• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    雅鲁藏布江墨脱段隆升速率:来自黑云母Ar/Ar年代学证据

    涂继耀 季建清 钟大赉 周晶

    涂继耀, 季建清, 钟大赉, 周晶, 2021. 雅鲁藏布江墨脱段隆升速率:来自黑云母Ar/Ar年代学证据. 地球科学, 46(12): 4533-4545. doi: 10.3799/dqkx.2021.106
    引用本文: 涂继耀, 季建清, 钟大赉, 周晶, 2021. 雅鲁藏布江墨脱段隆升速率:来自黑云母Ar/Ar年代学证据. 地球科学, 46(12): 4533-4545. doi: 10.3799/dqkx.2021.106
    Tu Jiyao, Ji Jianqing, Zhong Dalai, Zhou Jing, 2021. Rock Exhumation Rates in Motuo Section of Yarlung Tsangpo River: Evidence from Biotite Ar/Ar Chronology. Earth Science, 46(12): 4533-4545. doi: 10.3799/dqkx.2021.106
    Citation: Tu Jiyao, Ji Jianqing, Zhong Dalai, Zhou Jing, 2021. Rock Exhumation Rates in Motuo Section of Yarlung Tsangpo River: Evidence from Biotite Ar/Ar Chronology. Earth Science, 46(12): 4533-4545. doi: 10.3799/dqkx.2021.106

    雅鲁藏布江墨脱段隆升速率:来自黑云母Ar/Ar年代学证据

    doi: 10.3799/dqkx.2021.106
    基金项目: 

    国家自然科学基金项目 41603055

    国家自然科学基金项目 41490614

    中国地震局地球物理研究所基本科研业务费专项 DQJB21X26

    详细信息
      作者简介:

      涂继耀(1988-), 男, 助理研究员, 博士, 从事构造地质学与同位素年代学研究.ORCID: 0000-0002-8407-4239.E-mail: 406962923@qq.com

    • 中图分类号: P542

    Rock Exhumation Rates in Motuo Section of Yarlung Tsangpo River: Evidence from Biotite Ar/Ar Chronology

    • 摘要: 为揭示东喜马拉雅构造结及其周边区域完整地质演化过程,对采集自雅鲁藏布江墨脱段10块基岩样品进行黑云母40Ar/39Ar测年,并利用“Pecube”软件对年龄代表隆升剥露速率进行定量计算.样品黑云母40Ar/39Ar年龄范围为11.25~24.04 Ma,对应隆升剥露速率范围为0.25~0.51 km/Ma.雅鲁藏布江墨脱段地壳隆升剥露速率存在明显南北差异,北段隆升剥露速率高出约0.2 km/Ma.年代学数据及计算结果表明,与东喜马拉雅构造结内部相比,雅鲁藏布江下游墨脱段为地壳隆升剥露活动相对较弱区域.与喜马拉雅地体向拉萨地体俯冲过程相关北西、北西西走向逆断层活动,不仅在东喜马拉雅构造结内部区域发育,在其东侧雅鲁藏布江墨脱段也可能发育.

       

    • 图  1  东喜马拉雅构造结地质简图

      Fig.  1.  Simplified geologic map of eastern Himalayan syntaxis

      图  2  雅鲁藏布江墨脱段流域数字地貌及采样位置

      Fig.  2.  Digital geomorphological map of the Yarlung Tsangpo River Motuo Section and sample locations

      图  3  野外露头照片

      a.南段雅鲁藏布江主河段河谷样品MT⁃01采集处弱变形花岗岩;b.南段雅鲁藏布江主河段河谷花岗岩中发育北北东走向近直立脆性破裂面;c.北段雅鲁藏布江支流河谷样品MT⁃12采集处片麻岩,片麻理产状为北西西走向近直立;d.北段雅鲁藏布江支流河谷片麻岩中发育北西西走向近直立脆性破裂面;图中白色宽箭头及其内数字代表照片拍摄方向;红色线段及白色长方形内数字代表破裂面位置及产状

