• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    腾冲热泉中砷的甲基化和巯基化过程

    严克涛 郭清海 罗黎

    严克涛, 郭清海, 罗黎, 2022. 腾冲热泉中砷的甲基化和巯基化过程. 地球科学, 47(2): 622-632. doi: 10.3799/dqkx.2021.105
    引用本文: 严克涛, 郭清海, 罗黎, 2022. 腾冲热泉中砷的甲基化和巯基化过程. 地球科学, 47(2): 622-632. doi: 10.3799/dqkx.2021.105
    Yan Ketao, Guo Qinghai, Luo Li, 2022. Methylation and Thiolation of Arsenic in Tengchong Hot Springs. Earth Science, 47(2): 622-632. doi: 10.3799/dqkx.2021.105
    Citation: Yan Ketao, Guo Qinghai, Luo Li, 2022. Methylation and Thiolation of Arsenic in Tengchong Hot Springs. Earth Science, 47(2): 622-632. doi: 10.3799/dqkx.2021.105

    腾冲热泉中砷的甲基化和巯基化过程

    doi: 10.3799/dqkx.2021.105
    基金项目: 

    国家自然科学基金项目 41861134028

    详细信息
      作者简介:

      严克涛(1992-), 男, 博士研究生, 主要从事地热环境中砷的环境地球化学研究. ORCID: 0000-0003-1770-0348. E-mail: yanktwork@gmail.com

      通讯作者:

      郭清海, ORCID: 0000-0001-6602-9664. E-mail: qhguo2006@gmail.com

    • 中图分类号: P595

    Methylation and Thiolation of Arsenic in Tengchong Hot Springs

    • 摘要: 为了研究热泉中砷的形态及其分布、转化规律,针对云南腾冲热泉各种砷形态进行了IC-ICP-MS测试和水文地球化学分析.在91处热泉中检出了11种砷形态,包括(亚)砷酸盐、无机硫代砷和甲基(硫代)砷.其中(亚)砷酸盐含量>无机硫代砷含量>甲基砷含量.热泉中无机硫代砷含量及其巯基化程度与硫/砷比正相关.甲基砷含量低是富硫化物热泉中甲基硫代砷形成的主要限制因素,硫/砷摩尔比、总砷、温度、pH、Eh和TDS可影响甲基硫代砷的形成和转化.甲基硫代砷在热泉地表流径上可经历脱巯基、脱甲基然后被沉积物吸附,也可在流径下游重新形成.砷的巯基化和甲基化形态在热泉中广泛分布,甲基硫代砷在热泉环境中具有高迁移性和重现性,应引起相关研究重视.

       

    • 图  1  腾冲地热区地质图和采样点分布(参考自Guo et al., 2012

      Fig.  1.  Sampling location and geological map of Tengchong geothermal area (modified from Guo et al., 2012)

      图  2  As含量与现场指标(a)pH, (b)Eh, (c)TDS和(d)温度之间的关系

      . 热海热泉;. 朗蒲热泉;. 瑞滇热泉;. 邦腊掌热泉;. 太和热泉;. 户蚌热泉;. 大塘热泉

      Fig.  2.  Relationship between As concentration and (a) pH, (b) Eh, (c)TDS, (d) Temperature

      图  3  腾冲热泉中4种硫代砷比例与S/As之间的关系

      Fig.  3.  Relationship between four thioarsenate proportions and sulfide concentrations.

      图  4  各地热区热泉中甲基硫代砷含量箱型图

      a. 为甲基硫代砷占总As比例;b. 为甲基硫代砷绝对浓度

      Fig.  4.  Box and whisker plots of methylated thioarsenate contents in Tengchong geothermal areas

      图  5  腾冲热泉中甲基硫代砷比例与水化学指标之间的关系

      a. 甲基砷含量;b. S/As摩尔比;c. 总As含量;d. 温度;e. Eh;f. pH

      Fig.  5.  Relationships between methylated thioarsenate proportions and hydrochemical parameters

      图  6  腾冲热泉流径上甲基化As形态含量的变化

      Fig.  6.  Content fluctuation of methylated As species along Tengchong geothermal drainages

