• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海白云-荔湾深水区同扩张期岩浆活动特征及构造意义

    朱筱曦 赵中贤 卓海腾 庞雄 郑金云 孙龙涛 孙珍

    朱筱曦, 赵中贤, 卓海腾, 庞雄, 郑金云, 孙龙涛, 孙珍, 2023. 南海白云-荔湾深水区同扩张期岩浆活动特征及构造意义. 地球科学, 48(10): 3781-3798. doi: 10.3799/dqkx.2021.171
    引用本文: 朱筱曦, 赵中贤, 卓海腾, 庞雄, 郑金云, 孙龙涛, 孙珍, 2023. 南海白云-荔湾深水区同扩张期岩浆活动特征及构造意义. 地球科学, 48(10): 3781-3798. doi: 10.3799/dqkx.2021.171
    Zhu Xiaoxi, Zhao Zhongxian, Zhuo Haiteng, Pang Xiong, Zheng Jinyun, Sun Longtao, Sun Zhen, 2023. Characteristics of Syn-Spread Magmatism and Its Implication for Tectonic Evolution in Baiyun-Liwan Deep-Water Area of Pearl River Mouth Basin. Earth Science, 48(10): 3781-3798. doi: 10.3799/dqkx.2021.171
    Citation: Zhu Xiaoxi, Zhao Zhongxian, Zhuo Haiteng, Pang Xiong, Zheng Jinyun, Sun Longtao, Sun Zhen, 2023. Characteristics of Syn-Spread Magmatism and Its Implication for Tectonic Evolution in Baiyun-Liwan Deep-Water Area of Pearl River Mouth Basin. Earth Science, 48(10): 3781-3798. doi: 10.3799/dqkx.2021.171

    南海白云-荔湾深水区同扩张期岩浆活动特征及构造意义

    doi: 10.3799/dqkx.2021.171
    基金项目: 

    王宽诚教育基金项目 GJTD-2018-13

    广东省重点领域研发计划项目 2020B1111520001

    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 GML2019ZD0104

    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 2019BT02H594

    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 GML2019ZD0205

    广东省自然科学基金研究团队项目 2017A030312002

    广州市科技计划项目 201904010285

    国家自然科学基金面上项目 42076077

    详细信息
      作者简介:

      朱筱曦(1997-), 女, 博士研究生, 主要从事海洋地质构造与岩浆活动研究.ORCID: 0000-0002-9549-7595.E-mail: zhuxx97@126.com

      通讯作者:

      赵中贤, ORCID: 0000-0002-5095-4743.E-mail: zxzhao@scsio.ac.cn

      孙珍, ORCID: 0000-0002-2991-9999.E-mail: zhensun@scsio.ac.cn

    • 中图分类号: P376.1

    Characteristics of Syn-Spread Magmatism and Its Implication for Tectonic Evolution in Baiyun-Liwan Deep-Water Area of Pearl River Mouth Basin

    • 摘要: 南海陆缘深水区发育同裂陷期及同扩张期岩浆,但其时空展布特征、岩浆活动量及活动机制存在较大争议.选取三维反射数据质量较高且覆盖全面的珠江口盆地白云-荔湾深水区,对岩浆活动开展解释和岩浆量的统计工作.在钻井的约束下,综合运用反射特征和接触关系分析以及火山地层学方法,开展了19条高分辨率三维多道反射地震资料解释,在此基础上对白云-荔湾凹陷沉积层中侵入和喷发的岩浆岩开展了系统研究,结果显示:(1)研究区自浅部到深部共识别出100余个火成岩体及与岩浆活动相关构造,含3相11亚相,3相包括火山岩相、侵入相和气液相;(2)岩浆活动划分为33.9~23.0 Ma、23.0~19.1 Ma及19.1~16.0 Ma三个期次,各期岩浆产生量逐期减少;(3)空间上,岩浆活动呈现东南多西北少、由南向北逐渐变新的趋势,且岩浆活动大多分布于周围隆起之上.扩张脊于23.6 Ma时南迁,研究区岩浆活动表现为向北跃迁.推测拉张-扩张早期上涌地幔物质可能受到脊吸作用的影响而导致其上涌头部向洋脊偏转,在扩张脊南迁后,脊吸作用变弱,部分上涌地幔向北回撤,从而导致23 Ma之后岩浆活动向北迁移.扩张结束后岩浆(< 17 Ma)碱性程度升高,推测岩浆物质来源变深.

