• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    多孔介质粒径变异系数对污染物运移的影响

    张建桥 窦智 张学羿

    张建桥, 窦智, 张学羿, 2023. 多孔介质粒径变异系数对污染物运移的影响. 地球科学, 48(9): 3444-3453. doi: 10.3799/dqkx.2021.166
    引用本文: 张建桥, 窦智, 张学羿, 2023. 多孔介质粒径变异系数对污染物运移的影响. 地球科学, 48(9): 3444-3453. doi: 10.3799/dqkx.2021.166
    Zhang Jianqiao, Dou Zhi, Zhang Xueyi, 2023. Effect of Coefficient of Variation of Particle Size of Porous Media on Contaminant Transport. Earth Science, 48(9): 3444-3453. doi: 10.3799/dqkx.2021.166
    Citation: Zhang Jianqiao, Dou Zhi, Zhang Xueyi, 2023. Effect of Coefficient of Variation of Particle Size of Porous Media on Contaminant Transport. Earth Science, 48(9): 3444-3453. doi: 10.3799/dqkx.2021.166

    多孔介质粒径变异系数对污染物运移的影响

    doi: 10.3799/dqkx.2021.166
    基金项目: 

    国家重点研发计划项目 2019YFC1804303

    国家自然科学基金项目 41877171

    详细信息
      作者简介:

      张建桥(1998-),男,硕士研究生,主要从事水文地质工程地质工作.ORCID:0000-0003-2896-3442. E-mail:zhangjq37@gmail.com

      通讯作者:

      窦智,ORCID: 0000-0002-5155-0710. E-mail: Douz@hhu.edu.cn

    • 中图分类号: P641.69

    Effect of Coefficient of Variation of Particle Size of Porous Media on Contaminant Transport

    • 摘要: 多孔介质污染物运移对于明晰地下水污染很重要,但在多孔介质中粒径变异系数(coefficient of variation,COV)对内部微观孔隙结构中污染物运移过程影响的研究还存在不足.为此,基于随机算法,提出了一种不同COV且孔隙度一致的多孔介质几何模型构建方法,通过对Navier-Stokes(N-S)方程和对流‒扩散方程(advection-diffusion equation,简称ADE)进行耦合求解得到多孔介质地下水流场及污染物浓度场,引入克里斯琴森均匀系数,定量评价流场流速分布的均匀性,基于MIM(mobile and immobile)模型和ADE模型分析耦合求解得到的穿透曲线特征.结果表明:随着粒径COV的增大,流场流速分布的不均性增强,MIM模型中的溶质流动区域占比$ \beta $、无量纲传质率$ {\alpha }^{*} $均增大;MIM模型拟合优度高于ADE模型,且随COV增大,ADE模型的拟合全局误差$ {E}_{\mathrm{i}} $逐步增大.总体上,粒径COV控制了溶质流动区域和非流动区域的大小及其之间的溶质交换强度,造成了多孔介质内部溶质运移的“非费克”行为,使得ADE模型的误差逐步增大,对于较大COV的多孔介质,MIM模型具有更好的适用性.

       

    • 图  1  多孔介质几何模型

      Fig.  1.  Geometric models of porous media

      图  2  规则圆形颗粒多孔介质模型

      Fig.  2.  Regular round grain porous media model

      图  3  地下水流场分布(COV=0.64)

      Fig.  3.  Groundwater flow field distribution (COV=0.64)

      图  4  孔隙结构内部优先流现象(COV=0.64)

      Fig.  4.  Preferential flow phenomenon in pore structure(COV=0.64)

      图  5  多孔介质内部污染物溶质运移过程

      Fig.  5.  Contaminant transport process in porous media

      图  6  (a) 水流场及(b)浓度场中流动区域与非流动区域分布

      Fig.  6.  Mobile and immobile domain distribution in (a) flow field and (b) concentration field

      图  7  不同COV的多孔介质内部污染物运移穿透曲线

      Fig.  7.  Contaminant transport breakthrough curves in porous media with different coefficients of variation

      图  8  穿透曲线关键部位

      Fig.  8.  Key parts of breakthrough curves

      图  9  标准化流速概率分布函数曲线

      Fig.  9.  Probability distribution functions of the normalized flow velocity

      图  10  不同COV的MIM模型及ADE模型拟合穿透曲线

      Fig.  10.  Fitted breakthrough curves with different coefficients of variation based on MIM model and ADE model

      表  1  不同COV多孔介质流速均匀性评价指标

      Table  1.   Evaluation indices of flow velocity uniformity of the porous media with different coefficients of variation

      COV CV $ {\gamma }_{\mathrm{\upsilon }} $ CU
      0.18 1.253 4 0.546 4 0.092 8
      0.27 1.108 1 0.580 4 0.160 8
      0.45 1.231 8 0.537 4 0.074 9
      0.64 1.161 5 0.564 3 0.128 5
      下载: 导出CSV