      表  1  水化学变量与甲基硫代砷摩尔比例之间的斯皮尔曼相关性分析

      Table  1.   Spearman's correlation analysis for methylated thioarsenate proportions (%) and hydrochemical parameters

      变量 rs 变量 rs
      甲基砷(%) 0.47 F-(mg/L) -0.24
      无机硫代砷(%) -0.05 Cl-(mg/L) -0.74
      硫化物(mg/L) -0.13 SO42-(mg/L) 0.05
      S/As摩尔比 0.39 Na+(mg/L) -0.66
      总As(μg/L) -0.77 K+(mg/L) -0.76
      pH -0.09 Ca2+(mg/L) 0.38
      Eh(mV) 0.45 Mg2+(mg/L) 0.19
      温度(℃) -0.57 SiO2(mg/L) -0.10
      TDS(mg/L) -0.74 三价铁(μg/L) -0.37
      DOC(mg/L) -0.41 Li+(μg/L) -0.75
      成熟度(MI) -0.49 Rb+(μg/L) -0.81
      HCO3-(mg/L) -0.23 Cs+(μg/L) -0.60
      注:n=43,加粗表示P值< 0.05.
      下载: 导出CSV
    • Bai, D. H., Liao, Z. J., Zhao, G. Z., et al., 1994. The Inference of Magmatic Heat Source Beneath the Rehai (Hot Sea) Field of Tengchong From the Result of Magnetotelluric Sounding. Chinese Science Bulletin, 39(4): 344-347 (in Chinese). doi: 10.1360/csb1994-39-4-344
      Ballantyne, J. M., Moore, J. N., 1988. Arsenic Geochemistry in Geothermal Systems. Geochimica et Cosmochimica Acta, 52(2): 475-483. https://doi.org/10.1016/0016-7037(88)90102-0
      Conklin, S. D., Fricke, M. W., Creed, P. A., et al., 2008. Investigation of the PH Effects on the Formation of Methylated Thio: Arsenicals, and the Effects of PH and Temperature on Their Stability. Journal of Analytical Atomic Spectrometry, 23(5): 711. https://doi.org/10.1039/b713145c
      Couture, R. M., Rose, J., Kumar, N., et al., 2013. Sorption of Arsenite, Arsenate, and Thioarsenates to Iron Oxides and Iron Sulfides: A Kinetic and Spectroscopic Investigation. Environmental Science & Technology, 47(11): 5652-5659. https://doi.org/10.1021/es3049724
      Ellis, A. J., Mahon, W. A. J., 1964. Natural Hydrothermal Systems and Experimental Hot Water/rock Interactions (Part Ⅱ). Geochimica et Cosmochimica Acta, 31(4): 519-538. https://doi.org/10.1016/0016-7037(67)90032-4
      Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215-216: 61-73. https://doi.org/10.1016/j.jvolgeores.2011.12.003
      Guo, Q. H., Liu, M. L., Li, J. X., 2017. Thioarsenic Species in the High-Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses. Earth Science, 42 (2): 286-297 (in Chinese with English abstract).
      Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453(1): 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010
      Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2019. Magmatic Fluid Input Explaining the Geochemical Anomaly of Very High Arsenic in Some Southern Tibetan Geothermal Waters. Chemical Geology, 513: 32-43. https://doi.org/10.1016/j.chemgeo.2019.03.008.
      Hinrichsen, S., Geist, F., Planer-Friedrich, B., 2015. Inorganic and Methylated Thioarsenates Pass the Gastrointestinal Barrier. Chem Res Toxicol, 28: 1678-1680. https://doi.org/10.1021/acs.chemrestox.5b00268.
      Hirano, S., Kobayashi, Y., Cui, X., et al., 2004. The Accumulation and Toxicity of Methylated Arsenicals in Endothelial Cells: Important Roles of Thiol Compounds. Toxicol Appl Pharmacol, 198: 458-67. https://doi.org/10.1016/j.taap.2003.10.023.
      Hug, K., Maher, W. A., Stott, M. B., et al., 2014. Microbial Contributions to Coupled Arsenic and Sulfur Cycling in the Acid-Sulfide Hot Spring Champagne Pool, New Zealand. Front Microbiol, 5: 569. https://doi.org/10.3389/fmicb.2014.00569