       

    • 图  1  研究区白云-荔湾深水区位置及新生代地层柱状图

      施和生等(2014)Sun et al.(2014)Pang et al.(2018)修编. 图中蓝框为本文主要研究区;灰黑色测线为选取的三维多道地震剖面位置;粉色阴影区为凹陷,灰色阴影区为隆起区. BU.破裂不整合;地层时代划分及岩性地层据柳保军等(2007)米立军等(2019);层序划分据庞雄等(2007)秦国权(2002)柳保军等(2019);构造运动据庞雄等(2007)邵磊等(2008)Deng et al.(2019);基底深大断裂据蔡国富等(2021)

      Fig.  1.  Location map and stratigraphic column of the Baiyun-Liwan deep-water area

      图  2  在BY-7-A等钻井约束下1号(a)和10号(b)地震测线上区域地震层序框架解释

      剖面位置见图 1;M.火山丘;V.尖锥状火山;a1~c2.与火成岩有关的地震相,详见图 4

      Fig.  2.  Structural and stratigraphic interpretation of regional seismic profiles (Line1 and Line10) in Baiyun-Liwan deep-water area with constraints by industrial drilling of BY7-A, etc

      图  3  典型岩浆喷发(a1~a3)和侵入(b1~b3)活动时间判定方法示意图

      a1.岩浆通过岩脉/火山通道上升; a2.喷出海底形成火山; a3.火山逐渐被.上覆沉积物埋藏; b1.岩浆通过岩脉上升; b2.在薄弱处侵位形成岩席及强制褶皱; b3.强制褶皱逐渐被上覆沉积物覆盖

      Fig.  3.  Schematic diagram of time determination method of typical magma eruption(a1-a3) and intrusion(b1-b3)

      图  4  白云-荔湾深水区岩浆活动地震相特征图(剖面位置详见图 2

      图a1~a7为火山岩相:a1.火山丘;a2.尖锥状火山;a3.侵出相;a4. 爆发相;a5. 溢流相;a6. 火山通道相;a7. 火山沉积相. 图b1~b3为侵入相:b1.岩席;b2. 岩脉;b3.岩株/岩基. 图c1~c2为气液相:c1. 气烟囱相;c2. 热液喷口相

      Fig.  4.  Characteristics of magmatic seismic facies units in Baiyun-Liwan deep-water area (see location in Fig. 2)

      图  5  研究区第1期典型岩浆活动的地震剖面图(位置详见图 2

      M.火山丘;V.尖锥状火山;S.岩席;LC.岩盖

      Fig.  5.  Seismic profile of the 1st stage of typical magmatism in the study area (see location in Fig. 2)

      图  6  研究区第Ⅱ、Ⅲ期典型岩浆活动地震剖面图(位置详见图 1

      M.火山丘

      Fig.  6.  Seismic profiles of the Ⅱ and the Ⅲ stages of typical magmatism in the study area (see location in Fig. 1)

      图  7  白云-荔湾深水区岩浆活动分布平面图(位置详见图 1研究区)

      Fig.  7.  The distribution of magmatic activities in Baiyun-Liwan deep-water area (see location in Fig. 1)

      图  8  白云-荔湾深水区各时期岩浆活动分布及面积统计图

      a. 白云-荔湾深水区岩席/岩盖时空分布图;b. 白云-荔湾深水区岩脉/岩株/岩基时空分布图;c. 白云-荔湾深水区火山时空分布图;d. 白云-荔湾深水区火成岩分布面积统计图

      Fig.  8.  Distribution and area chart of magmatic activity in Baiyun-Liwan deep-water area in different stages

      图  9  珠江口盆地裂后岩浆活动模式

      Fig.  9.  The kinematic model of post-rift magmatic activity in the Pearl River Mouth basin

      表  1  白云-荔湾深水区火成岩地震相分类

      Table  1.   Seismic facies classification of igneous rocks in Baiyun-Liwan deep-water area

