• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模

    黄发明 陈佳武 范宣梅 黄劲松 周创兵

    黄发明, 陈佳武, 范宣梅, 黄劲松, 周创兵, 2022. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模. 地球科学, 47(12): 4609-4628. doi: 10.3799/dqkx.2021.164
    引用本文: 黄发明, 陈佳武, 范宣梅, 黄劲松, 周创兵, 2022. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模. 地球科学, 47(12): 4609-4628. doi: 10.3799/dqkx.2021.164
    Huang Faming, Chen Jiawu, Fan Xuanmei, Huang Jinsong, Zhou Chuangbing, 2022. Logistic Regression Fitting of Rainfall-Induced Landslide Occurrence Probability and Continuous Landslide Hazard Prediction Modelling. Earth Science, 47(12): 4609-4628. doi: 10.3799/dqkx.2021.164
    Citation: Huang Faming, Chen Jiawu, Fan Xuanmei, Huang Jinsong, Zhou Chuangbing, 2022. Logistic Regression Fitting of Rainfall-Induced Landslide Occurrence Probability and Continuous Landslide Hazard Prediction Modelling. Earth Science, 47(12): 4609-4628. doi: 10.3799/dqkx.2021.164

    降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模

    doi: 10.3799/dqkx.2021.164
    基金项目: 

    国家自然科学基金项目 41807285

    江西省自然科学基金 20192BAB216034

    中国博士后面上基金 2019M652287

    中国博士后面上基金 2020T130274

    江西省博士后基金 2019KY08

    地灾防治与环境保护国家重点实验室开放基金 SKLGP2021K012

    详细信息
      作者简介:

      黄发明(1988-),男,博士,副教授,从事滑坡易发性预测研究.ORCID:0000-0002-4428-7133.E-mail:faminghuang@ncu.edu.cn

      通讯作者:

      范宣梅,博士,研究员,从事滑坡失稳机制研究.E-mail:fxm_cdut@qq.com

    • 中图分类号: P642

    Logistic Regression Fitting of Rainfall-Induced Landslide Occurrence Probability and Continuous Landslide Hazard Prediction Modelling

    • 摘要:

      提高降雨型滑坡危险性预警精度和空间辨识度具有重要意义.以江西宁都县1980—2001年156个降雨型滑坡为例,首先基于传统的EE-D(early effective rainfall-rainfall duration)阈值法计算不同降雨诱发滑坡的时间概率级别;然后以各级别临界降雨阈值曲线对应的时间概率为因变量,并以对应的前期有效降雨量(early effective rainfall,EE)和降雨历时(D)为自变量,采用逻辑回归拟合出上述因变量与自变量之间的非线性关系,得到降雨诱发滑坡的连续概率值;之后对比C5.0决策树和多层感知器的滑坡易发性预测性能;最后利用降雨诱发滑坡的连续概率值与易发性图相耦合以实现连续概率滑坡危险性预警.结果显示:(1)宁都降雨型滑坡连续概率值的逻辑回归方程为1/P=1+e4.062+0.747 4×D-0.079 44×EE,其拟合优度为0.983;(2)2002—2003年的20处用于连续概率阈值测试的降雨型滑坡大都落在连续概率值大于0.7的区域,只有4处落在小于0.7的区域;(3)C5.0决策树预测滑坡易发性的精度显著高于多层感知器;(4)近5年的4次降雨型滑坡的连续概率危险性值都在0.8以上,且高和极高预警区的面积较传统滑坡危险性分区更小.可见连续概率滑坡危险性预警法相较于传统危险性分区法具有更高的预警精度和空间辨识度,且通过叠加滑坡易发性图及其临界降雨阈值可开展实时滑坡危险性预警制图.

