• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    冰碛湖溃决易发性的定量评价

    余斌 何元勋 刘秧

    余斌, 何元勋, 刘秧, 2022. 冰碛湖溃决易发性的定量评价. 地球科学, 47(6): 1999-2014. doi: 10.3799/dqkx.2021.161
    引用本文: 余斌, 何元勋, 刘秧, 2022. 冰碛湖溃决易发性的定量评价. 地球科学, 47(6): 1999-2014. doi: 10.3799/dqkx.2021.161
    Yu Bin, He Yuanxun, Liu Yang, 2022. Quantitative Susceptibility Assessment of Breach of Moraine-Dammed Lakes. Earth Science, 47(6): 1999-2014. doi: 10.3799/dqkx.2021.161
    Citation: Yu Bin, He Yuanxun, Liu Yang, 2022. Quantitative Susceptibility Assessment of Breach of Moraine-Dammed Lakes. Earth Science, 47(6): 1999-2014. doi: 10.3799/dqkx.2021.161

    冰碛湖溃决易发性的定量评价

    doi: 10.3799/dqkx.2021.161
    基金项目: 

    国家自然科学基金重大专项资助 41941019

    第二次青藏高原综合科学考察研究资助 2019QZKK0201

    详细信息
      作者简介:

      余斌(1966-),男,教授,博士,主要从事泥石流灾害与防治、泥石流预报研究及相关教学工作.ORCID:0000-0003-2367-7746.E-mail:yubin08@cdut.cn

    • 中图分类号: P694

    Quantitative Susceptibility Assessment of Breach of Moraine-Dammed Lakes

    • 摘要: 世界范围内的冰碛湖溃决往往造成巨大经济损失和人员伤亡.通过分析不含死冰的冰碛坝溃决机理和相关影响因素,采用控制变量法,以喜马拉雅山区21个溃决冰碛湖及其周围未溃决冰碛湖为研究对象,采用6个无量纲影响因子可以合理评估喜马拉雅山区和加拿大哥伦比亚省西南地区以及美国西北部地区的冰湖溃决易发性,但喜马拉雅山区不同级别判别阈值较加拿大哥伦比亚省西南地区偏大.危险冰体坡度因子、危险冰体温度因子、冰川坡向因子、危险冰体与冰碛湖体积因子、危险冰体与冰湖的运动因子、冰碛坝坡度因子是影响不含死冰冰碛湖溃决的主要因子,由这些影响因子构成的冰碛湖溃决易发性定量评价方法,可以用于其他地区的冰碛湖溃决易发性评价.

       

    • 图  1  喜马拉雅山区内14个研究子区域分布

      Fig.  1.   The distribution of 14 sub-areas in Himalaya

      图  2  危险冰体示意图(嘉龙措)

      Fig.  2.   The dangerous glacier (Lake Jialong)

      图  3  与冰碛湖溃决有关的冰川与冰湖的变量

      数字表示:①冰川类型;②冰川面积;③冰川坡向;④冰湖体积;⑤危险冰体面积;⑥危险冰体质心至冰湖的高差;⑦危险冰体至冰湖的水平运动距离;⑧冰碛堤背水坡坡度;⑨危险冰体坡度;⑩危险冰体温度;⑪危险冰体高程

      Fig.  3.   The factors related drained moraine-dammed

      图  4  北半球冰川坡向的平面投影角

      Fig.  4.   The planar projection of aspect of the glacier in the northern Hemisphere

      图  5  冰川坡向因子X与体积因子G关系图

      a.子区域1~3;b.子区域4~6;c.子区域7~9;d.子区域10~14

      Fig.  5.   The relationship between the glacier aspect factor X and the volume factor G

      图  6  因子P1与运动因子R关系图

      a.子区域1~3;b.子区域4~6;c.子区域7~9;d.子区域10~13

      Fig.  6.   The relationship between the factor P1 and the kinetic factor R

      图  7  因子P2与冰碛堤背水坡坡度因子D关系图

      a.子区域1~3;b.子区域4~6;c.子区域7~9;d.子区域10~13

      Fig.  7.   The relationship between the factor P2 and the downstream slope of the moraine-dam factor D