      分类 定义 形态 连续性 振幅 其他 文献来源
      边界 内部
      火山岩相 火山相 火山物质在喷出后于喷口周围堆积形成的丘状隆起 丘形、圆顶形、尖锥状 连续-局部不连续 顶部:正高振幅;底部:次平行和半连续的中-低的正振幅 复杂混乱 下方可见上拉管道 Zhao et al.(2016)Zhang et al.(2016)
      Ma et al.(2018)
      Reynolds et al.(2018)Deng et al.(2019)
      侵出相 由于岩浆快速上升,在海底挤出形成岩针、尖锥状海山等 尖锥状 反射清晰且连续 顶部:中-高正振幅;底部:基本不可见或不明显 反射杂乱,局部可见有空白反射区域 邹才能等(2008)
      Zhang et al.(2016)
      爆发相 火山集块、火山角砾及火山灰等其他由于喷发而形成的火山碎屑在原地或附近堆积形成的 V字型反射 不连续 边界不明显 正高振幅反射 位于爆发型火山的两翼 邹才能等(2008)
      溢流相 岩浆自火山口或沿裂隙向外呈面状泛流或线状溢流形成各类熔岩或角砾熔岩 层状-似层状的反射 连续 正高振幅反射 垂向上常叠置多组正高振幅 Zhao et al.(2014)
      火山
      通道相
      是火山机构的一部分,岩浆通过火山通道从深部岩浆房运移到地表喷发 管状,与沉积层大角度接触 反射杂乱,局部可见有上拉现象 发育于火山之下,连接深部基底 Reynolds et al.(2018)
      火山
      沉积相
      火山碎屑与陆缘碎屑在水体中堆积的产物 层状-似层状 连续 中-高正振幅反射 较溢流相来说,振幅较弱,范围更广泛,厚度更大 Ma et al.(2018)
      侵入相 岩席/岩盖 小型侵入体,顺层侵入沉积层 碟状、似层状及穿层状(岩盖呈现上凸特征) 连续 中-高正振幅反射 部分尖端上扬,与岩脉、岩席或断层连接, 局部导致上方地层上隆形成强制褶皱 Planke et al.(2005); Thomson(2007)
      岩脉 垂直-近垂直的火成岩侵入体 管状,与沉积层大角度接触 边界不明显 混乱复杂的振幅 与岩席或基底相连 Planke et al.(2005);
      Magee et al.(2013)Zhao et al.(2016)
      岩株/岩基 大型侵入体,类似于底劈作用,岩浆向上侵位,造成部分岩层的破裂(岩株小于100 km2作为区分) 圆顶形 连续-顶部不连续 上部:清晰正高反射;底部:边界模糊 反射杂乱,局部上拉 顶部导致地层上隆 张峤(2014)
      杨率等(2017)
      气液相 气烟囱 由于天然气(或流体)垂向运移在地震剖面上形成的异常反射 不规则 断续 负高振幅 下方可见地震信号屏蔽现象 王秀娟等(2008)
      热液喷口 由于热液流体及沉积物的运移、喷出等过程形成的管状复合物,内部不存在火山物质 管状复合体,上部为眼状、丘状;下部为烟囱状 向内及向外倾斜 外侧地层上拉 Planke et al.(2005)
      下载: 导出CSV
    • Alves, T. M., Omosanya, K., Gowling, P., 2015. Volume Rendering of Enigmatic High-Amplitude Anomalies in Southeast Brazil: A Workflow to Distinguish Lithologic Features from Fluid Accumulations. Interpretation-A Journal of Subsurface Characterization, 3(2): A1-A14. https://doi.org/10.1190/int-2014-0106.1
      Bischoff, A., 2019. Architectural Elements of Buried Volcanic Systems and Their Impact on Geoenergy Resources. https://doi.org/10.13140/RG.2.2.21440.58886
      Cai, G. F., Zhang, X. T., Peng, G. R., et al., 2021. Neogene Volcanism and Tectonics along the Yangjing-Yitong'ansha Fault Zone in the Northern South China Sea Margin. Geotectonica et Metallogenia, 45(1): 40-52 (in Chinese with English abstract).
      Campbell, I.H., 2005. Large Igneous Provinces and the Mantle Plume Hypothesis. Elements, 1(5): 265-269. https://doi.org/10.2113/ gselements.1.5.265 doi: 10.2113/gselements.1.5.265
      Chanceaux, L., Menand, T., 2014. Solidification Effects on Sill Formation: An Experimental Approach. Earth and Planetary Science Letters, 403: 79-88. https://doi.org/10.1016/j.epsl.2014.06.018
      Chen, C.M., 2000. Petroleum Geology and Conditions for Hydrocarbon Accumulation in the Eastern Pearl River Mouth Basin. China Offshore Oil and Gas (Geology), 14(2): 73-83(in Chinese with English abstract).
      Chung, S. L., Sun, S. S., Tu, K., et al., 1994. Late Cenozoic Basaltic Volcanism around the Taiwan Strait, SE China: Product of Lithosphere-Asthenosphere Interaction during Continental Extension. Chemical Geology, 112(1-2): 1-20. https://doi.org/10.1016/0009-2541(94)90101-5
      Cook, A.E., Portnov, A., 2019. Gas Hydrates in Coarse-Grained Reservoirs Interpreted from Velocity Pull up: Mississippi Fan, Gulf of Mexico: COMMENT. Geology, 47(3): e457-e457. https://doi.org/10.1130/g45609c.1. doi: 10.1130/G45609C.1
      Deng, P., Mei, L. F., Liu, J., et al., 2019. Episodic Normal Faulting and Magmatism during the Syn-Spreading Stage of the Baiyun Sag in Pearl River Mouth Basin: Response to the Multi-Phase Seafloor Spreading of the South China Sea. Marine Geophysical Research, 40(1): 33-50. https://doi.org/10.1007/s11001-018-9352-9