       

    • 图  1  降雨型滑坡连续概率危险性预警流程图

      Fig.  1.  Flow chart of continuous probability hazard warning of rainfall induced landslides

      图  2  滑坡发生当日降雨量与前期有效降雨量

      Fig.  2.  Daily rainfall and early effective rainfall of landslides

      图  3  C5.0决策树模型原理图

      Fig.  3.  Schematic diagram of C5.0 decision tree model

      图  4  MLP模型网络结构

      Fig.  4.  Network structure diagram of MLP model

      图  5  宁都地理位置、降雨站点和滑坡分布

      Fig.  5.  Geological locations of Ningdu County, rainfall station and landslide distribution

      图  6  部分影响因子分布

      a.高程;b.坡度;b.平面曲率;d.TWI;e.NDVI;f.NDBI;g.岩性;h.SE

      Fig.  6.  Distribution maps of most influencing factors

      图  7  月均降雨量与滑坡数分布

      Fig.  7.  Monthly average rainfall and landslide number distribution

      图  8  各个级别临界降雨阈值曲线

      Fig.  8.  Multistage critical rainfall threshold curve

      图  9  各降雨参数条件下滑坡发生的连续概率值

      Fig.  9.  Continuous probability of landslide occurrence under various rainfall parameters

      图  10  降雨阈值曲线验证数据

      Fig.  10.  Validated data of rainfall threshold curve

      图  11  两模型下的各影响因子重要性

      Fig.  11.  Importance of influencing factors in the two models

      图  12  C5.0 DT易发性分级图(a)和MLP易发性分级图(b)

      Fig.  12.  Landslide susceptibility maps of C5.0 DT model (a) and MLP model (b)

      图  13  ROC曲线(a)和预测率曲线(b)

      Fig.  13.  ROC curve (a) and prediction rate curve (b)

      图  14  各降雨阈值级别与易发性叠加的传统危险性分级

      Fig.  14.  Traditional hazard maps of rainfall threshold levels superposed on susceptibility maps

      图  15  各事件当天降雨型滑坡连续概率

      Fig.  15.  Continuous probability maps of rainfall induced-landslide on the day of rainfall events

      图  16  各降雨事件滑坡当天连续概率滑坡危险性

      a1~d1各降雨事件下的连续概率危险性预警图,a2~d2连续概率危险性预警图对应的危险性级别划分图

      Fig.  16.  Continuous probability landslide hazard maps of rainfall events on the day of landslide occurrence

      表  1  传统各滑坡易发性与临界降雨阈值组合下的危险性预警区域

      Table  1.   Traditional landslide hazard warning using landslide susceptibility and multistage critical rainfall threshold

      危险性预警级别 T1(0%~15%) T2(15%~45%) T3(45%~70%) T4(70%~90%) T5(90%~100%)
      S1(0.0~0.2) 极低 极低 极低 极低
      S2(0.2~0.4) 极低 极低
      S3(0.4~0.6) 极低
      S4(0.6~0.8) 极低 极高
      S5(0.8~1.0) 极高 极高
      下载: 导出CSV

      表  2  各因子的频率比和相关描述

      Table  2.   Frequency ratio and related description of each influencing factor

      因子 分级 频率比 因子 分级 频率比 因子 分级 频率比
      高程(m) 155~243 1.144 剖面曲率 0.0~1.5 0.736 坡度(°) 0.0~3.5 0.201
      243~322 1.218 1.5~3.0 1.125 3.5~7.2 1.144
      322~411 1.127 3.0~4.7 1.172 7.2~11.2 1.711
      411~509 0.834 4.7~6.4 1.047 11.2~15.1 1.386
      509~617 0.561 6.4~8.5 1.021 15.1~19.3 0.991
      617~750 0.347 8.5~11.0 1.083 19.3~24.1 0.657
      750~938 0.022 11.0~14.7 0.884 24.1~30.3 0.562
      938~1 411 0 14.7~32.4 0.708 30.3~53.0 0.296
      TWI 3.8~6.6 1.149 坡向 -1.0~45.7 0.599 NDVI 0~0.289 0.421
      6.6~8.2 1.158 45.7~91.0 0.649 0.289~0.449 1.046
      8.2~10.0 0.846 91.0~133.4 1.105 0.449~0.536 1.458
      10.0~12.6 0.464 133.4~177.3 1.048 0.536~0.608 1.336
      12.6~16.2 0.544 177.3~224.0 1.138 0.608~0.667 1.117
      16.2~26.4 0.692 224.0~270.8 1.108 0.667~0.724 0.997
      26.4~39.0 0 270.8~314.6 1.223 0.724~0.782 0.914
      39.0~43.3 1.149 314.6~359.9 0.965 0.782~1.000 0.596
      平面曲率 0~9.9 1.359 NDBI 0~0.137 0.481