      图  8  因子P3与危险冰体因子S关系图

      a.子区域1~3;b.子区域4~6;c.子区域7~9;d.子区域10~13

      Fig.  8.   The relationship between the factor P3 and the dangerous glacier slope factor S

      图  9  因子P4临界值与温度因子T关系

      Fig.  9.   The relationship between the critical value of factor P4 and the temperature factor T

      图  10  易发性评价和临界值

      Fig.  10.   The susceptibility assessment model and the critical value

      图  11  加拿大不列颠哥伦比亚西南地区及美国西北部地区的溃决和未溃决冰碛湖分布

      Fig.  11.   The distribution of moraine lakes in southwestern British Columbia, Canada and the Northwest United States

      图  12  易发性模型的验证

      Fig.  12.   Validation of the susceptibility assessment model

      图  13  研究区与验证区温度年际变化对比

      Fig.  13.   The comparison of the interannual variation of temperature in the study area and in the verification area

      表  1  喜马拉雅山区各子区域溃决与未溃决冰碛湖的评价因子

      Table  1.    The factors of sub-areas in the Himalayan region with or without GLOFs

      名称 子区域 X S G R D T 溃决 参考文献
      穷比吓玛错 1 0.93 0.51 0.68 0.20 0.39 -7.42 McKillop and Clague(2007b)
      1-1 1 0.42 0.47 0.17 0.39 0.46 -6.19
      1-2 1 0.86 0.47 0.08 0.51 0.35 -6.34
      1-3 1 0.71 0.47 0.39 0.36 0.44 -6.73
      1-4 1 0.07 0.50 -0.67 0.26 0.35 -8.84
      鲁惹错 2 0.38 0.50 0.99 0.20 0.40 -9.59 吕儒仁等(1999)
      得嘎错 2 0.33 0.48 1.52 0.20 0.43 -8.78 姚晓军等(2014)
      Upper Jiejiu Tsho 2 0.89 0.48 1.13 0.38 0.45 -8.18 刘美(2020)
      Upper Shegong Tsho 2 0.79 0.47 0.26 0.50 0.44 -8.41 刘美(2020)
      Tarikha Lake 2 0.99 0.47 0.54 0.17 0.41 -7.90 Nie et al.(2018)
      2-1 2 0.05 0.48 0.81 0.30 0.24 -9.66
      2-2 2 0.08 0.22 1.57 0.17 0.42 -8.38
      2-3 2 0.86 0.49 -0.02 0.26 0.21 -8.45
      2-4 2 0.24 0.48 0.40 0.24 0.41 -7.81
      2-5 2 0.87 0.46 0.45 0.20 0.22 -7.79
      2-6 2 0.02 0.47 0.18 0.30 0.33 -9.17
      2-7 2 0.51 0.25 0.53 0.24 0.39 -8.85
      2-8 2 0.26 0.37 0.95 0.18 0.35 -9.11
      隆达错 3 0.51 0.47 0.55 0.22 0.47 -5.31 徐道明和冯清华(1989)
      扎那泊 3 0.73 0.51 1.40 0.22 0.48 -5.99 姚晓军等(2014)
      扎隆嘎布 3 0.60 0.50 0.02 0.20 0.37 -6.16 刘建康等(2019)
      3-1 3 0.39 0.49 0.67 0.27 0.43 -6.83
      3-2 3 0.39 0.59 0.00 0.26 0.69 -6.49
      3-3 3 0.28 0.57 -0.36 0.25 0.40 -5.49
      3-4 3 0.16 0.56 -0.13 0.31 0.48 -6.27
      3-5 3 0.60 0.55 1.17 0.33 0.44 -5.92