      Ding, W.W., Sun, Z., Mohn, G., et al., 2020. Lateral Evolution of the Rift-to-Drift Transition in the South China Sea: Evidence from Multi-Channel Seismic Data and IODP Expeditions 367 & 368 Drilling Results. Earth and Planetary Science Letters, 531: 115932. https://doi.org/10.1016/j.epsl.2019.115932
      Frahm, L., Hübscher, C., Warwel, A., et al., 2020. Misinterpretation of Velocity Pull-ups Caused by High-Velocity Infill of Tunnel Valleys in the Southern Baltic Sea. Near Surface Geophysics, 18(6): 643-657. https://doi.org/10.1002/nsg.12122
      Gudmundsson, A., 2011. Deflection of Dykes into Sills at Discontinuities and Magma-Chamber Formation. Tectonophysics, 500(1/2/3/4): 50-64. https://doi.org/10.1016/j.tecto.2009.10.015
      Huang, X. L., Xu, Y. G., Yang, F., 2020. Basalts in the South China Sea: Mid-Ocean Ridges and Seamounts. Science & Technology Review, 38(18): 46-51(in Chinese with English abstract).
      Hui, G. G., Li, S. Z., Li, X. Y., et al., 2016. Temporal and Spatial Distribution of Cenozoic Igneous Rocks in the South China Sea and Its Adjacent Regions: Implications for Tectono-Magmatic Evolution. Geological Journal, 51: 429-447. https://doi.org/10.1002/gj.2801
      Infante-Paez, L., Marfurt, K.J., 2017. Seismic Expression and Geomorphology of Igneous Bodies: A Taranaki Basin, New Zealand, Case Study. Interpretation, 5(3): SK121-SK140. https://doi.org/10.1190/int-2016-0244.1 doi: 10.1190/INT-2016-0244.1
      Kavanagh, J. L., Menand, T., Sparks, R. S. J., 2006. An Experimental Investigation of Sill Formation and Propagation in Layered Elastic Media. Earth and Planetary Science Letters, 245(3/4): 799-813. https://doi.org/10.1016/j.epsl.2006.03.025
      Lei, C., Alves, T. M., Ren, J. Y., et al., 2019. Depositional Architecture and Structural Evolution of a Region Immediately Inboard of the Locus of Continental Breakup (Liwan Sub-Basin, South China Sea). GSA Bulletin, 131(7/8): 1059-1074. https://doi.org/10.1130/b35001.1
      Lei, C., Alves, T. M., Ren, J. Y., et al., 2020. Rift Structure and Sediment Infill of Hyperextended Continental Crust: Insights from 3D Seismic and Well Data (Xisha Trough, South China Sea). Journal of Geophysical Research: Solid Earth, 125(5): 26. https://doi.org/10.1029/2019jb018610
      Lester, R., Van Avendonk, H. J. A., McIntosh, K., et al., 2014. Rifting and Magmatism in the Northeastern South China Sea from Wide‐Angle Tomography and Seismic Reflection Imaging. Journal of Geophysical Research: Solid Earth, 119(3): 2305-2323. doi: 10.1002/2013jb010639
      Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567 doi: 10.1002/2014GC005567
      Li, F., Sun, Z., Pang, X., et al., 2019. Low-Viscosity Crustal Layer Controls the Crustal Architecture and Thermal Distribution at Hyperextended Margins: Modeling Insight and Application to the Northern South China Sea Margin. Geochemistry, Geophysics, Geosystems, 20(7): 3248-3267. https://doi.org/10.1029/2019gc008200 doi: 10.1029/2019GC008200
      Li, F., Sun, Z., Yang, H., 2018. Possible Spatial Distribution of the Mesozoic Volcanic Arc in the Present-Day South China Sea Continental Margin and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 123(8): 6215-6235. https://doi.org/10.1029/2017jb014861 doi: 10.1029/2017JB014861
      Li, P.L., 1993. Cenozoic Tectonic Movement in the Pearl River Mouth Basin. China Offshore Oil and Gas, (6): 11-17(in Chinese with English abstract).
