• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于高温超导的瞬变电磁法在青城子矿集区的应用

    王兴春 邓晓红 陈晓东 张杰 武军杰 智庆全 杨毅

    王兴春, 邓晓红, 陈晓东, 张杰, 武军杰, 智庆全, 杨毅, 2021. 基于高温超导的瞬变电磁法在青城子矿集区的应用. 地球科学, 46(5): 1871-1880. doi: 10.3799/dqkx.2020.383
    引用本文: 王兴春, 邓晓红, 陈晓东, 张杰, 武军杰, 智庆全, 杨毅, 2021. 基于高温超导的瞬变电磁法在青城子矿集区的应用. 地球科学, 46(5): 1871-1880. doi: 10.3799/dqkx.2020.383
    Wang Xingchun, Deng Xiaohong, Chen Xiaodong, Zhang Jie, Wu Junjie, Zhi Qingquan, Yang Yi, 2021. Application Effect of TEM Based on High Temperature Superconducting Sensor in Qingchengzi Ore-Concentrated Area. Earth Science, 46(5): 1871-1880. doi: 10.3799/dqkx.2020.383
    Citation: Wang Xingchun, Deng Xiaohong, Chen Xiaodong, Zhang Jie, Wu Junjie, Zhi Qingquan, Yang Yi, 2021. Application Effect of TEM Based on High Temperature Superconducting Sensor in Qingchengzi Ore-Concentrated Area. Earth Science, 46(5): 1871-1880. doi: 10.3799/dqkx.2020.383

    基于高温超导的瞬变电磁法在青城子矿集区的应用

    doi: 10.3799/dqkx.2020.383
    基金项目: 

    国家重点研发计划项目 2018YFC06038

    详细信息
      作者简介:

      王兴春(1975-),男,教授级高级工程师,主要从事瞬变电磁法研究与生产工作. ORCID:0000-0001-9504-4441. E-mail: wxingchun@mail.cgs.gov.cn

    • 中图分类号: P631

    Application Effect of TEM Based on High Temperature Superconducting Sensor in Qingchengzi Ore-Concentrated Area

    • 摘要: 为了提高瞬变电磁法的探测深度,在青城子矿集区开展了大定源装置条件下基于线圈传感器和高温超导传感器的瞬变电磁法实验工作.结果表明:利用高温超导传感器直接测量磁场具有低噪声、高灵敏度、低频响应好的特点,晚期信噪比高且对深部低阻响应敏感的优点.在相同激发条件和低噪声背景条件下,基于高温超导传感器的瞬变电磁法在青城子矿集区探测深度可达到1 800 m左右,较传统线圈传感器反演深度提高50%,该方法能有效地提高瞬变电磁法探测深度.

       

    • 图  1  青城子矿集区地质简图

      据辽宁省地质矿产调查院,2001. 1∶5万区域地质调查报告(青城子镇幅)修改

      Fig.  1.  Sketch geological map of Qingchengzi ore-concentrated area

      图  2  同点感应电动势衰减曲线(a)和高温超导磁场衰减曲线(b)

      Fig.  2.  Decay curves of coil (a) and HTc SQUID (b) for same station

      图  3  Loop4感应电动势剖面曲线(a)和磁场剖面曲线(b)

      Fig.  3.  Profile for inductive EMF (a) and profile for BZ (b)

      图  4  Loop4感应电动势(a)和磁场(b)电阻率反演断面图

      Fig.  4.  Resistivity inversion sections for induced voltage (a) and BZ (b) for Loop4

      图  5  L15线感应电动势剖面曲线(a)和磁场剖面曲线(b)

      Fig.  5.  Inductive EMF profile (a) and BZ profile (b) for L15

      图  6  L15线感应电动势(a)和磁场(b)电阻率反演断面图

      Fig.  6.  Resistivity inversion sections of induced voltage (a) and B (b) for L15

      图  7  小佟家堡子瞬变电磁X1线电阻率反演断面图

      Fig.  7.  TEM resistivity inversion section for X1 line in Xiaotongjiapuzi

      表  1  青城子矿集区岩(矿)石电性参数统计

      Table  1.   Statistic of electrical parameters for rock (ore) in Qingchengzi ore-concentrated area

