• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    深层含氟地下水微生物群落组成及环境响应特征

    张怀胜 王梦园 蔡五田 边超 刘金巍

    张怀胜, 王梦园, 蔡五田, 边超, 刘金巍, 2023. 深层含氟地下水微生物群落组成及环境响应特征. 地球科学, 48(9): 3466-3479. doi: 10.3799/dqkx.2021.147
    引用本文: 张怀胜, 王梦园, 蔡五田, 边超, 刘金巍, 2023. 深层含氟地下水微生物群落组成及环境响应特征. 地球科学, 48(9): 3466-3479. doi: 10.3799/dqkx.2021.147
    Zhang Huaisheng, Wang Mengyuan, Cai Wutian, Bian Chao, Liu Jinwei, 2023. Characteristics of Microbial Community Composition and Environmental Response in Deep Fluorinated Groundwater. Earth Science, 48(9): 3466-3479. doi: 10.3799/dqkx.2021.147
    Citation: Zhang Huaisheng, Wang Mengyuan, Cai Wutian, Bian Chao, Liu Jinwei, 2023. Characteristics of Microbial Community Composition and Environmental Response in Deep Fluorinated Groundwater. Earth Science, 48(9): 3466-3479. doi: 10.3799/dqkx.2021.147

    深层含氟地下水微生物群落组成及环境响应特征

    doi: 10.3799/dqkx.2021.147
    基金项目: 

    国家重点研发计划 2019YFC1804804

    国家基础资源调查专项课题 2017FY100401

    国家水体污染控制与治理科技重大专项子课题 2018ZX07109-001-02

    详细信息
      作者简介:

      张怀胜(1992-),男,工程师,博士,主要从事生态地球化学研究. ORCID:0000-0002-5579-4608. E-mail:hszhang0825@foxmail.com

    • 中图分类号: P641

    Characteristics of Microbial Community Composition and Environmental Response in Deep Fluorinated Groundwater

    • 摘要: 在特殊地质体中开展地质微生物研究具有重要价值,但在深层含氟地下水环境中开展的相关研究尚有不足.为此,选取衡水市桃城区第三含水组并采集地下水水源井样品9个,进行了水化学分析和微生物16s RNA基因V4-V5区域测序.结果表明,研究区深层地下水偏碱性,TDS相对偏低,F的平均含量为1.01 mg/L,水化学类型整体表现为Cl·SO4-Na与HCO3·Cl·SO4-Na型. F含量对地下水微生物的丰度与多样性影响较为明显,高氟与低氟地下水特有菌属数量分别为39个和126个.地下水在门水平上以变形菌门(Proteobacteria)最为优势(47.67%~76.96%),属水平类群分散度较高,无明显优势菌属.整体上看,研究区地下水中菌群的组成对水化学过程响应灵敏且关系密切,NO3、F、DO与取样深度是影响微生物组成结构的主要因子,其中DO也是研究区地下水微生物丰度水平的重要保障.

       

    • 图  1  地理位置与采样点分布

      Fig.  1.  Geographical location and distribution of sampling points

      图  2  研究区地质剖面与水文特征

      Fig.  2.  Geological profile and hydrological characteristics of the study area

      图  3  Chao1指数稀疏曲线

      Fig.  3.  Chao1 exponential sparse curve

      图  4  Shannon指数稀疏曲线

      Fig.  4.  Shannon exponential sparse curve

      图  5  地下水微生物群落Alpha指数箱形图

      Fig.  5.  Box chart of Alpha index of groundwater microbial community

      图  6  地下水中微生物门水平与属水平群落组成

      Fig.  6.  The phylum and genus composition of the groundwater microbial community

      图  7  样品属水平分布韦恩图

      Fig.  7.  Venn of samples on genus level

      图  8  属水平共有菌属分布

      Fig.  8.  Distribution of common genera

      图  9  采样点分组PCA分析

      Fig.  9.  Principal coordinate analysis of samples

      图  10  门水平群落组成热图

      Fig.  10.  Heatmap of microbial community composition on phylum level

      图  11  门水平随机森林分析

      Fig.  11.  Random forest analysis on phylum level

      图  12  水文特征因子和菌门关系RDA分析

      Fig.  12.  RDA analysis of hydrological feature factors and bacterial phyla relationships

      图  13  水化学特征因子和菌门关系RDA分析

      Fig.  13.  RDA analysis of hydrochemical feature factors and bacterial phyla relationships