      Liu, B. J., Pang, X., Wang, J. H., et al., 2019. Sedimentary System Response Process and Hydrocarbon Exploration Significance of Crust Thinning Zone at Extensional Continental Margin of Deep-Water Area in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 124-138(in Chinese with English abstract).
      Liu, B.J., Shen, J., Pang, X., et al., 2007. Characteristics of Continental Delta Deposits in Zhuhai Formation of Baiyun Depression in Pearl River Mouth Basin. Acta Petrolei Sinica, 28(2): 49-56, 61(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2007.02.009
      Ma, B. J., Wu, S. G., Betzler, C., et al., 2018. Geometry, Internal Architecture, and Evolution of Buried Volcanic Mounds in the Northern South China Sea. Marine and Petroleum Geology, 97: 540-555. https://doi.org/10.1016/j.marpetgeo.2018.07.029
      Ma, M., Qi, J.F., Zhang, Y.Z., et al., 2019. An Analysis of Subsidence Characteristics and Affecting Factors in the Pearl River Mouth Basin in Cenozoic. Geology in China, 46(2): 269-289(in Chinese with English abstract).
      Magee, C., Hunt-Stewart, E., Jackson, C. A. L., 2013. Volcano Growth Mechanisms and the Role of Sub-Volcanic Intrusions: Insights from 2D Seismic Reflection Data. Earth and Planetary Science Letters, 373: 41-53. https://doi.org/10.1016/j.epsl.2013.04.041
      Mao, Y. H., Zhao, Z.X., Sun, Z., 2020. Extensional Thinning Mechanism of the Western Continental Margin of the Pearl River Mouth Basin. Earth Science, 45(5): 1622-1635(in Chinese with English abstract).
      Menand, T., 2011. Physical Controls and Depth of Emplacement of Igneous Bodies: A Review. Tectonophysics, 500(1-4): 11-19. https://doi.org/10.1016/j.tecto.2009.10.016
      Mi, L. J., Zhang, X. T., Pang, X., et al., 2019. Formation Mechanism and Petroleum Geology of Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 1-10(in Chinese with English abstract).
      Pang, X., Chen, C.M., Shao, L., et al., 2007. Baiyun Movement, a Great Tectonic Event on the Oligocene-Miocene Boundary in the Northern South China Sea and Its Implications. Geological Review, 53(2): 145-151(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2007.02.001
      Pang, X., Ren, J., Zheng, J., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust: A Case Study of Baiyun Sag in the Deep-Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 29-42. https://doi.org/10.1016/S1876-3804(18)30003-x doi: 10.1016/S1876-3804(18)30003-X
      Planke, S., Rasmussen, T., Rey, S. S., et al., 2005. Seismic Characteristics and Distribution of Volcanic Intrusions and Hydrothermal Vent Complexes in the Vøring and Møre Basins. Geological Society, London, Petroleum Geology Conference Series, 6(1): 833-844. https://doi.org/10.1144/0060833
      Planke, S., Svensen, H., Myklebust, R., et al., 2014. Geophysics and Remote Sensing. Physical Geology of Shallow Magmatic Systems. Springer International Publishing, Cham, 131-146. https://doi.org/10.1007/11157_2014_6
      Qin, G.Q., 2002. Late Cenozoic Sequence Stratigraphy and Sea-Level Changes in Pearl River Mouth Basin, South China Sea. China Offshore Oil and Gas (Geology), (1): 1-10, 18(in Chinese with English abstract).
      Reynolds, P., Holford, S., Schofield, N., et al., 2017. The Shallow Depth Emplacement of Mafic Intrusions on a Magma-Poor Rifted Margin: An Example from the Bight Basin, Southern Australia. Marine and Petroleum Geology, 88: 605-616. https://doi.org/10.1016/j.marpetgeo.2017.09.008
      Reynolds, P., Schofield, N., Brown, R. J., et al., 2018. The Architecture of Submarine Monogenetic Volcanoes—Insights from 3D Seismic Data. Basin Research, 30: 437-451. https://doi.org/10.1111/bre.12230