      吉莱错(吉来普错) 4 0.64 0.49 0.04 0.18 0.37 -5.13 刘建康等(2019)
      4-1 4 0.37 0.49 -0.55 0.22 0.37 -5.41
      4-2 4 0.01 0.51 0.77 0.26 0.31 -6.51
      Nagma Pokhari 5 1.00 0.48 0.18 0.40 0.46 -4.75 Nie et al.(2018)
      5-1 5 0.29 0.51 0.92 0.40 0.54 -4.99
      5-2 5 1.00 0.44 0.37 0.36 0.59 -4.61
      5-3 5 0.97 0.30 1.25 0.31 0.36 -4.27
      5-4 5 0.92 0.47 -0.18 0.32 0.49 -5.18
      Dig Tsho 6 0.67 0.52 0.34 0.52 0.43 -2.40 Gurung et al.(2017)
      6-1 6 0.58 0.48 1.21 0.33 0.37 -3.57
      6-2 6 0.43 0.54 -0.86 0.30 0.14 -3.66
      6-3 6 0.29 0.60 -0.95 0.21 0.53 -4.22
      6-4 6 0.55 0.49 0.78 0.39 0.28 -4.05
      Upper Langbu Tsho 7 0.79 0.48 1.19 0.31 0.62 -4.31 Nie et al.(2018)
      7-1 7 0.26 0.36 -0.44 0.22 0.46 -4.96
      7-2 7 0.72 0.42 1.08 0.27 0.38 -5.17
      7-3 7 0.40 0.48 0.53 0.19 0.42 -3.55
      7-4 7 0.34 0.51 -0.28 0.28 0.42 -4.63
      错嘎 8 0.93 0.48 0.00 0.28 0.37 -6.55 姚晓军等(2014)
      8-1 8 0.03 0.50 -0.12 0.38 0.23 -6.46
      8-2 8 0.56 0.52 -0.15 0.20 0.47 -6.45
      8-3 8 0.94 0.49 -0.11 0.40 0.35 -5.15
      光谢错 9 0.34 0.51 0.94 0.24 0.44 -6.68 刘建康等(2019)
      9-1 9 0.17 0.49 1.12 0.24 0.53 -5.39
      9-2 9 0.99 0.34 0.18 0.47 0.27 -5.52
      Tam Pokhari 10 0.97 0.52 -0.41 0.56 0.50 -5.35 Nie et al.(2018)
      10-1 10 0.34 0.28 -0.03 0.31 0.52 -4.33
      10-2 10 0.72 0.56 0.47 0.31 0.53 -4.43
      10-3 10 0.34 0.50 0.13 0.33 0.45 -5.91
      10-4 10 0.95 0.48 -0.34 0.21 0.33 -6.73
      龙纠错 11 0.55 0.57 -0.19 0.37 0.44 -6.92 姚晓军等(2014)
      Simdong Goi Tsho 11 0.84 0.51 1.30 0.28 0.40 -6.72 Nie et al.(2018)
      11-1 11 0.24 0.47 0.61 0.22 0.42 -6.88
      11-2 11 0.59 0.49 1.07 0.30 0.32 -8.16
      11-3 11 0.59 0.48 0.87 0.32 0.55 -7.28
      11-4 11 0.19 0.58 0.42 0.19 0.50 -7.35
      嘉龙错 12 0.74 0.55 0.46 0.54 0.53 -3.34 陈晓清等(2006)
      12-1 12 0.22 0.47 0.65 0.45 0.42 -4.42
      12-2 12 0.03 0.48 0.46 0.32 0.21 -2.53
      Unnamed 6th 13 0.92 0.51 1.18 0.49 0.44 -1.98 刘美(2020)
      13-1 13 0.19 0.49 1.18 0.24 0.41 -1.49
      Upper ChokhamTsho 14 0.85 0.48 0.60 0.59 0.36 -5.36 Nie et al.(2018)
      14-1 14 0.61 0.47 0.34 0.29 0.49 -5.79
      14-2 14 0.55 0.53 -0.19 0.30 0.50 -6.82
      14-3 14 0.15 0.53 0.51 0.40 0.33 -5.79
      注:表中的因子XSGRDT等分别表示坡向因子、危险冰体坡度因子、危险冰体与冰湖体积因子、运动因子、背水坡坡度因子、温度因子,详细定义见文章第2部分.
      下载: 导出CSV