      岩性 样本数 电阻率(Ω·m)
      最小值 最大值 平均值
      白云大理岩 43 3 630.7 26 196.7 11 466.9
      变粒岩 34 308.6 20 827.7 5 163.5
      矽线石云母片岩 21 5 392.1 13 786.1 4 635.5
      黄铁矿化大理岩 30 367 1 816 669
      黑云母片岩 30 4 003 8 091 5 974
      斑状花岗岩 26 728.2 13 654.8 7 020.8
      黑云变粒岩 9 2 008.8 8 095.5 5 428.6
      含石墨大理岩 30 87 314 227
      透辉透闪片岩 30 286 1 693 702
      下载: 导出CSV
    • Arai, E., Hart, J., Katamama, H., 2007. Application of a New TEM Data Acquisition System Based on a HTS SQUID Magnetometer (SQUITTEM) to Metal Exploration in Broken Hill Area. ASEG Extended Abstracts, (1): 1-5.
      Asten, M.W., Duncan, A.C., 2012. The Quantitative Advantages of Using B-Field Sensors in Time-Domain EM Measurement for Mineral Exploration and Unexploded Ordnance Search. Geophysics, 77(4): 137-148. https://doi.org/10.1190/geo2011-0385.1 http://adsabs.harvard.edu/abs/2012Geop...77B.137A
      Chen, M.S., Shi, X.X., 2017. Detecting Depth of Transient Electromagnetic Method from Different Points of View. Coal Geology & Exploration, 45(5): 140-146 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT201705024.htm
      Chen, X.D., Zhao, Y., Deng, X.H., et al., 2006. The Development of the HTS Rf Squid Magnetometer and Its Application to TEM. Geophysical and Geochemical Exploration, 30(3): 229-232 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH200603009.htm
      Chen, X.D., Zhao, Y., Zhang, J., et al., 2012. The Applications of HTc SQUID Magnetometer to TEM. Chinese Journal of Geophysics, 55(2): 702-708 (in Chinese with English abstract).
      Chwala, A., Stolz, R., Schmelz, M., et al., 2015. SQUID Systems for Geophysical Time Domain Electromagnetics (TEM) at IPHT Jena. IEICE Transactions on Electronics, E98C (3): 167-173.
      Dai, Y.D., Wang, S.G., 1996. Comparison between High T_C Squid Sensor and Conventional Inductive Sensor in Transient Magnetoelectric Method for Magnetoelectric Sounding. Chinese Journal of Low Temperature Physics, 18(1): 11-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DWWL601.001.htm
      Foley, C. P., Leslie, K. E., Binks, R. A., 2006. A History of the CSIRO's Development of High Temperature Superconducting Rf Squids for TEM Prospecting. ASEG Extended Abstracts, (1): 1-5. https://doi.org/10.1071/aseg2006ab094 http://www.publish.csiro.au/EX/ASEG2006ab094
      Ji, Y.J., Du, S.Y., Xie, L.J., et al., 2016. TEM Measurement in a Low Resistivity Overburden Performed by Using Low Temperature SQUID. Journal of Applied Geophysics, 135: 243-248. https://doi.org/10.1016/j.jappgeo.2016.09.027
      Jiang, B.Y., 1998. Application of Near-Field Magnetic Source Transient Electromagnetic Exploration. Geological Publishing House, Beijing(in Chinese).
      Koch, R., Clarke, J., Martinis, J., et al., 2003. Investigation of 1/f Noise in Tunnel Junction dc Squids. IEEE Transactions on Magnetics, 19(3): 449-452. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1062412
      Lee, B., Dart, D. L., Turner, R. J., et al., 2002. Airborne TEM Surveying with a SQUID Magnetometer Sensor. Geophysics, 67(2): 468-477. https://doi.org/10.1190/1.1468606