      Shao, L., Pang, X., Qiao, P.J., et al., 2008. Sedimentary Filling of the Pearl River Mouth Basin and Its Response to the Evolution of the Pearl River. Acta Sedimentologica Sinica, 26(2): 179-185(in Chinese with English abstract).
      Shi, H.S., He, M., Zhang, L.L., et al., 2014. Hydrocarbon Geology, Accumulation Pattern and the Next Exploration Strategy in the Eastern Pearl River Mouth Basin. China Offshore Oil and Gas, 26(3): 11-22(in Chinese with English abstract).
      Shi, X. F., Yan, Q.S., 2011. Geochemistry of Cenozoic Magmatism in the South China Sea and Its Tectonic Implications. Marine Geology & Quaternary Geology, 31(2): 59-72(in Chinese with English abstract).
      Smallwood, J.R., Maresh, J., 2002. The Properties, Morphology and Distribution of Igneous Sills: Modelling, Borehole Data and 3D Seismic from the Faroe-Shetland Area. Geological Society, London, Special Publications, 197(1): 271-306. https://doi.org/10.1144/GSL.SP.2002.197.01.11
      Sun, Q.L., Jackson, C. A. L., Magee, C., et al., 2020. Deeply Buried Ancient Volcanoes Control Hydrocarbon Migration in the South China Sea. Basin Research, 32(1): 146-162. https://doi.org/10.1111/bre.12372
      Sun, Z., Li, F.C., Lin, J., et al., 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789(in Chinese with English abstract).
      Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin: Special Topic: The South China Sea Ocean Drilling. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      Sun, Z., Xu, Z., Sun, L., et al., 2014. The Mechanism of Post-Rift Fault Activities in Baiyun Sag, Pearl River Mouth Basin. Journal of Asian Earth Sciences, 89: 76-87. https://doi.org/10.1016/j.jseaes.2014.02.018
      Sun, Z., Zhong, Z., Keep, M., et al., 2009. 3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. Journal of Asian Earth Sciences, 34(4): 544-556. https://doi.org/10.1016/j.jseaes.2008.09.002
      Thomson, K., 2007. Determining Magma Flow in Sills, Dykes and Laccoliths and Their Implications for Sill Emplacement Mechanisms. Bulletin of Volcanology, 70(2): 183-201. https://doi.org/10.1007/s00445-007-0131-8
      Wang, K.L., Lo, Y.M., Chung, S.L., et al., 2012. Age and Geochemical Features of Dredged Basalts from Offshore SW Taiwan: The Coincidence of Intra-Plate Magmatism with the Spreading South China Sea. Terrestrial, Atmospheric and Oceanic Sciences, 23(6): 657-669. https://doi.org/10.3319/tao.2012.07.06.01(tt)
      Wang, L., Sun, Z., Yang, J., et al., 2019. Seismic Characteristics and Evolution of Post-Rift Igneous Complexes and Hydrothermal Vents in the Lingshui Sag (Qiongdongnan Basin), Northwestern South China Sea. Marine Geology, 418: 106043. https://doi.org/10.1016/j.margeo.2019.106043
      Wang, P. X., 2020. Exploring the Deep Sea Processes in the South China Sea. Science & Technology Review, 38(18): 6-20 (in Chinese with English abstract).
      Wang, X.J., Wu, S.G., Dong, D.D., et al., 2008. Characteristics of Gas Chimney and Its Relationship to Gas Hydrate in Qiongdongnan Basin. Marine Geology & Quaternary Geology, 28(3): 103-108(in Chinese with English abstract).
      Xia, S., Zhao, D., Sun, J., et al., 2016. Teleseismic Imaging of the Mantle beneath Southernmost China: New Insights into the Hainan Plume. Gondwana Research, 36: 46-56. https://doi.org/10.1016/j.gr.2016.05.003
      Xu, Y. G., Wei, J. X., Qiu, H. N., et al., 2012. Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks: Preliminary Results and a Research Design. Chinese Science Bulletin, 57(24): 3150-3164. https://doi.org/10.1007/s11434-011-4921-1
