• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    广东连山地区禾洞高分异花岗岩的锆石U-Pb年代学及岩石成因

    李响 王令占 涂兵 田洋 谢国刚 张楗钰 张宗言

    李响, 王令占, 涂兵, 田洋, 谢国刚, 张楗钰, 张宗言, 2023. 广东连山地区禾洞高分异花岗岩的锆石U-Pb年代学及岩石成因. 地球科学, 48(10): 3577-3596. doi: 10.3799/dqkx.2021.175
    引用本文: 李响, 王令占, 涂兵, 田洋, 谢国刚, 张楗钰, 张宗言, 2023. 广东连山地区禾洞高分异花岗岩的锆石U-Pb年代学及岩石成因. 地球科学, 48(10): 3577-3596. doi: 10.3799/dqkx.2021.175
    Li Xiang, Wang Lingzhan, Tu Bing, Tian Yang, Xie Guogang, Zhang Jianyu, Zhang Zongyan, 2023. Zircon Geochronology and Petrogenesis of Hedong Highly Fractionated I-Type Granite in Lianshan, Guangdong Province. Earth Science, 48(10): 3577-3596. doi: 10.3799/dqkx.2021.175
    Citation: Li Xiang, Wang Lingzhan, Tu Bing, Tian Yang, Xie Guogang, Zhang Jianyu, Zhang Zongyan, 2023. Zircon Geochronology and Petrogenesis of Hedong Highly Fractionated I-Type Granite in Lianshan, Guangdong Province. Earth Science, 48(10): 3577-3596. doi: 10.3799/dqkx.2021.175

    广东连山地区禾洞高分异花岗岩的锆石U-Pb年代学及岩石成因

    doi: 10.3799/dqkx.2021.175
    基金项目: 

    中国地质调查局项目 12120113063200

    中国地质调查局项目 DD20211385

    详细信息
      作者简介:

      李响(1983-),男,副研究员,从事成因矿物学、岩石地球化学研究. ORCID:0000-0001-5874-2056. E-mail:lixiang_503@163.com

    • 中图分类号: P597

    Zircon Geochronology and Petrogenesis of Hedong Highly Fractionated I-Type Granite in Lianshan, Guangdong Province

    • 摘要: 南岭地区晚中生代花岗岩的岩石成因还存在不同认识.以广东连山地区禾洞高分异花岗岩为研究对象,进行了系统的岩石学、锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素组成研究.锆石LA-ICP-MS U-Pb定年结果表明,禾洞岩体中细粒黑云母正长花岗岩和中粒黑云母二长花岗岩的成岩年龄分别为159.7±1.4 Ma和160.3±1.7 Ma,指示禾洞岩体为晚侏罗世岩浆活动的产物.地球化学分析显示,禾洞岩体高硅和富碱,SiO2含量为70.02%~75.56%,碱含量(K2O+Na2O)变化于7.74%~8.59%之间,贫铁、镁、钙、钛、磷,铝饱和指数(A/CNK值)为0.96~1.28,具有较高的Rb/Sr比值(2.6~17.8)和显著的铕负异常(0.06~0.52).大多数样品的Ga/Al比值小于2.6,高场强元素Zr+Nb+Ce+Y为118×10-6~313×10-6,低于A型花岗岩的下限值,锆石饱和温度也较低(703~801 ℃),P2O5与SiO2负相关,Y和Th均与Rb呈正相关关系,这些均指示禾洞岩体应为高分异的I型花岗岩.禾洞岩体具较低的ISr值(0.707 00~0.711 39),较高的εNd(t)值(-7.1~-2.6),锆石εHf(t)值为-8.4~+2.2.二阶段Nd模式年龄和Hf模式年龄分别为1.30~1.67 Ga和1.04~1.71 Ga.上述同位素数据,结合野外地质特征,表明禾洞岩体在成岩过程中可能发生了壳幔混合作用.在古太平洋板块俯冲形成的伸展构造环境下,禾洞岩体的形成与幔源岩浆沿郴州-临武深大断裂底侵有关.