      表  1  桃城区深层地下水主要离子含量

      Table  1.   Main ion contents of deep groundwater in Taocheng District

      参数 pH TDS SO42‒ Cl Na+ NO2 NO3 F
      HF
      (m(F)≥1 mg/L,n=5)
      平均值 8.22 769 159 170 218 0 0.004 1.23
      MAX 8.44 957 178 229 346 0 0.020 1.43
      MIN 8.04 704 140 110 167 0 0 1.01
      LF
      (m(F) < 1 mg/L,n=4)
      平均值 8.40 686 125 168 190 0.011 0.525 0.73
      MAX 8.47 774 132 242 195 0.017 1.129 0.91
      MIN 8.34 628 120 118 178 0.003 0.135 0.57
      注:离子参数单位mg/L.
      下载: 导出CSV

      表  2  地下水微生物群落Alpha多样性指数

      Table  2.   The Alpha diversity index of groundwater microbial community from different sampling sites

      Group Sample Chao1 Shannon Simpson Observed_species Faith_pd Pielou_e Goods_coverage
      HF HS09 1 623.24 6.380 5 0.894 2 1 471.0 154.797 0.606 4 0.993 5
      HS12 2 474.28 7.450 3 0.956 4 2 302.8 209.532 0.667 0 0.990 5
      HS16 3 139.96 8.589 3 0.984 1 2 915.5 218.806 0.746 3 0.987 3
      HS17 2 038.18 6.654 4 0.904 4 1 884.8 194.692 0.611 6 0.992 2
      HS21 2 551.76 7.577 4 0.973 1 2 274.1 229.814 0.679 5 0.988 5
      平均值 2 365.48 7.330 4 0.942 4 2 169.6 201.528 0.662 2 0.990 4
      LF HS02 4 038.76 9.419 1 0.989 7 3 732.8 301.134 0.793 8 0.983 3
      HS05 2 318.09 7.696 9 0.960 3 2 109.6 220.819 0.697 0 0.990 3
      HS06 2 447.25 7.377 2 0.953 7 2 193.8 211.421 0.664 7 0.989 3
      HS07 3 646.16 9.339 1 0.993 9 3 225.0 313.258 0.801 3 0.983 4
      平均值 3 112.57 8.458 1 0.974 4 2 815.3 261.658 0.739 2 0.986 6
      下载: 导出CSV
    • Albers, C. N., Ellegaard-Jensen, L., Harder, C. B., et al., 2015. Groundwater Chemistry Determines the Prokaryotic Community Structure of Waterworks Sand Filters. Environmental Science & Technology, 49(2): 839-846. https://doi.org/10.1021/es5046452
      An, X. L., Chen, T. T., Zhao, H., et al., 2016. Assessment of Ecosystem Health of Baogang Tailings Groundwater Based on Microbiome Index of Biotic Integrity (M-IBI). Environmental Science, 37(9): 3413-3422 (in Chinese with English abstract).
      Berger, T., Mathurin, F. A., Drake, H., et al., 2016. Fluoride Abundance and Controls in Fresh Groundwater in Quaternary Deposits and Bedrock Fractures in an Area with Fluorine-Rich Granitoid Rocks. Science of the Total Environment, 569-570: 948-960. https://doi.org/10.1016/j.scitotenv.2016.06.002
      Dudley, B. D., Hughes, R. F., Ostertag, R., 2014. Groundwater Availability Mediates the Ecosystem Effects of an Invasion of Prosopis Pallida. Ecological Applications, 24(8): 1954-1971. https://doi.org/10.1890/13-1262.1
      Fang, Y. H., Zheng, X. L., Peng, H., et al., 2019. Groundwater Quality Assessment Based on Optimization of Fuzzy Synthetic Evaluation. Earth Science Frontiers, 26(4): 301-306 (in Chinese with English abstract).
      Fuge, R., 2019. Fluorine in the Environment, a Review of Its Sources and Geochemistry. Applied Geochemistry, 100: 393-406. https://doi.org/10.1016/j.apgeochem.2018.12.016
      Gao, X. B., Luo, W. T., Luo, X. S., et al., 2019. Indigenous Microbes Induced Fluoride Release from Aquifer Sediments. Environmental Pollution, 252(Pt A): 580-590. https://doi.org/10.1016/j.envpol.2019.05.118
      Griebler, C., Brielmann, H., Haberer, C. M., et al., 2016. Potential Impacts of Geothermal Energy Use and Storage of Heat on Groundwater Quality, Biodiversity, and Ecosystem Processes. Environmental Earth Sciences, 75(20): 1391. https://doi.org/10.1007/s12665-016-6207-z
      Hao, Q. Y., Xu, X. T., Zhang, X. B., et al., 2020. Hydrochemical Characteristics and Genesis of High-Fluorine Shallow Groundwater in Yanggu Area of the Northwestern Shandong, China. Journal of Earth Sciences and Environment, 42(5): 668-677 (in Chinese with English abstract).