      Yan, P., Deng, H., Liu, H., et al., 2006. The Temporal and Spatial Distribution of Volcanism in the South China Sea Region. Journal of Asian Earth Sciences, 27(5): 647-659. https://doi.org/10.1016/j.jseaes.2005.06.005
      Yan, P., Liu, H.L., 2005. Temporal and Spatial Distributions of Meso-Enozoic Igneous Rocks over South China Sea. Journal of Tropical Oceanography, 24(2): 33-41(in Chinese with English abstract). doi: 10.3969/j.issn.1009-5470.2005.02.005
      Yan, Q. S., Shi, X. F., Castillo, P. R., 2014. The Late Mesozoic-Cenozoic Tectonic Evolution of the South China Sea: A Petrologic Perspective. Journal of Asian Earth Sciences, 85: 178-201. https://doi.org/10.1016/j.jseaes.2014.02.005
      Yang, S., Jin, Z. K., Han, J.H., 2017. Cenozoic Magmatic Activities and Stages in the Baiyun Sag, Northern Margin of South China Sea. Marine Geology & Quaternary Geology, 37(6): 34-46(in Chinese with English abstract).
      Yu, M., Yan, Y., Huang, C.Y., et al., 2018. Opening of the South China Sea and Upwelling of the Hainan Plume. Geophysical Research Letters, 45(6): 2600-2609. https://doi.org/10.1002/2017gl076872
      Zeng, Z., Zhu, H., Yang, X., et al., 2019. Three-Dimensional Imaging of Miocene Volcanic Effusive and Conduit Facies: Implications for the Magmatism and Seafloor Spreading of the South China Sea. Marine and Petroleum Geology, 109: 193-207. https://doi.org/10.1016/j.marpetgeo.2019.06.024
      Zhang, C., Sun, Z., Manatschal, G., et al., 2021. Syn-Rift Magmatic Characteristics and Evolution at a Sediment-Rich Margin: Insights from High-Resolution Seismic Data from the South China Sea. Gondwana Research, 91: 81-96. https://doi.org/10.1016/j.gr.2020.11.012
      Zhang, Q., 2014. Cenozoic Magmatism in the Northern Continental Margin of the South China Sea and Its Implication for the Tectonic Evolution of the Rifted Margin (Dissertation). University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), Qingdao(in Chinese with English abstract).
      Zhang, Q., Wu, S. G., Dong, D. D., 2016. Cenozoic Magmatism in the Northern Continental Margin of the South China Sea: Evidence from Seismic Profiles. Marine Geophysical Research, 37(2): 71-94. https://doi.org/10.1007/s11001-016-9266-3
      Zhao, F., Alves, T. M., Wu, S., et al., 2016. Prolonged Post-Rift Magmatism on Highly Extended Crust of Divergent Continental Margins (Baiyun Sag, South China Sea). Earth and Planetary Science Letters, 445: 79-91. https://doi.org/10.1016/j.epsl.2016.04.001
      Zhao, F., Wu, S., Sun, Q., et al., 2014. Submarine Volcanic Mounds in the Pearl River Mouth Basin, Northern South China Sea. Marine Geology, 355: 162-172. https://doi.org/10.1016/j.margeo.2014.05.018
      Zhao, Z.X., Sun, Z., Xie, H., et al., 2011. Baiyun Deepwater Cenozoic Subsidence and Lithospheric Stretching Deformation. Chinese Journal of Geophysics, 54(12): 3336-3343(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.12.031
      Zhao, Z. X., Zhou, D., Liao, J., 2009. Tertiary Paleogeography and Depositional Evolution in the Pearl River Mouth Basin of the Northern South China Sea. Journal of Tropical Oceanography, 28(6): 52-60(in Chinese with English abstract). doi: 10.3969/j.issn.1009-5470.2009.06.007
      Zou, C.N., Zhao, W.Z., Jia, C.Z., et al., 2008. Formation and Distribution of Volcanic Hydrocarbon Reservoirs in Sedimentary Basins of China. Petroleum Exploration and Development, 35(3): 257-271(in Chinese with English abstract). doi: 10.1016/S1876-3804(08)60071-3