      Fig.  3.  Photographs of field outcrops

      图  4  黑云母40Ar/39Ar坪年龄

      Fig.  4.  40Ar/39Ar plateau ages of biotite concentrates

      图  5  模拟计算有限元模型

      Fig.  5.  The finite element model of simulation

      图  6  河流地貌形态样品年龄对比

      a.样品实测年龄、模拟年龄、最佳隆升剥露速率对比;b.雅鲁藏布江墨脱段河流纵剖面

      Fig.  6.  River morphology and age contrast

      图  7  东喜马拉雅构造结演化模式

      a.8 Ma以前水平面大地构造框架示意图;b.8 Ma以前垂向剖面大地构造框架示意图;c.8 Ma以来水平面大地构造框架示意图;d~f.8 Ma以来垂向剖面大地构造框架示意图;HP.含高压麻粒岩透镜体高级变质杂岩;YCF.雅江峡谷逆冲断裂带;NMLF.那木拉逆冲断裂带;ANQF.阿尼桥正断层

      Fig.  7.  Cartoon figures of the eastern Himalayan syntaxis tectonic evolution

      表  1  样品信息及年龄值

      Table  1.   Sample information and chronology data

      样品名 经度 纬度 海拔(m) 岩性 黑云母40Ar/39Ar
      坪年龄(Ma)
      2σ误差(Ma) MSWD值
      MT-01 E95.186° N29.254° 681 黑云角闪花岗岩 20.84 0.61 0.36
      MT-02 E95.251° N29.278° 727 黑云角闪花岗
      闪长岩
      17.94 0.57 0.17
      MT-03 E95.286° N29.302° 764 黑云角闪花岗
      闪长岩
      20.00 1.10 0.11
      MT-05 E95.343° N29.351° 750 黑云母闪长岩 20.16 0.33 0.64
      MT-06 E95.355° N29.369° 790 花岗闪长岩 24.04 0.62 0.34
      MT-09 E95.448° N29.502° 957 片麻岩 11.25 0.31 0.32
      MT-10 E95.458° N29.545° 1 177 片麻岩 15.62 0.20 0.10
      MT-11 E95.473° N29.594° 1 440 闪长岩 14.35 0.47 0.13
      MT-12-1 E95.483° N29.645° 1 859 片麻岩 14.52 0.67 0.13
      MT-12-2 E95.483° N29.645° 1 859 片麻岩 13.46 0.45 0.12
      下载: 导出CSV

