   Classification accuracy of different scale features on UCM dataset

      number scale A-OA (%)
      1 S_128_256 97.85$ \pm $0.67
      2 S_160_256 98.10$ \pm $0.39
      3 S_192_256 98.51$ \pm $0.11
      4 S_224_256 98.33$ \pm $00.14
      5 S_256 98.18$ \pm $00.09
      6 S_288_256 98.10$ \pm $00.39
      下载: 导出CSV

      表  4  基于NWPU-RESISC45不同尺度特征的分类精度

      Table  4.   Classification accuracy of different scale features on NWPU-RESISC45 dataset

      number scale A-OA (%)
      1 S_128_256 91.04$ \pm $0.03
      2 S_160_256 90.86$ \pm $0.19
      3 S_192_256 91.18$ \pm $0.02
      4 S_224_256 90.19$ \pm $0.31
      5 S_256 90.25$ \pm $0.20
      6 S_288_256 90.85$ \pm $0.27
      下载: 导出CSV

      表  5  不同方法对UC Merced Land-Use的分类精度

      Table  5.   Classification accuracy of different methods for UC Merced Land-Use

      Method OA (%)
      BoVW(Yang and Newsam, 2010 76.80
      GoogleNet(Nogueira et al., 2017 92.80
      CaffeNet(Xia et al., 2017 95.02$ \pm $0.81
      Resnet50(Zhang et al., 2019 96.62$ \pm $0.26
      GLM16(Yuan et al., 2019 94.97$ \pm $1.16
      VGG-VD16+MSCP(He et al., 2018 98.36$ \pm $0.58
      AlexNet + MSCP(He et al., 2018 97.29$ \pm $0.63
      The model of this paper 98.51$ \pm $0.11
      下载: 导出CSV