       

    • 图  1  华南大地构造简图,显示主要的断裂带和构造域(修改自Wang et al., 2013)

      ALF.安华-罗城断裂;JSF.江山-绍兴断裂;CBF.慈利-保靖断裂;SMF.松马断裂;CLF.郴州-临武断裂;TLF.郯庐断裂;CNF.长乐-南澳断裂;XGF.襄樊-广济断裂;JNF.江南断裂;ZDF.政和-大浦断裂;QPF.宜丰-景德镇-歙县

      Fig.  1.  Tectonic map of the South China Block, showing major faults and tectonic domains (revised from Wang et al., 2013)

      图  2  南岭中西段花岗岩分布及禾洞岩体位置(修改自高剑峰等, 2005)

      A型花岗岩范围据朱金初等(2008),年龄数据据朱金初等(2008),Shu et al.(2011),李剑锋等(2021).SH.锆石SHIRIMPU-Pb年龄,LA.锆石LA-ICP-MSU-Pb年龄. 1. 花山:162±1 Ma(SH);2. 牛庙:163±4 Ma(SH);3. 同安:160±4 Ma(SH);4. 姑婆山:163±4 Ma(LA);5. 里松:162±3 Ma(LA);6. 禾洞:145 Ma(估计);7. 金鸡岭:156±2 Ma(LA);8. 砂子岭:151±1 Ma(LA);9. 西山:156±2 Ma(LA);10. 香花岭:152±2 Ma(LA);11. 骑田岭:154±1 Ma(LA);12. 千里山:155±2 Ma(LA);13.王仙岭:156±3 Ma(LA);14. 瑶岗仙:152±2 Ma(LA);15. 大义山:158±1 Ma(LA);16. 九峰:163±2 Ma(LA);17. 贵东:164±1 Ma(LA);18. 佛冈:155±2 Ma(LA);19. 大东山:158±3 Ma(LA);20. 连阳:144±1 Ma(LA)

      Fig.  2.  Distribution map of granite in the western-middle part of Nanling region and showing the location of the Hedong pluton (revised from Gao et al., 2005)

      图  3  研究区地质简图及采样位置分布

      Fig.  3.  Geological sketch of the Hedong pluton and showing the locations of sampling

      图  4  禾洞岩体野外和显微镜下典型照片

      a. 粗中粒黑云母二长花岗岩;b. 细中粒黑云母正长花岗岩;c. 细粒黑云母正长花岗岩与中粒黑云母正长花岗岩呈渐变接触;d. 中粒角闪石黑云母花岗闪长岩,含暗色微粒包体;e. 粗中粒黑云母二长花岗岩镜下照片,粗中粒花岗结构,长石均有不同程度泥化,黑云母大多绿泥石化(正交偏光);f. 细中粒黑云母正长花岗岩镜下照片,细中粒花岗结构(正交偏光).矿物缩写:Qz. 石英;Kfs. 钾长石;Pl. 斜长石;Bt. 黑云母

      Fig.  4.  Representative field photos and micrographs of granitic samples from the Hedong pluton

      图  5  禾洞岩体样品中代表性锆石CL图像和锆石U-Pb年龄谐和图

      小的实线圈为原位U-Pb定年分析点,大的虚线圈为原位Hf同位素分析点

      Fig.  5.  CL images and zircon U-Pb concordia age plots of granitic samples from the Hedong pluton

      图  6  禾洞岩体A/CNK-A/NK图解和SiO2-K2O图解

      A型花岗岩带内花山-姑婆山、金鸡岭、骑田岭、西山岩体数据付建明等(2004, 2006),顾晟彦等(2006)朱金初等(2006)李剑锋等(2021)

      Fig.  6.  A/CNK-A/NK (a) and SiO2-K2O (b) diagrams for granitic samples from the Hedong pluton

      图  7  禾洞岩体的球粒陨石标准化稀土配分模式(a)和微量元素原始地幔标准化蛛网图(b)

      球粒陨石和原始地幔标准化值据Sun and McDonough(1989)

      Fig.  7.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider gram (b) for the samples from the Hedong pluton