      表  2  与冰碛湖溃决的相关参数

      Table  2.    The factors related to GLOFs

      参数 本文采用 参数 本文采用 参数 本文采用
      流域集水面积 冰湖与危险冰体高差 冰碛坝溢流口宽度
      冰川面积 危险冰体与冰湖的运动参数 冰碛坝溢流口长度
      冰川坡向 危险冰体体积与冰湖体积比 冰碛坝背水坡坡度
      危险冰体面积 冰湖面积 冰碛坝岩性
      危险冰体体积 冰湖体积 死冰
      危险冰体坡度 冰碛坝高宽比 管涌
      危险冰体裂缝 冰碛坝固结程度 温度
      冰川裂缝宽度 冰湖湖面与冰碛坝顶距离 地震
      冰湖与危险冰体距离 冰湖湖面与冰碛坝顶距离和冰碛坝高之比 滑坡
      下载: 导出CSV
    • Allen, S. K., Zhang, G. Q., Wang, W. C., et al., 2019. Potentially Dangerous Glacial Lakes across the Tibetan Plateau Revealed Using a Large-Scale Automated Assessment Approach. Chinese Science Bulletin, 64(7): 435-445.
      Chai, B., Tao, Y. Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.294
      Chen, X. Q., Cui, P., Yang, Z., et al., 2006. Debris Flows of Chongdui Gully in Nyalam County, 2002: Cause and Control. Journal of Glaciology and Geocryology, 28(5): 776-781(in Chinese with English abstract).
      Cheng, Z. L., Zhu, P. Y., Gong, Y. W., 2003. Typical Debris Flow Triggered by Ice-Lake Break. Journal of Mountain Science, 21(6): 716-720(in Chinese with English abstract).
      Clague, J. J., Evans, S. G., 1994. Formation and Failure of Natural Dams in the Canadian Cordillera. Bulletin of the Geological Survey of Canada, 464: 35.
      Ding, Y. J., Liu, J. S., 1992. Glacier Lake Outburst Flood Disasters in China. Annals of Glaciology, 16: 180-184. https://doi.org/10.1017/s0260305500005036
      Emmer, A., Vilímek, V., 2013. Review Article: Lake and Breach Hazard Assessment for Moraine-Dammed Lakes: An Example from the Cordillera Blanca (Peru). Natural Hazards and Earth System Sciences, 13(6): 1551-1565. https://doi.org/10.5194/nhess-13-1551-2013
      Gharamti, I. E., Dempsey, J. P., Polojärvi, A., et al., 2021. Fracture of Warm S2 Columnar Freshwater Ice: Size and Rate Effects. Acta Materialia, 202: 22-34. https://doi.org/10.1016/j.actamat.2020.10.031
      Gurung, D. R., Khanal, N. R., Bajracharya, S. R., et al., 2017. Lemthang Tsho Glacial Lake Outburst Flood (GLOF) in Bhutan: Cause and Impact. Geoenvironmental Disasters, 4: 17. https://doi.org/10.1186/s40677-017-0080-2
      Huggel, C., Haeberli, W., Kääb, A., et al., 2004. An Assessment Procedure for Glacial Hazards in the Swiss Alps. Canadian Geotechnical Journal, 41(6): 1068-1083. https://doi.org/10.1139/t04-053
      Huggel, C., Kääb, A., Haeberli, W., et al., 2002. Remote Sensing Based Assessment of Hazards from Glacier Lake Outbursts: A Case Study in the Swiss Alps. Canadian Geotechnical Journal, 39(2): 316-330. https://doi.org/10.1139/t01-099
      Lamsal, D., Sawagaki, T., Watanabe, T., et al., 2016. Assessment of Glacial Lake Development and Prospects of Outburst Susceptibility: Chamlang South Glacier, Eastern Nepal Himalaya. Geomatics, Natural Hazards and Risk, 7(1): 403-423. https://doi.org/10.1080/19475705.2014.931306
      Le, M. H., Tang, C., Zhang, D. D., et al., 2014. Logistic Regression Model- Based Approach for Predicting the Hazard of Glacial Lake Outburst in Tibet. Journal of Natural Disasters, 23(5): 177-184(in Chinese with English abstract).