      表  2  样品实测年龄与模拟计算年龄

      Table  2.   Samples' observed ages and predicted ages

      样品名 实测年龄
      (Ma)
      模拟年龄(Ma) 最佳隆升
      剥露速率
      (km/Ma)
      VE=0.2
      km/Ma
      VE=0.25
      km/Ma
      VE=0.3
      km/Ma
      VE=0.35
      km/Ma
      VE=0.4
      km/Ma
      VE=0.45
      km/Ma
      VE=0.5
      km/Ma
      VE=0.55
      km/Ma
      MT-01 20.84 31.57 25.05 20.66 17.51 15.14 13.28 11.80 10.58 0.30
      MT-02 17.94 30.29 24.02 19.81 16.78 14.49 12.71 11.28 10.10 0.33
      MT-03 20 30.24 23.98 19.77 16.75 14.47 12.69 11.26 10.08 0.30
      MT-05 20.16 30.27 24.01 19.79 16.76 14.48 12.70 11.27 10.09 0.30
      MT-06 24.04 30.90 24.51 20.21 17.12 14.80 12.98 11.52 10.32 0.25
      MT-09 11.25 30.92 24.52 20.22 17.13 14.80 12.98 11.52 10.32 0.51
      MT-10 15.62 31.16 24.70 20.37 17.25 14.90 13.06 11.59 10.38 0.40
      MT-11 14.35 31.64 25.08 20.67 17.50 15.11 13.24 11.75 10.52 0.42
      MT-12-1 14.52 33.61 26.65 21.97 18.60 16.07 14.09 12.50 11.20 0.45
      MT-12-2 13.46 33.61 26.65 21.97 18.60 16.07 14.09 12.50 11.20 0.45
      下载: 导出CSV
    • Anders, A.M., Roe, G.H., Hallet, B., et al., 2006. Spatial Patterns of Precipitation and Topography in the Himalaya. Special Papers-Geological Society of America, 398: 39-54. https://doi.org/10.1130/2006.2398(03)
      Baksi, A.K., Archibald, D.A., Farrar, E., 1996. Intercalibration of 40Ar/39Ar Dating Standards. Chemical Geology, 129(3-4): 307-324. https://doi.org/10.1016/0009-2541(95)00154-9
      Beaumont, C., Jamieson, R.A., Nguyen, M.H., et al., 2001. Himalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation. Nature, 414: 738-742. https://doi.org/10.1038/414738a
      Booth, A.L., Chamberlain, C.P., Kidd, W.S.F., et al., 2009. Constraints on the Metamorphic Evolution of the Eastern Himalayan Syntaxis from Geochronologic and Petrologic Studies of Namche Barwa. Geological Society of America Bulletin, 121(3-4): 385-407. https://doi.org/10.1130/b26041.1
      Bracciali, L., Najman, Y., Parrish, R.R., et al., 2015. The Brahmaputra Tale of Tectonics and Erosion: Early Miocene River Capture in the Eastern Himalaya. Earth and Planetary Science Letters, 415: 25-37. https://doi.org/10.1016/j.epsl.2015.01.022
      Braun, J., van der Beek, P., Valla, P., et al., 2012. Quantifying Rates of Landscape Evolution and Tectonic Processes by Thermochronology and Numerical Modeling of Crustal Heat Transport Using PECUBE. Tectonophysics, 524-525: 1-28. https://doi.org/10.1016/j.tecto.2011.12.035
      Burg, J.P., Nievergelt, P., Oberli, F., et al., 1998. The Namche Barwa Syntaxis: Evidence for Exhumation Related to Compressional Crustal Folding. Journal of Asian Earth Sciences, 16(2-3): 239-252. https://doi.org/10.1016/s0743-9547(98)00002-6
      Craw, D., Koons, P.O., Zeitler, P.K., et al., 2005. Fluid Evolution and Thermal Structure in the Rapidly Exhuming Gneiss Complex of Namche Barwa-Gyala Peri, Eastern Himalayan Syntaxis. Journal of Metamorphic Geology, 23(9): 829-845. https://doi.org/10.1111/j.1525-1314.2005.00612.x
      Ding, L., Zhong, D.L., 1999. High Pressure Granulite Facies Metamorphism Characteristics and Tectonic Geological Significance in the Namche Barwa Region Tibet. Science in China (Series D), 29(5): 385-397(in Chinese).
      Ding, L., Zhong, D.L., Yin, A., et al., 2001. Cenozoic Structural and Metamorphic Evolution of the Eastern Himalayan Syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423-438. https://doi.org/10.1016/s0012-821x(01)00463-0