      表  2  不同COV多孔介质的MIM模型和ADE模型拟合优度统计结果

      Table  2.   Statistical results from the goodness-of-fitting of the MIM model and ADE model for porous media with different coefficients of variation

      COV MIM模型 ADE模型
      $ {{R}^{2}}_{\mathrm{M}\mathrm{I}\mathrm{M}} $ $ {E}_{\mathrm{M}\mathrm{I}\mathrm{M}} $ $ {{R}^{2}}_{\mathrm{A}\mathrm{D}\mathrm{E}} $ $ {E}_{\mathrm{A}\mathrm{D}\mathrm{E}} $
      0.18 0.999 9 0.005 925 0.999 8 0.005 458
      0.27 1.000 0 0.001 071 0.999 9 0.004 751
      0.45 1.000 0 0.001 614 0.999 8 0.006 208
      0.64 1.000 0 0.000 863 0.999 6 0.009 094
      下载: 导出CSV

      表  3  不同COV多孔介质的MIM模型和ADE模型参数估计值

      Table  3.   Estimated values of parameters from the MIM model and ADE model for porous media with different coefficients of variation

      COV MIM模型 ADE模型
      $ \beta $ $ {\alpha }^{*} $a $ {D}_{\mathrm{L},\mathrm{M}\mathrm{I}\mathrm{M}} $
      (m2·s‒1)
      $ {\lambda }_{\mathrm{M}\mathrm{I}\mathrm{M}} $b(m) $ {\stackrel{-}{u}}_{\mathrm{f}\mathrm{i}\mathrm{t},\mathrm{M}\mathrm{I}\mathrm{M}}/\stackrel{-}{u} $ $ {D}_{\mathrm{L},\mathrm{A}\mathrm{D}\mathrm{E}} $
      (m2·s-1)
      $ {\lambda }_{\mathrm{A}\mathrm{D}\mathrm{E}} $c
      (m)
      $ {\stackrel{-}{u}}_{\mathrm{f}\mathrm{i}\mathrm{t},\mathrm{A}\mathrm{D}\mathrm{E}}/\stackrel{-}{u} $
      0.18 0.71 0.003 0.134 843.032 0.54 0.193 1214.218 0.77
      0.27 0.98 0.128 0.076 478.138 0.80 0.089 559.925 0.80
      0.45 0.98 0.132 0.091 572.507 0.81 0.111 698.333 0.82
      0.64 0.96 0.201 0.104 654.294 0.79 0.140 880.780 0.80
      注:$ {\alpha }^{*} $a表示无量纲传质率;$ {\lambda }_{\mathrm{M}\mathrm{I}\mathrm{M}} $b表示MIM模型的拟合弥散度,$ {\lambda }_{\mathrm{M}\mathrm{I}\mathrm{M}}={D}_{\mathrm{L},\mathrm{M}\mathrm{I}\mathrm{M}}/\stackrel{-}{u} $;$ {\lambda }_{\mathrm{A}\mathrm{D}\mathrm{E}} $c表示ADE模型的拟合弥散度,$ {\lambda }_{\mathrm{A}\mathrm{D}\mathrm{E}}={D}_{\mathrm{L},\mathrm{A}\mathrm{D}\mathrm{E}}/\stackrel{-}{u} $.
      下载: 导出CSV
    • Bijeljic, B., Raeini, A., Mostaghimi, P., et al., 2013. Predictions of Non⁃Fickian Solute Transport in Different Classes of Porous Media Using Direct Simulation on Pore–Scale Images. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 87(1): 013011. https://doi.org/10.1103/PhysRevE.87.013011
      Cheng, Z., Xu, H. X., Sun, Y. Y., et al., 2017. Effect of Salinity on DNAPL Migration and Distribution in Saturated Porous Media. Hydrogeology & Engineering Geology, 44(4): 129-136 (in Chinese with English abstract).
      Dou, Z., Sleep, B., Zhan, H. B., et al., 2019a. Multiscale Roughness Influence on Conservative Solute Transport in Self–Affine Fractures. International Journal of Heat and Mass Transfer, 133: 606-618. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.141
      Dou, Z., Zhang, X. Y., Chen, Z., et al., 2019b. Effects of Cemented Porous Media on Temporal Mixing Behavior of Conservative Solute Transport. Water, 11(6): 1204. https://doi.org/10.3390/w11061204
      Gao, G. Y., Zhan, H. B., Feng, S. Y., et al., 2010. A New Mobile–Immobile Model for Reactive Solute Transport with Scale–Dependent Dispersion. Water Resources Research, 46(8): W08533. https://doi.org/10.1029/2009WR008707
      Goltz, M. N., Roberts, P. V., 1986. Three⁃Dimensional Solutions for Solute Transport in an Infinite Medium with Mobile and Immobile Zones. Water Resources Research, 22(7): 1139-1148. https://doi.org/10.1029/WR022i007p01139
      Harvey, C., Gorelick, S. M., 2000. Rate–Limited Mass Transfer or Macrodispersion: Which Dominates Plume Evolution at the Macrodispersion Experiment (MADE) Site? Water Resources Research, 36(3): 637-650. https://doi.org/10.1029/1999WR900247