      图  8  禾洞岩体成因类型判别图解

      a~c底图据Whalen et al.(1987),图a中A-型花岗岩和分异的I/S-型花岗岩的演化趋势线据Wu et al.(2017),I、S和A分别代表I型、S型和A型花岗岩,OGT代表未分异的I、S和M型花岗岩区,FG代表分异的I型花岗岩区;d~f底图据Chappell and White(1992)和Li et al.(2007b).A型花岗岩带内花岗岩数据来源同图 6

      Fig.  8.  Discrimination diagrams of genetic type for granitic samples from the Hedong pluton

      图  9  禾洞岩体ISrNd(t)(a)和tHf(t)(b)图解

      南岭中西段A型花岗岩类及碱性玄武岩的Sr-Nd同位素组成据朱金初等(2008)及文内参考文献;里松暗色包体、同安石英二长岩、牛庙辉石闪长岩、花山花岗岩、里松花岗岩Hf同位素数据引自Zhao et al.(2010),九嶷山金鸡岭数据李剑锋等(2021),骑田岭仰天湖单元数据刘勇等(2011),阴影区域的华夏陆块基底Hf同位素演化区域据Xu et al.(2007)和He and Xu(2012)

      Fig.  9.  ISrNd(t) (a) and tHf(t) (b) diagrams for granitic samples from the Hedong pluton

      图  10  禾洞岩体εHf(t)值和Hf模式年龄(tDM2)箱型图及与南岭北东向A型花岗岩对比

      锆石Hf同位素数据出处同图 9b

      Fig.  10.  The box plot of εHf(t) and Hf model ages(tDM2)for the Hedong pluton and compared with the plot of NE trending A-type granites in Nanling Mountains region

      图  11  禾洞岩体高分异I型花岗岩Sr-Ba(a)和La-(La/Yb)N(b)关系图及分离结晶趋势

      图a和图b中矿物分离结晶趋势线据Wu et al.(2003).Pl.斜长石;PlAn50.斜长石(An=50);PlAn10.斜长石(An=10);Kfs.钾长石;Amp.角闪石;Bi.黑云母;Zr.锆石;Sph.榍石;Ap.磷灰石;Mon.独居石;Allan.褐帘石

      Fig.  11.  Sr-Ba(a) and La-(La/Yb)N(b)diagrams showing the fractional crystallization trends for the highly fractionated I-type granite from the Hedong pluton

      图  12  禾洞岩体(Y+Nb)-Rb图解(底图据Pearce, 1996)

      syn-COLG. 同碰撞花岗岩,post-COLG. 后碰撞花岗岩,VAG. 火山弧花岗岩,WPG. 板内花岗岩,ORG. 洋中脊花岗岩

      Fig.  12.  (Y+Nb)-Rb diagram (Pearce, 1996) for granitic samples from the Hedong pluton.

      表  1  禾洞岩体的主量元素(%)和微量元素(10-6)分析结果

      Table  1.   Major element (%) and trace element (10-6) compositions of granitic samples from the Hedong pluton