      岩性
      碎屑岩 0.746
      9.9~18.2 1.342 0.137~0.179 0.804 岩浆岩 0.832
      变质岩 1.347
      18.2~27.4 1.091 0.179~0.221 1.181
      碳酸盐岩 1.587
      27.4~37.3 0.993 0.221~0.274 1.466
      土壤侵蚀(t/ha) 0~5 0.847
      37.3~47.9 0.720 0.274~0.358 1.400
      5~25 1.287
      47.9~58.8 0.524 0.358~0.389 1.139
      25~50 1.592
      58.8~70.6 0.351 0.389~0.589 0.873
      50~80 1.635
      70.6~81.5 0.458 0.589~1.000 1.070 80~4 700 2.272
      下载: 导出CSV

      表  3  宁都8个站点的位置和平均年降雨量

      Table  3.   Location and average annual rainfall of eight stations in Ningdu County

      站名 于都 南丰 兴国 永丰 宁都 广昌 石城 瑞金
      站点编号 58905 58718 58804 58705 58806 58813 58814 58903
      经度(°) 115.41 116.53 115.35 115.41 116.01 116.33 116.35 116.03
      纬度(°) 25.96 27.21 26.35 27.33 26.48 26.85 26.35 25.86
      高程(m) 132 111 147 85 209 143 229 193
      平均年降雨量(mm) 1 749.45 1 651.51 1 508.27 1 775.66 1 882.37 1 790.84 1 865.94 1 784.60
      下载: 导出CSV

      表  4  各个级别临界降雨阈值概率及所对应的前期有效降雨量和降雨历时

      Table  4.   Probability of multistage critical rainfall threshold with corresponding early effective rainfall and duration

      D P=0 P=0.05 P=0.15 P=0.3 P=0.45 P=0.6 P=0.7 P=0.8 P=0.9 P=1.0
      2 34 44 50 60 66 72 76 80 85 102
      3 41 52 60 71 79 86 90 95 101 121
      4 46 59 68 81 89 97 102 108 114 137
      5 50 65 74 89 98 106 112 118 125 151
      6 55 70 80 96 106 115 121 128 136 163
      7 58 75 86 102 113 123 130 137 145 174
      8 62 79 91 108 120 130 137 145 153 184
      下载: 导出CSV

      表  5  2015—2020年宁都县降雨型滑坡发生的降雨数据

      Table  5.   Rainfall data of rainfall induced landslides from 2015 to 2020

      发生时间 地点 当日
      降雨量
      前一天
      降雨量
      前二天
      降雨量
      前三天
      降雨量
      前四天
      降雨量
      前五天
      降雨量
      前六天降雨量 前七天
      降雨量
      2020-06-09(a事件) 东韶乡琳池村 33.29 93.67 6.96 23.82 36.42 54.32 0 2.38
      2019-07-09(b事件) 城北门刘城塘 53.21 35.46 26.60 20.51 0.23 6.86 4.29 0
      2019-06-09(c事件) 黄石镇江口村 0.00 72.19 10.67 102.02 0 1.5 2.9 14.5
      2015-11-18(d事件) 大沽乡阳霁村 37.54 48.85 42.70 0.76 1.32 0 6.77 22.92
      下载: 导出CSV

      表  6  各降雨事件下的降雨型滑坡连续概率及其危险性值

      Table  6.   Continuous probability and hazard of rainfall induced landslides under rainfall events

      降雨事件 降雨历时 有效降雨量 降雨型滑坡连续概率 易发性 连续概率危险性
      2020-06-09(a事件) 6 157.59 0.981 0.914 0.897
      2019-07-09(b事件) 4 109.10 0.834 1.0 0.834
      2019-06-09(c事件) 4 115.79 0.895 0.918 0.822
      2015-11-18(d事件) 3 103.94 0.875 1.0 0.875
      下载: 导出CSV

      表  7  连续概率危险性和传统危险性预警区域高和极高面积

      Table  7.   High and very high area of warning area under continuous probability hazard and traditional hazard