      He, Z. L., Zhang, P., Wu, L. W., et al., 2018. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning. Mbio, 9(1): e02435-e02417. https://doi.org/10.1128/mBio.02435-17
      Kodama, Y., Watanabe, K., 2004. Sulfuricurvum Kujiense Gen. Nov., Sp. Nov., a Facultatively Anaerobic, Chemolithoautotrophic, Sulfur-Oxidizing Bacterium Isolated from an Underground Crude-Oil Storage Cavity. International Journal of Systematic and Evolutionary Microbiology, 54(6): 2297-2300. https://doi.org/10.1099/ijs.0.63243-0
      Kong, X. L., Wang, S. Q., Zhao, H., et al., 2015. Distribution Characteristics and Source of Fluoride in Groundwater in Lower Plain Area of North China Plain: A Case Study in Nanpi County. Environmental Science, 36(11): 4051-4059 (in Chinese with English abstract).
      Kujala, K., Besold, J., Mikkonen, A., et al., 2020. Abundant and Diverse Arsenic-Metabolizing Microorganisms in Peatlands Treating Arsenic-Contaminated Mining Wastewaters. Environmental Microbiology, 22(4): 1572-1587. https://doi.org/10.1111/1462-2920.14922
      Lau, M. C. Y., Kieft, T. L., Kuloyo, O., et al., 2016. An Oligotrophic Deep-Subsurface Community Dependent on Syntrophy is Dominated by Sulfur-Driven Autotrophic Denitrifiers. Proceedings of the National Academy of Sciences of the United States of America, 113(49): E7927-E7936. https://doi.org/10.1073/pnas.1612244113
      Lerm, S., Westphal, A., Miethling-Graff, R., et al., 2013. Thermal Effects on Microbial Composition and Microbiologically Induced Corrosion and Mineral Precipitation Affecting Operation of a Geothermal Plant in a Deep Saline Aquifer. Extremophiles, 17(2): 311-327. https://doi.org/10.1007/s00792-013-0518-8
      Li, N. Y., Han, Z. Y., Wang, S. C., et al., 2020. Impacts of Different Pollution Sources on the Microbial Community in Groundwater at Municipal Solid Waste Landfill Sites. China Environmental Science, 40(11): 4900-4910 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2020.11.031
      Li, S., Cheng, J. M., Li, M. M., et al., 2016. Water Quality Characteristics and Evolution of Groundwater System Influenced by Human Exploitation Activity in Hengshui Area. South-to-North Water Transfers and Water Science & Technology, 14(3): 55-61, 100 (in Chinese with English abstract).
      Magnabosco, C., Lin, L. H., Dong, H., et al., 2018. The Biomass and Biodiversity of the Continental Subsurface. Nature Geoscience, 11(10): 707-717. https://doi.org/10.1038/s41561-018-0221-6
      Méheust, R., Castelle, C. J., Matheus Carnevali, P. B., et al., 2020. Groundwater Elusimicrobia are Metabolically Diverse Compared to Gut Microbiome Elusimicrobia and Some Have a Novel Nitrogenase Paralog. The ISME Journal, 14(12): 2907-2922. https://doi.org/10.1038/s41396-020-0716-1
      Ning, Z., Cai, P. P., Zhang, M., et al., 2019. Abnormally Low Dissolved Inorganic Carbon in Petroleum Contaminated Groundwater Caused by Microbiological Geochemistry. Acta Scientiae Circumstantiae, 39(4): 1140-1147 (in Chinese with English abstract).
      Patil, S. S., Adetutu, E. M., Rochow, J., et al., 2014. Sustainable Remediation: Electrochemically Assisted Microbial Dechlorination of Tetrachloroethene-Contaminated Groundwater. Microbial Biotechnology, 7(1): 54-63. https://doi.org/10.1111/1751-7915.12089
      Qu, J. Y., Tong, M., Yuan, S. H., 2021. Effect and Mechanism of Fe(Ⅱ) Oxygenation on Activities of Iron and Manganese Cycling Functional Microbes. Earth Science, 46(2): 632-641 (in Chinese with English abstract).
      Robinson, R. L. M., Palczewska, A., Palczewski, J., et al., 2017. Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets. Journal of Chemical Information and Modeling, 57(8): 1773-1792. https://doi.org/10.1021/acs.jcim.6b00753