      Gong, J.F., Ji, J.Q., Zhou, J., et al., 2015. Late Miocene Thermal Evolution of the Eastern Himalayan Syntaxis as Constrained by Biotite 40Ar/39Ar Thermochronology. The Journal of Geology, 123(4): 369-384. https://doi.org/10.1086/682951
      Govin, G., van der Beek, P., Najman, Y., et al., 2020. Early Onset and Late Acceleration of Rapid Exhumation in the Namche Barwa Syntaxis, Eastern Himalaya. Geology, 48(12): 1139-1143. https://doi.org/10.1130/g47720.1
      Harrison, T.M., Duncan, I., McDougall, I., 1985. Diffusion of 40Ar in Biotite: Temperature, Pressure and Compositional Effects. Geochimica et Cosmochimica Acta, 49(11): 2461-2468. https://doi.org/10.1016/0016-7037(85)90246-7
      King, G.E., Herman, F., Guralnik, B., 2016. Northward Migration of the Eastern Himalayan Syntaxis Revealed by OSL Thermochronometry. Science, 353(6301): 800-804. https://doi.org/10.1126/science.aaf2637
      Lee, H.Y., Chung, S.L., Wang, J.R., et al., 2003. Miocene Jiali Faulting and Its Implications for Tibetan Tectonic Evolution. Earth and Planetary Science Letters, 205(3-4): 185-194. https://doi.org/10.1016/s0012-821x(02)01040-3
      Molnar, P., England, P., 1990. Late Cenozoic Uplift of Mountain Ranges and Global Climate Change: Chicken or Egg? Nature, 346: 29-34. https://doi.org/10.1038/346029a0
      Mo, X.X., 2019. Magmatism and Deep Geological Process. Earth Science, 44(5): 1487-1493(in Chinese with English abatract). https://doi.org/10.3799/dqkx.2019.972
      Raymo, M.E., Ruddiman, W.F., 1992. Tectonic Forcing of Late Cenozoic Climate. Nature, 359: 117-122. https://doi.org/10.1038/359117a0
      Seward, D., Burg, J.P., 2008. Growth of the Namche Barwa Syntaxis and Associated Evolution of the Tsangpo Gorge: Constraints from Structural and Thermochronological Data. Tectonophysics, 451(1-4): 282-289. https://doi.org/10.1016/j.tecto.2007.11.057
      Shi, Y.F., Zheng, B.X., Su, Z., 2006. Glaciations, Glacial and Interglacial Cycles and Environment Changes in Quaternary. In: Shi, Y.F., Cui, Z.J., Su, Z., eds., The Quaternary Glaciations and Environmental Variations in China. Hebei Science and Technology Publishing House, Shijiazhuang(in Chinese).
      Steiger, R.H., Jäger, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. https://doi.org/10.1016/0012-821s(77)90060-7
      Stewart, R.J., Hallet, B., Zeitler, P.K., et al., 2008. Brahmaputra Sediment Flux Dominated by Highly Localized Rapid Erosion from the Easternmost Himalaya. Geology, 36(9): 711. https://doi.org/10.1130/g24890a.1
      Tu, J.Y., Ji, J.Q., Gong, J.F., et al., 2016. Zircon U-Pb Dating Constraints on the Crustal Melting Event around 8 Ma in the Eastern Himalayan Syntaxis. International Geology Review, 58(1): 58-70. https://doi.org/10.1080/00206814.2015.1056255
      Tu, J.Y., Ji, J.Q., Sun, D.X., et al., 2015. Thermal Structure, Rock Exhumation, and Glacial Erosion of the Namche Barwa Peak, Constraints from Thermochronological Data. Journal of Asian Earth Sciences, 105: 223-233. https://doi.org/10.1016/j.jseaes.2015.03.035
      Wang, P., Scherler, D., Liu, Z.J., et al., 2014. Tectonic Control of Yarlung Tsangpo Gorge Revealed by a Buried Canyon in Southern Tibet. Science, 346(6212): 978-981. https://doi.org/10.1126/science.1259041
      Wen, D.R., Liu, D.Y., Chung, S.L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3-4): 191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003