      降雨事件 连续概率危险性预警区 传统危险性预警区域
      高危险区栅格数和
      面积占比(%)
      极高危险区栅格和
      面积占比(%)
      高危险区栅格和
      面积占比(%)
      极高危险区栅格和
      面积占比(%)
      2020-06-09(a事件) 201 702 4.45 105 251 2.32 610 296 13.48 1 224 585 27.04
      2019-07-09(b事件) 569 620 12.58 146 677 3.24 652 072 14.40 626 714 13.84
      2019-06-09(c事件) 472 215 10.43 245 958 5.43 610 296 13.48 1 224 585 27.04
      2015-11-18(d事件) 424 189 9.37 90 494 1.99 610 296 13.48 1 224 585 27.04
      下载: 导出CSV
    • Aditian, A., Kubota, T., Shinohara, Y., 2018. Comparison of GIS⁃Based Landslide Susceptibility Models Using Frequency Ratio, Logistic Regression, and Artificial Neural Network in a Tertiary Region of Ambon, Indonesia. Geomorphology, 318: 101-111. https://doi.org/10.1016/j.geomorph.2018.06.006
      Althuwaynee, O. F., Asikoglu, O., Eris, E., 2018. Threshold Contour Production of Rainfall Intensity that Induces Landslides in Susceptible Regions of Northern Turkey. Landslides, 15(8): 1541-1560. https://doi.org/10.1007/s10346⁃018⁃0968⁃2
      Arabameri, A., Pradhan, B., Lombardo, L., 2019. Comparative Assessment Using Boosted Regression Trees, Binary Logistic Regression, Frequency Ratio and Numerical Risk Factor for Gully Erosion Susceptibility Modelling. CATENA, 183: 104223. https://doi.org/10.1016/j.catena.2019.104223
      Chahal, P., Rana, N., Champati, R. P. K., et al., 2017. Identification of Landslide⁃Prone Zones in the Geomorphically and Climatically Sensitive Mandakini Valley, (Central Himalaya), for Disaster Governance Using the Weights of Evidence Method. Geomorphology, 284: 41-52. https://doi.org/10.1016/j.geomorph.2016.11.008
      Chen, T., Zhong, Z. Y., Niu, R. Q., et al., 2020. Mapping Landslide Susceptibility Based on Deep Belief Network. Geomatics and Information Science of Wuhan University, 45(11): 1809-1817(in Chinese with English abstract).
      Chen, W., Peng, J. B., Hong, H. Y., et al., 2018. Landslide Susceptibility Modelling Using GIS⁃Based Machine Learning Techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 626: 1121-1135. https://doi.org/10.1016/j.scitotenv.2018.01.124
      Finicelli, G. F., Confuorto, P., Carratù, M. T., et al., 2016. Multivariate Statistical Approach vs. Deterministic Physically Based Model for Landslide Susceptibility Assessment. Rendiconti Online Della Società Geologica Italiana, 41: 151-154. https://doi.org/10.3301/rol.2016.116
      Guo, Z. Z., Yin, K. L., Liu, Q. L., et al., 2020. Rainfall Warning of Creeping Landslide in Yunyang County of Three Gorges Reservoir Region Based on Displacement Ratio Model. Earth Science, 45(2): 672-684(in Chinese with English abstract).
      Harilal, G. T., Madhu, D., Ramesh, M. V., et al., 2019. Towards Establishing Rainfall Thresholds for a Real⁃Time Landslide Early Warning System in Sikkim, India. Landslides, 16(12): 2395-2408. https://doi.org/10.1007/s10346⁃019⁃01244⁃1
      Hong, H. Y., Liu, J. Z., Zhu, A. X., 2020. Modeling Landslide Susceptibility Using LogitBoost Alternating Decision Trees and Forest by Penalizing Attributes with the Bagging Ensemble. Science of the Total Environment, 718: 137231. https://doi.org/10.1016/j.scitotenv.2020.137231
      Hong, H. Y., Pourghasemi, H. R., Pourtaghi, Z. S., 2016. Landslide Susceptibility Assessment in Lianhua County (China): A Comparison between a Random Forest Data Mining Technique and Bivariate and Multivariate Statistical Models. Geomorphology, 259: 105-118. https://doi.org/10.1016/j.geomorph.2016.02.012
      Hong, M., Kim, J., Jeong, S., 2018. Rainfall Intensity⁃Duration Thresholds for Landslide Prediction in South Korea by Considering the Effects of Antecedent Rainfall. Landslides, 15(3): 523-534. https://doi.org/10.1007/s10346⁃017⁃0892⁃x