      Li, J.H., 2005. Study on Ore-Forming Conditions and Mineral Resource Assessment of Lead-Zinc-Silver-Gold Metallogenic Belt in Qingchenzi, Liaoning Province (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Liu, Z.L., Lu, Z.W., Jia, J. L., et al., 2019. Using Deep Seismic Reflection to Profile Deep Structure of Ore Concentrated Area: Current Status and Case Histories. Earth Science, 44(6): 2084-2105 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906024.htm
      Nabighian, M.N., Grauch, V. J. S., Hansen, R.O., et al., 2005. The Historical Development of the Magnetic Method in Exploration. Geophysics, 70(6): 33ND. doi: 10.1190/1.2133784
      Raiche, A., 2008. The P223 Software Suite for Planning and Interpreting EM Surveys. Preview, 2008: 25-30.
      Rong, L.L., Jiang, K., Pei, Y.F., et al., 2016. Low-Tc SQUID Sensor for Time Domain Electromagnetic Prospecting. Chinese Journal of Scientific Instrument, 37(12): 2671-2677 (in Chinese with English abstract).
      Smith, R., Annan, P., 1998. The Use of B-Field Measurements in an Airborne Time-Domain System: Part Ⅰ. Benefits of B-Field versus dB/dt Data. Exploration Geophysics, 29(2): 24-29. https://doi.org/10.1071/EG998024 doi: 10.1071/EG998024?tab=permissions&scroll=top
      Su, Z.L., Zhang, J.D., Hu, W.B., 2004. On Directive Measurement and Characteristic Analysis of Magnetic Field for Transient Electromagnetic Method (TEM). Chinese Journal of Engineering Geophysics, 1(1): 70-73 (in Chinese with English abstract). doi: 10.1088/1742-2132/1/1/009
      Wang, Q.Y., 2007. Querying the Depth Formula of TEMS. Geophysical and Geochemical Exploration, 31(4): 327-332 (In Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH200704014.htm
      Wang, X.C., Zhang, J., Zheng, X.P., et al., 2014. Application of Fluxgate Sensor in TEM Prospecting. Computing Techniques for Geophysical and Geochemical Exploration, 36(6): 649-654 (in Chinese with English abstract).
      Wang, Y.C., Wang, K.Y., Zhang, M., et al., 2015. Characteristics of Hydrothermal Superposition Mineralization and Fluid Origins of the Xiaotongjiapuzi Gold Deposit in Liaoning Province. Geology and Exploration, 51(1): 79 -87. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201501009.htm
      Wang, Y.W., Xie, H. J., Li, D.D., et al., 2017. Prospecting Prediction of Ore Concentration Area Exemplified by Qingchengzi Pb-Zn-Au-Ag Ore Concentration Area, Eastern Liaoning Province. Mineral Deposits, 36(1): 1-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201701001.htm
      Woods, D., 2010. Transient Electromagnetic Survey Optimization Using SQUID Sensors. SEG Technical Program Expanded Abstracts, Denver.
      Xu, J.B., 2014. The Study and Application of Transient Electromagnetic Sounding on the Theoretical Depth of Investigation (Dissertation). East China University of Technology, Nanchang (in Chinese with English abstract).
      Yang, D. K., Oldenburg, W., 2012. Three-Dimensional Inversion of SQUID TEM Data at Lalor Lake VMS Deposit. SEG Las Vegas Annual Meeting, Las Vegas.
      Yoshimatsu, K., Tsuzuki, M., Mori, T., et al., 2019. Developing a SQUITEM System for the Geothermal Exploration in JOGMEC. The 13th SEGJ International Symposium, Tokyo.