      表  6  不同方法对NWPU-RESISC45的分类精度

      Table  6.   Classification accuracy of different methods for NWPU-RESISC45

      Method OA (%)
      BoVW(Cheng et al., 2017 41.72$ \pm $0.21
      Fine-tuned AlexNet(Cheng et al., 2017 81.22$ \pm $0.19
      Fine-tuned GoogleNet (Cheng et al., 2017) 82.57$ \pm $0.12
      Fine-tuned VGGNet-16(Cheng et al., 2017) 87.15$ \pm $0.45
      Resnet50(Zhao et al., 2020 88.48$ \pm $0.21
      VGG-VD16+MSCP(He et al., 2018 85.33$ \pm $0.17
      AlexNet + MSCP(He et al., 2018 81.70$ \pm $0.23
      The model of this paper 91.18$ \pm $0.02
      下载: 导出CSV
    • Bahdanau, D., Cho, K., Bengio, Y., 2014. Neural Machine Translation by Jointly Learning to Align and Translate. Computer Science, arXiv: 1409.0473. https://arxiv.org/abs/1409.0473
      Castelluccio, M., Poggi, G., Sansone, C., et al., 2015. Land Use Classification in Remote Sensing Images by Convolutional Neural Networks. Acta Ecologica Sinica, 28(2): 627-635. http://pdfs.semanticscholar.org/4191/fe93bfd883740a881e6a60e54b371c2f241d.pdf
      Chen, Q.H., Liu, Z.M., Liu, X.G., et al., 2010. Element-Oriented Land-Use Classification of Mining Area by High Spatial Resolution Remote Sensing Image. Earth Science, 35(3): 453-458(in Chinese with English abstract). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5631116
      Chen, S.Z., Tian, Y.L., 2014. Pyramid of Spatial Relatons for Scene-Level Land Use Classification. IEEE Transactions on Geoscience and Remote Sensing, 53(4): 1947-1957. https://doi.org/10.1109/TGRS.2014.2351395
      Cheng, G., Han, J., Lu, X., 2017. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proceedings of the IEEE, 105(10): 1865-1883. https://doi.org/10.1109/JPROC.2017.2675998
      Cheng, G., Ma, C. C., Zhou, P. C., et al., 2016. Scene Classification of High Resolution Remote Sensing Images Using Convolutional Neural Networks. In Proceedings 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 767-770. https://doi.org/10.1109/IGARSS.2016.7729193
      Cheng, G.X., Niu, R.Q., Zhang, K.X., et al., 2018. Opencast Mining Area Recognition in High-Resolution Remote Sensing Images Using Convolutional Neural Networks. Earth Science, 43(Suppl. 2): 256-262(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2021.htm
      Fu, J.L., Zheng, H.L., Mei, T., 2017. Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-Grained Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu Hawaii, 4476-4484. https://doi.org/10.1109/CVPR.2017.476
      Gómez-Chova, L., Tuia, D., Moser, G., et al., 2015. Multimodal Classification of Remote Sensing Images: A Review and Future Directions. Proceedings of the IEEE, 103(9): 1560-1584. https://doi.org/10.1109/JPROC.2015.2449668
      Han, X.B., Zhong, Y.F., Cao, L.Q., et al., 2017. Pre-Trained AlexNet Architecture with Pyramid Pooling and Supervision for High Spatial Resolution Remote Sensing Image Scene Classification. Remote Sensing, 9(8): 848. https://doi.org/10.3390/rs9080848
      He, K.M., Zhang, X.Y., Ren, S Q., et al., 2016. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas Nevada, 770-778. https://doi.org/10.1109/CVPR.2016.90
      He, N.J., Fang, L.Y., Li, S.T., et al., 2018. Remote Sensing Scene Classification Using Multilayer Stacked Covariance Pooling. IEEE Transactions on Geoscience and Remote Sensing, 56(12): 6899-6910. https://doi.org/10.1109/TGRS.2018.2845668
      Jia, Y.Q., Shelhamer, E., Donahue, J., et al., 2014. Caffe: Convolutional Architecture for Fast Feature Embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando Florida USA, 675-678. https://doi.org/10.1145/2647868.2654889
      Ketkar, N., 2017. Introduction to PyTorch. Deep Learning with Python. Apress, Berkeley, CA, 195-208. https://doi.org/10.1007/978-1-4842-2766-4_12
      Li, G.D., Zhang, C.J., Wang, M.K., et al., 2019. Transfer Learning Using Convolutional Neural Network for Scene Classification within High Resolution Remote Sensing Image. Science of Surveying and Mapping, 44(4): 116-123, 174(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CHKD201904021.htm
      Li, W.K., Zhang, W., Qin, J.H., et al., 2020. "Expansion-Fusion" Extraction of Surface Gully Area Based on DEM and High-Resolution Remote Sensing Images. Earth Science, 45(6): 1948-1955(in Chinese with English abstract).
      Lienou, M., Maitre, H., Datcu, M., 2009. Semantic Annotation of Satellite Images Using Latent Dirichlet Allocation. IEEE Geoscience and Remote Sensing Letters, 7(1): 28-32. https://doi.org/10.1109/LGRS.2009.2023536
      Luo, W., Li, H. L., Liu, G. H., 2011. Automatic Annotation of Multispectral Satellite Images Using Author-Topic Model. IEEE Geoscience and Remote Sensing Letters, 9(4): 634-638. https://doi.org/10.1109/LGRS.2011.2177064
      Nogueira, K., Penatti, O. A. B., dos Santos, J.A., 2017. Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification. Pattern Recognition, 61: 539-556. https://doi.org/10.1016/j.patcog.2016.07.001
      Oliva, A., Torralba, A., 2001. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. International Journal of Computer Vision, 42(3): 145-175. https://doi.org/10.1023/A:1011139631724
      Pan, S. J., Yang, Q., 2009. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10): 1345-1359. https://doi.org/10.1109/TKDE.2009.191
      Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR. Computer Science, arXiv: 1409.1556.
      Szegedy, C., Liu, W., Jia, Y.Q., et al., 2015. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, IEEE, 1-9. https://doi.org/10.1109/CVPR.2015.7298594
      Xia, G. S., Hu, J. W., Hu, F., et al., 2017. AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3965-3981. https://doi.org/10.1109/TGRS.2017.2685945
      Yang, Y., Newsam, S., 2010. Bag-of-Visual-Words and Spatial Extensions for Land-Use Classification. In Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, San Jose California, 270-279. https://doi.org/10.1145/1869790.1869829
      Yang, Y., Newsam, S., 2013. Geographic Image Retrieval Using Local Invariant Features. IEEE Transactions on Geoscience and Remote Sensing, 51(2): 818-832. https://doi.org/10.1109/TGRS.2012.2205158
      Yu, D.H., Zhang, B.M., Zhao, C., et al., 2020. Scene Classification of Remote Sensing Image Using Ensemble Convolutional Neural Network. Journal of Remote Sensing, 24(6): 717-727(in Chinese with English abstract).
      Yu, S.C., Yu, D.Q., Wang, L.C., et al., 2019. Remote Sensing Study of Dongting Lake Beach Changes before and after Operation of Three Gorges Reservoir. Earth Science, 44(12): 4275-4283(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912037.htm
      Yuan, Y., Fang, J., Lu, X.Q., et al., 2019. Remote Sensing Image Scene Classification Using Rearranged Local Features. IEEE Transactions on Geoscience and Remote Sensing, 57(3): 1779-1792. https://doi.org/10.1109/TGRS.2018.2869101
      Zhang, D., Li, N., Ye, Q.L., 2019. Positional Context Aggregation Network for Remote Sensing Scene Classification. IEEE Geoscience and Remote Sensing Letters, 17(6): 943-947. https://doi.org/10.1109/LGRS.2019.2937811
      Zhao, Z.C., Li, J.Q., Luo, Z., et al., 2020. Remote Sensing Image Scene Classification Based on an Enhanced Attention Module. IEEE Geoscience and Remote Sensing Letters, (99): 1-5. https://doi.org/10.1109/LGRS.2020.3011405
      陈启浩, 刘志敏, 刘修国, 等, 2010. 面向基元的高空间分辨率矿区遥感影像土地利用分类. 地球科学, 35(3): 453-458. doi: 10.3799/dqkx.2010.055
      程国轩, 牛瑞卿, 张凯翔, 等, 2018. 基于卷积神经网络的高分遥感影像露天采矿场识别. 地球科学, 43(增刊2): 256-262. doi: 10.3799/dqkx.2018.987
      李冠东, 张春菊, 王铭恺, 等, 2019. 卷积神经网络迁移的高分影像场景分类学习. 测绘科学, 444): 116-123, 174. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201904021.htm
      李文凯, 张唯, 秦家豪, 等, 2020. 基于DEM和高分辨率遥感影像的"膨胀-融合"式地表沟壑提取. 地球科学, 45(6): 1948-1955. doi: 10.3799/dqkx.2020.004
      余东行, 张保明, 赵传, 等, 2020. 联合卷积神经网络与集成学习的遥感影像场景分类. 遥感学报, 24(6): 717-727. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202006006.htm
      余姝辰, 余德清, 王伦澈, 等, 2019. 三峡水库运行前后洞庭湖洲滩面积变化遥感认识. 地球科学, 44(12): 4275-4283. doi: 10.3799/dqkx.2019.182
    • 加载中
    图(11) / 表(6)
    计量
    • 文章访问数:  1003
    • HTML全文浏览量:  806
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-11-11
    • 网络出版日期:  2021-11-03
    • 刊出日期:  2021-11-03

    目录

      /

      返回文章
      返回