      Huang, F. M., Chen, J. W., Du, Z., et al., 2020a. Landslide Susceptibility Prediction Considering Regional Soil Erosion Based on Machine⁃Learning Models. ISPRS International Journal of Geo⁃Information, 9(6): 377. https://doi.org/10.3390/ijgi9060377
      Huang, F. M., Zhang, J., Zhou, C. B., et al., 2020b. A Deep Learning Algorithm Using a Fully Connected Sparse Autoencoder Neural Network for Landslide Susceptibility Prediction. Landslides, 17(1): 217-229. https://doi.org/10.1007/s10346⁃019⁃01274⁃9
      Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data⁃Based Models. Earth Science, 45(12): 4535-4549(in Chinese with English abstract).
      Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167(in Chinese with English abstract).
      Khosravi, K., Pham, B. T., Chapi, K., et al., 2018. A Comparative Assessment of Decision Trees Algorithms for Flash Flood Susceptibility Modeling at Haraz Watershed, Northern Iran. Science of the Total Environment, 627: 744-755. https://doi.org/10.1016/j.scitotenv.2018.01.266
      Lee, S., Won, J. S., Jeon, S. W., et al., 2015. Spatial Landslide Hazard Prediction Using Rainfall Probability and a Logistic Regression Model. Mathematical Geosciences, 47(5): 565-589. https://doi.org/10.1007/s11004⁃014⁃9560⁃z
      Lepore, C., Arnone, E., Noto, L. V., et al., 2013. Physically Based Modeling of Rainfall⁃Triggered Landslides: A Case Study in the Luquillo Forest, Puerto Rico. Hydrology and Earth System Sciences, 17(9): 3371-3387. https://doi.org/10.5194/hess⁃17⁃3371⁃2013
      Liu, J., Li, S. L., Chen, T., 2018. Landslide Susceptibility Assesment Based on Optimized Random Forest Model. Geomatics and Information Science of Wuhan University, 43(7): 1085-1091(in Chinese with English abstract).
      Liu, L., Yin, K. L., Wang, J. J., et al., 2016. Dynamic Evaluation of Regional Landslide Hazard Due to Rainfall: A Case Study in Wanzhou Central District, Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 35(3): 558-569(in Chinese with English abstract).
      Ma, T. H., Li, C. J., Lu, Z. M., et al., 2014. An Effective Antecedent Precipitation Model Derived from the Power⁃Law Relationship between Landslide Occurrence and Rainfall Level. Geomorphology, 216: 187-192. https://doi.org/10.1016/j.geomorph.2014.03.033
      Mathew, J., Babu, D. G., Kundu, S., et al., 2014. Integrating Intensity–Duration⁃Based Rainfall Threshold and Antecedent Rainfall⁃Based Probability Estimate towards Generating Early Warning for Rainfall⁃Induced Landslides in Parts of the Garhwal Himalaya, India. Landslides, 11(4): 575-588. https://doi.org/10.1007/s10346⁃013⁃0408⁃2
      Nsengiyumva, J. B., Luo, G. P., Amanambu, A. C., et al., 2019. Comparing Probabilistic and Statistical Methods in Landslide Susceptibility Modeling in Rwanda/Centre⁃Eastern Africa. Science of the Total Environment, 659: 1457-1472. https://doi.org/10.1016/j.scitotenv.2018.12.248
      Peruccacci, S., Brunetti, M. T., Gariano, S. L., et al., 2017. Rainfall Thresholds for Possible Landslide Occurrence in Italy. Geomorphology, 290: 39-57. https://doi.org/10.1016/j.geomorph.2017.03.031
      Peruccacci, S., Brunetti, M. T., Luciani, S., et al., 2012. Lithological and Seasonal Control on Rainfall Thresholds for the Possible Initiation of Landslides in Central Italy. Geomorphology, 139-140: 79-90. https://doi.org/10.1016/j.geomorph.2011.10.005
      Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., 2012. Application of Fuzzy Logic and Analytical Hierarchy Process (AHP) to Landslide Susceptibility Mapping at Haraz Watershed, Iran. Natural Hazards, 63(2): 965-996. https://doi.org/10.1007/s11069⁃012⁃0217⁃2