      Zeng, Q.D., Chen, R.Y., Yang, J.H., et al., 2019. The Metallogenic Characteristics and Exploring Ore Potential of the Gold Deposits in Eastern Liaoning Province. Acta Petrologica Sinica, 35(7): 1939-1963 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.01
      Zhao, R., 2013. Research on Metallization of Xiaotongjiabuzi Gold Deposit in Eastern Liaoning Province (Dissertation). Northeastern University, Shenyang (in Chinese with English abstract).
      Zhu, D., Liu, T.Y., Yang, Y. S., et al., 2019. Geophysical Interpretation of Rock-Controlling Structure and Concealed Rock Mass Features in Southeast Hubei Province. Earth Science, 44(2): 640-651 (in Chinese with English abstract).
      Zhu, Z.Q., Xu, T.Q., Li, J.F., et al., 2020. Research on Mobile Measurement of HTc SQUID Magnetometer in Unshielded Environment. Cryogenics & Superconductivity, 48(9): 1-7 (in Chinese with English abstract).
      陈明生, 石显新, 2017. 对瞬变电磁测深几个问题的思考(四)——从不同角度看瞬变电磁场法的探测深度. 煤田地质与勘探, 45(5): 140-146. doi: 10.3969/j.issn.1001-1986.2017.05.024
      陈晓东, 赵毅, 邓晓红, 等, 2006. 高温超导磁强计研制及在瞬变电磁法中的应用. 物探与化探, 30(3): 229-232. doi: 10.3969/j.issn.1000-8918.2006.03.010
      陈晓东, 赵毅, 张杰, 等, 2012. 高温超导磁强计在瞬变电磁法中的应用研究. 地球物理学报, 55(2): 702-708. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201202033.htm
      戴远东, 王世光, 1996. 在瞬变电磁法大地电磁测量中高Tc SQUID探头与常规探头的比较. 低温物理学报, 18(1): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DWWL601.001.htm
      蒋邦远, 1998. 实用近区磁源瞬变电磁法勘探. 北京: 地质出版社.
      李基宏, 2005. 辽宁青城子铅锌银金矿集区成矿条件与成矿预测(博士学位论文). 长春: 吉林大学.
      刘子龙, 卢占武, 贾君莲, 等, 2019. 利用深地震反射剖面开展矿集区深部结构的探测: 现状与实例. 地球科学, 44(6): 2084-2105. doi: 10.3799/dqkx.2019.020
      荣亮亮, 蒋坤, 裴易峰, 等, 2016. 适用于瞬变电磁勘探的低温超导磁传感器. 仪器仪表学报, 37(12): 2671-2677. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201612004.htm
      苏朱刘, 张交东, 胡文宝, 2004. 瞬变电磁法中磁场的特性及测量方法. 工程地球物理学报, 1(1): 70-73. doi: 10.3969/j.issn.1672-7940.2004.01.012
      王庆乙, 2007. 对瞬变电磁法回线边长决定探测深度的质疑. 物探与化探, 31(4): 327-332. doi: 10.3969/j.issn.1000-8918.2007.04.013
      王兴春, 张杰, 郑学萍, 等, 2014. 磁通门探头在瞬变电报表名磁法勘探中的应用. 物探化探计算技术, 36(6): 649-654. doi: 10.3969/j.issn.1001-1749.2014.06.02
      王一存, 王可勇, 张淼, 等, 2015. 辽宁小佟家堡子金矿床成矿流体特征及来源讨论. 地质与勘探, 51(1): 79 -87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201501009.htm
      王玉往, 解洪晶, 李德东, 等, 2017. 矿集区找矿预测研究——以辽东青城子铅锌-金-银矿集区为例. 矿床地质, 36(1): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201701001.htm
      徐剑波, 2014. 瞬变电磁法理论探测深度的研究及应用(硕士学位论文). 南昌: 东华理工大学.
      曾庆栋, 陈仁义, 杨进辉, 等, 2019. 辽东地区金矿床类型、成矿特征及找矿潜力. 岩石学报, 35(7): 1939-1963. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201907001.htm
      赵睿, 2013. 辽东小佟家堡子金矿床成矿作用研究(硕士学位论文). 沈阳: 东北大学.
      朱丹, 刘天佑, 杨宇山, 等, 2019. 鄂东南地区控岩构造及隐伏岩体特征的地球物理解释. 地球科学, 44(2): 640-651. doi: 10.3799/dqkx.2018.516
      朱子青, 徐铁权, 李军峰, 等, 2020. Ht_c Squid磁强计在非屏蔽环境中的移动测量研究. 低温与超导, 48(9): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC202009001.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  1454
    • HTML全文浏览量:  589
    • PDF下载量:  58
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-11-18
    • 刊出日期:  2021-05-15

    目录

      /

      返回文章
      返回