      Icardi, M., Boccardo, G., Marchisio, D. L., et al., 2014. Pore–Scale Simulation of Fluid Flow and Solute Dispersion in Three⁃Dimensional Porous Media. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 90(1): 013032. https://doi.org/10.1103/PhysRevE.90.013032
      Jiang, L. Q., Sun, R. L., Liang, X., 2021. Predicting Groundwater Flow and Transport in Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150-4160 (in Chinese with English abstract).
      Li, H. W., Bai, B., Wang, M. S., et al., 2015. Contaminant Transport under Seeping Condition in Porous Media with a Contaminant Source of Cyclically Variable Concentration. Rock and Soil Mechanics, 36(5): 1306-1312 (in Chinese with English abstract).
      Li, T., Jin, S. P., Huang, S. Y., et al., 2013. Evaluation Indices of Flow Velocity Distribution Uniformity: Comparison and Application. Thermal Power Generation, 42(11): 60-63, 92 (in Chinese with English abstract).
      Li, X., Su, S. L., Wen, Z., Xu, G. Q., 2022. Numerical Analysis of Estimating Groundwater Velocity through Single⁃Well Push⁃Pull Test. Earth Science, 47(2): 633-641 (in Chinese with English abstract).
      Li, Y. M., Wen, Z., 2020. Impacts of Non⁃Darcian Flow in the Fracture on Flow Field and Solute Plumes in a Fracture⁃Aquifer System. Earth Science, 45(2): 693-700 (in Chinese with English abstract).
      van Genuchten, M. T., Wierenga, P. J., 1976. Mass Transfer Studies in Sorbing Porous Media I. Analytical Solutions. Soil Science Society of America Journal, 40(4): 473-480. https://doi.org/10.2136/sssaj1976.03615995004000040011x
      Ye, Y., Zhang, Y., Cai, F. M., et al., 2021. Fluid Deformation and Solute Transport in Macroscopic Anisotropic Porous Media. Advances in Water Science, 32(6): 903-910 (in Chinese with English abstract).
      Yu, Q. C., Zhu, X. B., Wu, J. C., et al., 2017. Experimental Research of Impact of the Immobile Domain on the Solute Transport. Hydrogeology & Engineering Geology, 44(4): 160-164, 172 (in Chinese with English abstract).
      Zhang, X. Y., Dou, Z., 2018. Influence of Microscopic Pore Structure of Clay on Soluble Contaminant Transport. Hydrogeology & Engineering Geology, 45(4): 157-164 (in Chinese with English abstract).
      程洲, 徐红霞, 孙媛媛, 等, 2017. 盐度对多孔介质中DNAPL运移和分布的影响. 水文地质工程地质, 44(4): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201704020.htm
      蒋立群, 孙蓉琳, 梁杏, 2021. 含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响. 地球科学, 46(11): 4150-4160. doi: 10.3799/dqkx.2020.268
      李华伟, 白冰, 王梦恕, 等, 2015. 渗透作用下多孔介质中循环浓度污染物的迁移过程研究. 岩土力学, 36(5): 1306-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201505010.htm
      李坦, 靳世平, 黄素逸, 等, 2013. 流场速度分布均匀性评价指标比较与应用研究. 热力发电, 42(11): 60-63, 92. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD201311013.htm
      李旭, 苏世林, 文章, 许光泉, 2022. 单井注抽试验测算地下水流速的数值分析. 地球科学, 47(2): 633-641. doi: 10.3799/dqkx.2021.102
      李一鸣, 文章, 2020. 非达西裂隙流对渗透性基岩中流场及溶质羽的影响. 地球科学, 45(2): 693-700. doi: 10.3799/dqkx.2018.345
      叶逾, 张宇, 蔡芳敏, 等, 2021. 宏观各向异性多孔介质中流体变形及溶质运移. 水科学进展, 32(6): 903-910. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202106009.htm
      余期冲, 祝晓彬, 吴吉春, 等, 2017. 死端孔隙对溶质运移影响的实验研究. 水文地质工程地质, 44(4): 160-164, 172. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201704024.htm
      张学羿, 窦智, 2018. 黏土微观孔隙结构对可溶性污染物运移的影响. 水文地质工程地质, 45(4): 157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201804023.htm
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  367
    • HTML全文浏览量:  500
    • PDF下载量:  28
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-07-15
    • 网络出版日期:  2023-10-07
    • 刊出日期:  2023-09-25

    目录

      /

      返回文章
      返回