      Liu, H. K., Zhang, Y. X., 2005. Geological Dictionary (Ⅰ). Geological Publishing House, Beijing(in Chinese).
      Liu, J. J., Tang, C., Cheng, Z. L., et al., 2011. Impact of Temperature on Glacier-Lake Outbursts in Tibet. Journal of Jilin University (Earth Science Edition), 41(4): 1121-1129(in Chinese with English abstract).
      Liu, J. K., Zhang, J. J., Gao, B., et al., 2019. An Overview of Glacial Lake Outburst Flood in Tibet, China. Journal of Glaciology and Geocryology, 41(6): 1335-1347(in Chinese with English abstract).
      Liu, M., 2020. Glacial Lake Outburst Flood/Debris Flow Disaster Mechanism and Hazards Assessment in Bhote Koshi Basin (Dissertation). Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu(in Chinese with English abstract).
      Liu, Y., 2016. Preliminary Study on the Glacial and Temperature Conditions of Terminal Moraine Dam Glacier Lake Outburst in Tibet (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Lliboutry, L., Morales A. B., Pautre, A., et al., 1977. Glaciological Problems Set by the Control of Dangerous Lakes in Cordillera Blanca, Peru. I. Historical Failures of Morainic Dams, Their Causes and Prevention. Journal of Glaciology, 18(79): 239-254. https://doi.org/10.3189/s002214300002133x
      Lü, R. R., Tang, B. X., Li, D. J., 1999. Debris Flow and the Environment in Tibet. Chengdu University of Science and Technology Press, Chengdu(in Chinese).
      McKillop, R. J., Clague, J. J., 2007a. Statistical, Remote Sensing-Based Approach for Estimating the Probability of Catastrophic Drainage from Moraine-Dammed Lakes in Southwestern British Columbia. Global and Planetary Change, 56(1/2): 153-171. https://doi.org/10.1016/j.gloplacha.2006.07.004
      McKillop, R. J., Clague, J. J., 2007b. A Procedure for Making Objective Preliminary Assessments of Outburst Flood Hazard from Moraine-Dammed Lakes in Southwestern British Columbia. Natural Hazards, 41(1): 131-157. https://doi.org/10.1007/s11069-006-9028-7
      Mergili, M., Schneider, J. F., 2011. Regional-Scale Analysis of Lake Outburst Hazards in the Southwestern Pamir, Tajikistan, Based on Remote Sensing and GIS. Natural Hazards and Earth System Sciences, 11(5): 1447-1462. https://doi.org/10.5194/nhess-11-1447-2011
      Nie, Y., Liu, Q., Wang, J. D., et al., 2018. An Inventory of Historical Glacial Lake Outburst Floods in the Himalayas Based on Remote Sensing Observations and Geomorphological Analysis. Geomorphology, 308: 91-106. https://doi.org/10.1016/j.geomorph.2018.02.002
      Tang, M. G., Wang, L. N., Liu, X. X., et al., 2022. Distribution and Risk of Ice Avalanche Hazards in Tibetan Plateau. Earth Science, 47(6): 1917-1931(in Chinese with English abstract). https://doi.org/10.1016/10.3799/dqkx.2021.074
      Wang, F. W., Sassa, K., Wang, G. H., 2002. Mechanism of a Long-Runout Landslide Triggered by the August 1998 Heavy Rainfall in Fukushima Prefecture, Japan. Engineering Geology, 63(1-2): 169-185. https://doi.org/10.1016/S0013-7952(01)00080-1