      Pradhan, A. M. S., Lee, S. R., Kim, Y. T., 2019. A Shallow Slide Prediction Model Combining Rainfall Threshold Warnings and Shallow Slide Susceptibility in Busan, Korea. Landslides, 16(3): 647-659. https://doi.org/10.1007/s10346⁃018⁃1112⁃z
      Rosi, A., Peternel, T., Jemec⁃Auflič, M., et al., 2016. Rainfall Thresholds for Rainfall⁃Induced Landslides in Slovenia. Landslides, 13(6): 1571-1577. https://doi.org/10.1007/s10346⁃016⁃0733⁃3
      Rossi, M., Luciani, S., Valigi, D., et al., 2017. Statistical Approaches for the Definition of Landslide Rainfall Thresholds and Their Uncertainty Using Rain Gauge and Satellite Data. Geomorphology, 285: 16-27. https://doi.org/10.1016/j.geomorph.2017.02.001
      Salciarini, D., Fanelli, G., Tamagnini, C., 2017. A Probabilistic Model for Rainfall⁃Induced Shallow Landslide Prediction at the Regional Scale. Landslides, 14(5): 1731-1746. https://doi.org/10.1007/s10346⁃017⁃0812⁃0
      Segoni, S., Lagomarsino, D., Fanti, R., et al., 2015. Integration of Rainfall Thresholds and Susceptibility Maps in the Emilia Romagna (Italy) Regional⁃Scale Landslide Warning System. Landslides, 12(4): 773-785. https://doi.org/10.1007/s10346⁃014⁃0502⁃0
      Segoni, S., Piciullo, L., Gariano, S. L., 2018. A Review of the Recent Literature on Rainfall Thresholds for Landslide Occurrence. Landslides, 15(8): 1483-1501. https://doi.org/10.1007/s10346⁃018⁃0966⁃4
      Sheng, Y. F., Li, Y. Y., Xu, Y., et al., 2019. Prediction of Rainfall⁃Type Landslides Based on Effective Rainfall Intensity and Logistic Regression. Hydrogeology & Engineering Geology, 46(1): 156-162, 172(in Chinese with English abstract).
      Wu, X. L., Yang, J. Y., Niu, R. Q., 2020. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network. Geomatics and Information Science of Wuhan University, 45(8): 1223-1232(in Chinese with English abstract).
      Wu, Y. M., Lan, H. X., Gao, X., et al., 2015. A Simplified Physically Based Coupled Rainfall Threshold Model for Triggering Landslides. Engineering Geology, 195: 63-69. https://doi.org/10.1016/j.enggeo.2015.05.022
      Wu, Y. P., Zhang, Q. X., Tang, H. M., et al., 2014. Landslide Hazard Warning Based on Effective Rainfall Intensity. Earth Science, 39(7): 889-895(in Chinese with English abstract).
      Yang, H. J., Wei, F. Q., Ma, Z. F., et al., 2020. Rainfall Threshold for Landslide Activity in Dazhou, Southwest China. Landslides, 17(1): 61-77. https://doi.org/10.1007/s10346⁃019⁃01270⁃z
      陈涛, 钟子颖, 牛瑞卿, 等, 2020. 利用深度信念网络进行滑坡易发性评价. 武汉大学学报(信息科学版), 45(11): 1809-1817. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011018.htm
      郭子正, 殷坤龙, 刘庆丽, 等, 2020. 基于位移比模型的三峡库区云阳县域内蠕变型滑坡降雨预警. 地球科学, 45(2): 672-684. doi: 10.3799/dqkx.2019.005
      黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247
      黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
      刘坚, 李树林, 陈涛, 2018. 基于优化随机森林模型的滑坡易发性评价. 武汉大学学报(信息科学版), 43(7): 1085-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201807017.htm
      刘磊, 殷坤龙, 王佳佳, 等, 2016. 降雨影响下的区域滑坡危险性动态评价研究: 以三峡库区万州主城区为例. 岩石力学与工程学报, 35(3): 558-569. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603013.htm
      盛逸凡, 李远耀, 徐勇, 等, 2019. 基于有效降雨强度和逻辑回归的降雨型滑坡预测模型. 水文地质工程地质, 46 (1): 156-162, 172. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201901021.htm
      武雪玲, 杨经宇, 牛瑞卿, 2020. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法. 武汉大学学报(信息科学版), 45(8): 1223-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008013.htm
      吴益平, 张秋霞, 唐辉明, 等, 2014. 基于有效降雨强度的滑坡灾害危险性预警. 地球科学, 39(7): 889-895. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407011.htm
    • 加载中
    图(16) / 表(7)
    计量
    • 文章访问数:  964
    • HTML全文浏览量:  546
    • PDF下载量:  98
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-07-26
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回