      Xu, Q.Q., Ji, J.Q., Zhong, D.L., et al., 2020. Post-Glacial Entrenchment and Knickpoint Migration of the Yarlung Tsangpo Gorge, Southeastern Tibetan Plateau. Journal of Asian Earth Sciences, 195: 104337. https://doi.org/10.1016/j.jseaes.2020.104337
      Xu, Z.Q., Ji, S.C., Cai, Z.H., et al., 2012. Kinematics and Dynamics of the Namche Barwa Syntaxis, Eastern Himalaya: Constraints from Deformation, Fabrics and Geochronology. Gondwana Research, 21(1): 19-36. https://doi.org/10.1016/j.gr.2011.06.010
      Yang, R., Herman, F., Fellin, M.G., et al., 2018. Exhumation and Topographic Evolution of the Namche Barwa Syntaxis, Eastern Himalaya. Tectonophysics, 722: 43-52. https://doi.org/10.1016/j.tecto.2017.10.026
      Yin, A., Harrison, T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zeitler, P.K., Meltzer, A.S., Brown, L., et al., 2014. Tectonics and Topographic Evolution of Namche Barwa and the Easternmost Lhasa Block, Tibet. Geological Society of America Special Papers, 507(23). https://doi.org/10.1130/2014.2507(02)
      Zeitler, P.K., Meltzer, A.S., Koons, P.O., et al., 2001. Erosion, Himalayan Geodynamics, and the Geomorphology of Metamorphism. GSA Today, 11(1): 4-9. doi: 10.1130/1052-5173(2001)011<0004:EHGATG>2.0.CO;2
      Zhang, J.J., Ji, J.Q., Zhong, D.L., et al., 2004. Structural Pattern of Eastern Himalayan Syntaxis in Namjagbarwa and Its Formation Process. Science in China: Earth Sciences, 47(2): 138-150. https://doi.org/10.1360/02yd0042
      Zhang, P.Z., Molnar, P., Downs, W.R., 2001. Increased Sedimentation Rates and Grain Sizes 2-4 Myr ago Due to the Influence of Climate Change on Erosion Rates. Nature, 410: 891-897. https://doi.org/10.1038/35073504
      Zhang, Z.M., Dong, X., Santosh, M., et al., 2012. Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet: Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton. Gondwana Research, 21(1): 123-137. https://doi.org/10.1016/j.gr.2011.02.002
      Zhang, Z.G., Liu, Y.H., Wang, T.W., et al., 1992. Geology of the Namche Barwa Region. Science Press, Beijing(in Chinese).
      Zhang, Z.M., Ding, H.X., Dong, X., et al., 2019. Two Contrasting Eclogite Types in the Himalayan Orogen and Differential Subduction of Indian Continent. Earth Science, 44(5): 1602-1619(in Chinese with English abatract).
      Zhong, D.L., Ding, L., 1995. High Pressure Granulite Found in the Namche Barwa Region Tibet. Chinese Science Bulletin, 40(14): 1343(in Chinese). doi: 10.1360/csb1995-40-14-1343
      丁林, 钟大赉, 1999. 西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义. 中国科学(D辑), 29(5): 385-397. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199905000.htm
      莫宣学, 2019. 岩浆作用与地球深部过程. 地球科学, 44(5): 1487-1493. doi: 10.3799/dqkx.2019.972
      施雅风, 郑本兴, 苏珍, 2006. 第四纪冰川、冰期间冰期旋回与环境变化. 见: 施雅风, 崔之久, 苏珍, 编. 中国第四纪冰川与环境变化. 石家庄: 河北科学技术出版社.
      章振根, 刘玉海, 王天武, 等, 1992. 南迦巴瓦峰地区地质. 北京: 科学出版社.
      张泽明, 丁慧霞, 董昕, 等, 2019. 喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲. 地球科学, 44(5): 1602-1619. doi: 10.3799/dqkx.2019.040
      钟大赉, 丁林, 1995. 西藏南迦巴瓦峰地区发现高压麻粒岩. 科学通报, 40(14): 1343. doi: 10.3321/j.issn:0023-074X.1995.14.029
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  1025
    • HTML全文浏览量:  491
    • PDF下载量:  79
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-05-10
    • 刊出日期:  2021-12-15

    目录

      /

      返回文章
      返回