      Wang, S. J., Che, Y. J., Ma, X. G., 2020. Integrated Risk Assessment of Glacier Lake Outburst Flood (GLOF) Disaster over the Qinghai-Tibetan Plateau (QTP). Landslides, 17(12): 2849-2863. https://doi.org/10.1007/s10346-020-01443-1
      Wang, W. C., Yao, T. D., Gao, Y., et al., 2011. A First-Order Method to Identify Potentially Dangerous Glacial Lakes in a Region of the Southeastern Tibetan Plateau. Mountain Research and Development, 31(2): 122. https://doi.org/10.1659/mrd-journal-d-10-00059.1
      Wang, X., Liu, S. Y., Guo, W. Q., et al., 2009. Hazard Assessment of Moraine-Dammed Lake Outburst Floods in the Himalayas, China. Acta Geographica Sinica, 64(7): 782-790(in Chinese with English abstract).
      Wang, X., Liu, S., Ding, Y., et al., 2012. An Approach for Estimating the Breach Probabilities of Moraine-Dammed Lakes in the Chinese Himalayas Using Remote-Sensing Data. Natural Hazards and Earth System Sciences, 12(10): 3109-3122. https://doi.org/10.5194/nhess-12-3109-2012
      Xu, D. M., Feng, Q. H., 1989. Dangerous Glacial Lake and Outburst Features in Xizang Himalayas. Acta Geographica Sinica, 44(3): 343-351, 385(in Chinese with English abstract).
      Yao, X. J., Liu, S. Y., Sun, M. P., et al., 2014. Study on the Glacial Lake Outburst Flood Events in Tibet since the 20th Century. Journal of Natural Resources, 29(8): 1377-1390(in Chinese with English abstract).
      Zhou, S. Z., Zhang, R. Y., Zhang, C., 1997. Meteorology and Climatology. Higher Education Press, Beijing(in Chinese).
      柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. doi: 10.3799/dqkx.2020.294
      陈晓清, 崔鹏, 杨忠, 等, 2006. 聂拉木县冲堆普2002年泥石流成因分析及防治对策. 冰川冻土, 28(5): 776-781. doi: 10.3969/j.issn.1000-0240.2006.05.023
      程尊兰, 朱平一, 宫怡文, 2003. 典型冰湖溃决型泥石流形成机制分析. 山地学报, 21(6): 716-720. doi: 10.3969/j.issn.1008-2786.2003.06.013
      乐茂华, 唐川, 张丹丹, 等, 2014. 基于逻辑回归法的西藏地区冰湖溃决危险性预测模型. 自然灾害学报, 23(5): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201405022.htm
      刘海阔, 张义勋, 2005. 地质大辞典(一), 北京: 地质出版社.
      刘晶晶, 唐川, 程尊兰, 等, 2011. 气温对西藏冰湖溃决事件的影响. 吉林大学学报(地球科学版), 41(4): 1121-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201104024.htm
      刘建康, 张佳佳, 高波, 等, 2019. 我国西藏地区冰湖溃决灾害综述. 冰川冻土, 41(6): 1335-1347. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201906006.htm
      刘美, 2020. 流域冰湖溃决成灾机制与危险性评估(博士学位论文). 成都: 中国科学院大学, 中国科学院水利部成都山地灾害与环境研究所.
      刘秧, 2016. 西藏终碛堤冰湖溃决冰川、温度条件的初步研究(硕士学位论文). 成都: 成都理工大学
      吕儒仁, 唐邦兴, 李德基, 1999. 西藏泥石流与环境. 成都: 成都科技大学出版社.
      汤明高, 王李娜, 刘昕昕, 等, 2022. 青藏高原冰崩隐患发育分布规律及危险性. 地球科学, 47(6)1917-1931.
      王欣, 刘时银, 郭万钦, 等, 2009. 我国喜马拉雅山区冰碛湖溃决危险性评价. 地理学报, 64(7): 782-790. doi: 10.3321/j.issn:0375-5444.2009.07.002
      徐道明, 冯清华, 1989. 西藏喜马拉雅山区危险冰湖及其溃决特征. 地理学报, 44(3): 343-351, 385. doi: 10.3321/j.issn:0375-5444.1989.03.011
      姚晓军, 刘时银, 孙美平, 等, 2014.20世纪以来西藏冰湖溃决灾害事件梳理. 自然资源学报, 29(8): 1377-1390. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201408010.htm
      周淑贞, 张如一, 张超, 1997. 气象学与气候学. 北京: 高等教育出版社.
    • 加载中
    图(13) / 表(2)
    计量
    • 文章访问数:  798
    • HTML全文浏览量:  756
    • PDF下载量:  68
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-08-03
    • 刊出日期:  2022-06-25

    目录

      /

      返回文章
      返回