      Kerl, C. F., Ballaran, T. B., Planer-Friedrich, B., 2019a. Iron Plaque at Rice Roots: No Barrier for Methylated Thioarsenates. Environmental Science & Technology, 53: 13666-13674. https://doi.org/10.1021/acs.est.9b04158
      Kerl, C. F., Schindele, R. A., Bruggenwirth, L., et al., 2019b. Methylated Thioarsenates and Monothioarsenate Differ in Uptake, Transformation, and Contribution to Total Arsenic Translocation in Rice Plants. Environmental Science & Technology, 53: 5787-5796. https://doi.org/10.1021/acs.est.9b00592
      Kim, Y. T., Lee, H., Yoon, H. O., et al., 2016. Kinetics of Dimethylated Thioarsenicals and the Formation of Highly Toxic Dimethylmonothioarsinic Acid in Environment. Environmental Science & Technology, 50: 11637-11645. https://doi.org/10.1021/acs.est.6b02656
      Lang, S. Q., Butterfield, D. A., Schulte, M., et al., 2010. Elevated Concentrations of Formate, Acetate and Dissolved Organic Carbon Found at The Lost City Hydrothermal Field. Geochimica et Cosmochimica Acta, 74: 941-952. https://doi.org/10.1016/j.gca.2009.10.045
      Langner, H. W., Jackson, C. R., Mcdermott, T. R., et al., 2001. Rapid Oxidation of Arsenite in a Hot Spring Ecosystem, Yellowstone National Park. Environmental Science & Technology, 35: 3302-3309. https://doi.org/10.1021/es0105562.
      Li, Y. R., Low, G. K., Scott J. A., et al., 2011. Microbial Transformation of Arsenic Species in Municipal Landfill Leachate. Journal of hazardous materials, 188: 140-147. https://doi.org/10.1016/j.jhazmat.2011.01.093
      Liu, M. L., He, T., Wu, Q. F., et al., 2019. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its Indicating Significance. Earth Science, 45: 2221-2231 (in Chinese with English abstract).
      Liao, Z., Zhao, P., 1999. Yunnan-Tibet Geothermal Belt-Geothermal Resources and Case Histories. Science Press, Beijing (in Chinese with English abstract).
      Naranmandura, H., Carew, M. W., Xu, S., et al., 2011. Comparative Toxicity of Arsenic Metabolites in Human Bladder Cancer EJ-1 Cells. Chem Res Toxicol, 24: 1586-96. https://doi.org/10.1021/tx200291p
      Naranmandura, H., Ibata, K., Suzuki, K. T., 2007. Toxicity of Dimethylmonothioarsinic Acid Toward Human Epidermoid Carcinoma A431 Cells. Chemical Research in Toxicology, 20: 1120-1125. https://doi.org/10.1021/tx700103y
      Planer-Friedrich, B., Forberg, J., Lohmayer, R., et al., 2020. Relative Abundance of Thiolated Species of As, Mo, W, and Sb in Hot Springs of Yellowstone National Park and Iceland. Environmental Science & Technology, 54: 4295-4304. https://doi.org/10.1021/acs.est.0c00668
      Planer-Friedrich, B., Hartig, C., Lohmayer, R., et al., 2015. Anaerobic Chemolithotrophic Growth of the Haloalkaliphilic Bacterium Strain MLMS-1 by Disproportionation of Monothioarsenate. Environmental Science & Technology, 49: 6554-63. https://doi.org/10.1021/acs.est.5b01165
      Planer-Friedrich, B., Lehr, C., Matschullat, J., et al., 2006. Speciation of Volatile Arsenic at Geothermal Features in Yellowstone National Park. Geochimica et Cosmochimica Acta, 70: 2480-2491. https://doi.org/10.1016/j.gca.2006.02.019
      Planer-Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. Environmental Science & Technology, 41: 5245-5251. https://doi.org/10.1021/es070273v
      Qin, J., Lehr, C. R., Yuan, C., et al., 2009. Biotransformation of Arsenic by A Yellowstone Thermoacidophilic Eukaryotic Alga. Proceedings of the National Academy of Sciences, 106: 5213-5217. https://doi.org/10.1073/pnas.0900238106