      Zou, H. P., Li, P. L., Rao, C.T., 1995. Geochemistry of Cenozoic Volcanic Rocks in Zhujiangkou Basin and Its Geodynamic Significance. Geochimica, 24(C00): 33-45(in Chinese with English abstract).
      蔡国富, 张向涛, 彭光荣, 等, 2021. 南海北部阳江-一统暗沙断裂带与新近纪岩浆活动. 大地构造与成矿学, 45(1): 40-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202101004.htm
      陈长民, 2000. 珠江口盆地东部石油地质及油气藏形成条件初探. 中国海上油气(地质), 14(2): 73-83 https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200002000.htm
      黄小龙, 徐义刚, 杨帆, 2020. 南海玄武岩: 扩张洋脊与海山. 科技导报, 38(18): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202018009.htm
      李平鲁, 1993. 珠江口盆地新生代构造运动. 中国海上油气, (6): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199306003.htm
      柳保军, 庞雄, 王家豪, 等, 2019. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义. 石油学报, 40(增刊1): 124-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1011.htm
      柳保军, 申俊, 庞雄, 等, 2007. 珠江口盆地白云凹陷珠海组浅海三角洲沉积特征. 石油学报, 28(2): 49-56, 61 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200702008.htm
      马明, 漆家福, 张远泽, 等, 2019. 珠江口盆地新生代沉降特征及其影响因素分析. 中国地质, 46(2): 269-289. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902006.htm
      毛云华, 赵中贤, 孙珍, 2020. 珠江口盆地西部陆缘伸展-减薄机制. 地球科学, 45(5): 1622-1635. doi: 10.3799/dqkx.2019.160
      米立军, 张向涛, 庞雄, 等, 2019. 珠江口盆地形成机制与油气地质. 石油学报, 40(增刊1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1001.htm
      庞雄, 陈长民, 邵磊, 等, 2007. 白云运动: 南海北部渐新统-中新统重大地质事件及其意义. 地质论评, 53(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200702001.htm
      秦国权, 2002. 珠江口盆地新生代晚期层序地层划分和海平面变化. 中国海上油气(地质), (1): 1-10, 18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200201000.htm
      邵磊, 庞雄, 乔培军, 等, 2008. 珠江口盆地的沉积充填与珠江的形成演变. 沉积学报, 26(2): 179-185 https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200802002.htm
      施和生, 何敏, 张丽丽, 等, 2014. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略. 中国海上油气, 26(3): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403002.htm
      石学法, 鄢全树, 2011. 南海新生代岩浆活动的地球化学特征及其构造意义. 海洋地质与第四纪地质, 31(2): 59-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201102011.htm
      孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371
      汪品先, 2020. 南海深部过程的探索. 科技导报, 38(18): 6-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202018003.htm
      王秀娟, 吴时国, 董冬冬, 等, 2008. 琼东南盆地气烟囱构造特点及其与天然气水合物的关系. 海洋地质与第四纪地质, 28(3): 103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200803021.htm
      阎贫, 刘海龄, 2005. 南海及其周缘中新生代火山活动时空特征与南海的形成模式. 热带海洋学报, 24(2): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200502004.htm
      杨率, 金振奎, 韩建辉, 2017. 南海北缘白云凹陷新生代岩浆活动特征与期次. 海洋地质与第四纪地质, 37(6): 34-46. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201706005.htm
      张峤, 2014. 南海北部陆缘新生代岩浆活动及构造意义(博士学位论文). 青岛: 中国科学院研究生院(海洋研究所).
      赵中贤, 孙珍, 谢辉, 等, 2011. 白云深水区新生代沉降及岩石圈伸展变形. 地球物理学报, 54(12): 3336-3343 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201112033.htm
      赵中贤, 周蒂, 廖杰, 2009. 珠江口盆地第三纪古地理及沉积演化. 热带海洋学报, 28(6): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200906007.htm
      邹才能, 赵文智, 贾承造, 等, 2008. 中国沉积盆地火山岩油气藏形成与分布. 石油勘探与开发, 35(3): 257-271. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200803002.htm
      邹和平, 李平鲁, 饶春涛, 1995. 珠江口盆地新生代火山岩地球化学特征及其动力学意义. 地球化学, 24(C00): 33-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX5S1.004.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  414
    • HTML全文浏览量:  685
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-08-23
    • 网络出版日期:  2023-10-31
    • 刊出日期:  2023-10-25

    目录

      /

      返回文章
      返回