      Ritter, C. D., Forster, D., Azevedo, J. A. R., et al., 2021. Assessing Biotic and Abiotic Interactions of Microorganisms in Amazonia through Co-Occurrence Networks and DNA Metabarcoding. Microbial Ecology, 82(3): 746-760. https://doi.org/10.1007/s00248-021-01719-6
      Saccò, M., Blyth, A. J., Humphreys, W. F., et al., 2021. Rainfall as a Trigger of Ecological Cascade Effects in an Australian Groundwater Ecosystem. Scientific Reports, 11(1): 3694. https://doi.org/10.1038/s41598-021-83286-x
      Sherry, A., Gray, N. D., Ditchfield, A. K., et al., 2013. Anaerobic Biodegradation of Crude Oil under Sulphate-Reducing Conditions Leads to only Modest Enrichment of Recognized Sulphate-Reducing Taxa. International Biodeterioration & Biodegradation, 81: 105-113. https://doi.org/10.1016/j.ibiod.2012.04.009
      Tai, V., James, E. R., Nalepa, C. A., et al., 2015. The Role of Host Phylogeny Varies in Shaping Microbial Diversity in the Hindguts of Lower Termites. Applied and Environmental Microbiology, 81(3): 1059-1070. https://doi.org/10.1128/AEM.02945-14
      Wang, Y. T., Li, J. X., Xue, X. B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320 (in Chinese with English abstract).
      Xu, Y. X., Zheng, T. L., Gao, J., et al., 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract).
      Zaitseva, S. V., Lavrentieva, E. V., Radnagurueva, A. A., et al., 2017. Distribution of Acetothermia-Dominated Microbial Communities in Alkaline Hot Springs of Baikal Rift Zone. PeerJ Preprints, 5: e3492v1. https://doi.org/10.7287/peerj.preprints.3492v1.
      Zhang, X., Gao, X. B., Li, C. C., et al., 2019. Fluoride Contributes to the Shaping of Microbial Community in High Fluoride Groundwater in Qiji County, Yuncheng City, China. Scientific Reports, 9: 14488. https://doi.org/10.1038/s41598-019-50914-6
      Zhang, Z. G., He, J. T., Wang, L., et al., 2018. Hydrochemical Characteristics and Evolution Processes of Deep Groundwater in Hengshui Area. Geoscience, 32(3): 565-573 (in Chinese with English abstract).
      安新丽, 陈廷廷, 赵晗, 等, 2016. 基于微生物生物完整性指数的地下水生态系统健康评价: 以包钢稀土尾矿库周边地下水生态系统为例. 环境科学, 37(9): 3413-3422. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201609020.htm
      方运海, 郑西来, 彭辉, 等, 2019. 基于模糊综合优化模型的地下水质量评价. 地学前缘, 26(4): 301-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904037.htm
      郝启勇, 徐晓天, 张心彬, 等, 2020. 鲁西北阳谷地区浅层高氟地下水化学特征及成因. 地球科学与环境学报, 42(5): 668-677. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm
      孔晓乐, 王仕琴, 赵焕, 等, 2015. 华北低平原区地下水中氟分布特征及形成原因: 以南皮县为例. 环境科学, 36(11): 4051-4059. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201511014.htm
      李娜英, 韩智勇, 王双超, 等, 2020. 多污染源作用下填埋场地下水微生物群落分析. 中国环境科学, 40(11): 4900-4910. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202011037.htm
      李莎, 成建梅, 李敏敏, 等, 2016. 人类开采活动影响下的衡水地区地下水水质特征及演化. 南水北调与水利科技, 14(3): 55-61, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201603010.htm
      宁卓, 蔡萍萍, 张敏, 等, 2019. 某石油污染地下水溶解性无机碳低异常的微生物地球化学成因探析. 环境科学学报, 39(4): 1140-1147. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201904013.htm
      屈婧祎, 童曼, 袁松虎, 2021. 二价铁氧化对铁锰循环功能微生物活性的影响及机制. 地球科学, 46(2): 632-641. doi: 10.3799/dqkx.2020.029
      王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. doi: 10.3799/dqkx.2019.261
      徐雨潇, 郑天亮, 高杰, 等, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
      张振国, 何江涛, 王磊, 等, 2018. 衡水地区深层地下水水化学特征及其演化过程. 现代地质, 32(3): 565-573. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201803014.htm
    • 加载中
    图(13) / 表(2)
    计量
    • 文章访问数:  344
    • HTML全文浏览量:  552
    • PDF下载量:  28
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-07-03
    • 网络出版日期:  2023-10-07
    • 刊出日期:  2023-09-25

    目录

      /

      返回文章
      返回