      Rodríguez-Lado, L., Sun, G., Berg, M., et al., 2013. Groundwater Arsenic Contamination Throughout China. Science, 341: 866-868. https://doi.org/10.1126/science.1237484
      Sharma, A. K., Tjell, J. C., Sloth, J. J., et al., 2014. Review of Arsenic Contamination, Exposure Through Water and Food and Low Cost Mitigation Options for Rural Areas. Applied Geochemistry, 41: 11-33. https://doi.org/10.1016/j.apgeochem.2013.11.012.
      Song, X. Q., Peng, Q. Duan, Q. S., et al., 2019. Hydrochemistry Characteristics and Origin of Geothermal Water in Northeastern Guizhou. Earth Science, 44: 2874-2886 (in Chinese with English abstract).
      Tong, W., Zhang, M. T., 1989. Geothermics in Tengchong. Science Press, Beijing (in Chinese).
      Wallschläger, D., London, J., 2008. Determination of Methylated Arsenic-Sulfur Compounds in Groundwater. Environmental Science & Technology, 42: 228-234. https://doi.org/10.1021/es0707815
      Wang, J., Halder, D., Wegner, L., et al., 2020a. Redox Dependence of Thioarsenate Occurrence in Paddy Soils and the Rice Rhizosphere. Environmental Science & Technology, 54: 3940-3950. https://doi.org/10.1021/acs.est.9b05639
      Wang, J., Kerl, C. F., Hu, P., et al., 2020b. Thiolated Arsenic Species Observed in Rice Paddy Pore Waters. Nature Geoscience, 13: 282-287. https://doi.org/10.1038/s41561-020-0533-1
      Webster, J.G., Nordstrom, D.K., 2003. Geothermal Arsenic. In: Welch, A.H., Stollenwerk, K.G. (eds) Arsenic in Ground Water. Springer, Boston, MA. https://doi.org/10.1007/0-306-47956-7_4
      Wu, G., Huang, L., Jiang, H., et al., 2017. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by A Sulfate-Reducing Bacterium Isolated From A Hot Spring. Frontiers in microbiology, 8: 1336. https://doi.org/10.3389/fmicb.2017.01336
      Zhu, Y. G., Xue, X. M., Kappler, A., et al., 2017. Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic. Environmental Science & Technology, 51: 7326-7339. https://doi.org/10.1021/acs.est.7b00689
      Zhuang, Y. Q., Guo Q. H., Liu M. L., et al., 2016. Geochemical Simulation of Thioarsenic Speciation in High-Temperature, Sulfide-Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan. Earth Science, 41(9): 1499-1510 (in Chinese with English abstract).
      白登海, 廖志杰, 赵国泽, 等, 1994. 从MT探测结果推论腾冲热海热田的岩浆热源. 科学通报, 39(4): 344-347. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199404017.htm
      郭清海, 刘明亮, 李洁祥, 2017. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因. 地球科学. 42(2): 286-297. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201702010.htm
      廖志杰, 赵平, 1999. 滇藏地热带: 地热资源和典型地热系统. 北京: 科学出版社.
      刘明亮, 何曈, 吴启帆, 等, 2019. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006032.htm
      宋小庆, 彭钦, 段启杉, 等, 2019. 黔东北地区地热水化学特征及起源. 地球科学, 44(9): 2874-2886. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909006.htm
      佟伟, 章铭陶, 1989. 腾冲地热. 北京: 科学出版社.
      庄亚芹, 郭清海, 刘明亮, 等, 2016. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例. 地球科学. 41(9): 1499-1510. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201609006.htm
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  858
    • HTML全文浏览量:  460
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-03
    • 刊出日期:  2022-02-25

    目录

      /

      返回文章
      返回