      样号 13-20 # 13-21 # 13-26 # 13-27 # 13-29 # 13-31 # 13-32 # PM024-17h
      主量元素(%)
      SiO2 75.33 74.72 71.04 70.02 74.48 75.56 74.99 72.62
      TiO2 0.10 0.09 0.39 0.47 0.15 0.10 0.10 0.10
      Al2O3 11.97 12.15 14.06 14.13 13.45 12.62 12.64 15.77
      Fe2O3 0.16 0.02 0.88 0.92 0.44 0.18 0.35 0.68
      FeO 1.79 2.02 2.20 2.44 1.18 1.85 1.62 0.65
      MnO 0.07 0.07 0.05 0.07 0.07 0.06 0.04 0.05
      MgO 0.21 0.34 0.61 0.72 0.19 0.12 0.21 0.18
      CaO 0.99 0.90 0.43 1.51 1.06 0.54 0.75 0.69
      Na2O 2.90 3.83 3.24 2.74 3.50 3.39 3.23 3.21
      K2O 4.84 4.32 5.22 5.26 4.95 4.92 5.36 5.36
      P2O5 0.02 0.01 0.13 0.13 0.03 0.04 0.02 0.03
      LOI 1.40 1.29 1.41 1.31 0.36 0.31 0.40 0.44
      SUM 99.79 99.76 99.66 99.72 99.86 99.70 99.71 99.79
      A/CNK 1.01 0.96 1.19 1.09 1.03 1.06 1.01 1.28
      ALK 7.74 8.15 8.46 8.00 8.45 8.31 8.59 8.57
      AKI 0.84 0.90 0.78 0.72 0.83 0.86 0.88 0.70
      D.I. 90.7 91.4 89.3 84.2 91.3 92.7 92.3 90.9
      TZr(℃) 763 753 790 762 703 727 767 801
      微量元素(10-6)
      Li 11.1 9.08 17.6 39.3 10.9 16.2 5.75 6.52
      Be 6.27 10.9 5.35 4.29 1.81 4.02 3.31 4.82
      Sc 2.37 2.82 6.05 6.88 1.60 1.26 1.95 2.06
      V 2.50 1.54 24.8 35.1 3.16 2.58 2.11 2.03
      Cr 3.32 2.82 7.52 8.40 1.08 3.62 2.41 0.50
      Co 1.26 0.86 3.57 4.61 0.87 1.01 0.74 0.40
      Ni 1.70 1.48 4.15 5.00 0.63 1.78 1.45 0.30
      Cu 6.65 9.95 7.90 9.52 1.28 2.79 3.06 1.23
      Zn 65.7 21.6 40.4 55.0 28.5 28.7 17.9 22.2
      Ga 18.1 19.6 17.6 17.9 14.6 17.2 14.5 15.9
      Rb 462 438 337 308 115 257 232 242
      Sr 25.9 27.2 89.4 119 128 27.1 50.9 55.8
      Y 55.1 75.7 31.1 38.3 9.30 22.9 19.2 28.0
      Nb 52.0 75.9 27.9 30.0 7.61 28.5 13.8 18.7
      Cs 9.18 6.60 10.2 11.2 3.58 5.48 4.87 7.51
      Ba 129 84.8 538 774 506 77.5 319 315
      La 34.6 28.9 31.4 46.1 26.5 17.7 44.0 54.7
      Ce 63.4 55.5 79.8 76.5 45.5 36.6 90.1 113
      Pr 7.25 6.39 7.07 9.42 4.56 4.09 8.19 11.5
      Nd 24.6 20.7 24.1 38.8 16.1 16.2 31.3 39.6
      Sm 5.64 5.62 4.89 7.76 2.37 3.79 5.33 6.92
      Eu 0.16 0.11 0.62 1.19 1.07 0.28 0.69 0.74
      Gd 5.19 5.48 4.31 6.35 2.16 3.30 4.46 4.95
      Tb 1.22 1.35 0.85 1.20 0.32 0.71 0.71 0.75
      Dy 8.48 11.8 5.34 7.15 1.49 4.80 3.41 4.31
      Ho 1.69 2.50 1.06 1.32 0.29 0.91 0.64 0.82
      Er 5.29 8.37 3.23 3.88 0.98 2.62 2.07 2.57
      微量元素(10-6)
      Tm 1.05 1.58 0.56 0.66 0.17 0.48 0.37 0.44
      Yb 6.73 10.8 3.41 4.26 1.14 3.24 2.62 3.18
      Lu 0.95 1.56 0.50 0.59 0.18 0.47 0.38 0.51
      Ta 6.45 11.5 2.49 2.63 0.54 2.81 2.37 3.12
      Tl 2.73 2.59 2.16 1.44 0.50 1.25 1.06 1.08
      Pb 225 36.7 32.3 30.6 22.3 34.7 30.6 32.4
      Th 48.4 54.3 34.3 39.1 11.0 48.5 20.1 23.4
      U 11.2 22.0 8.01 8.95 3.06 12.1 5.63 4.40
      Zr 119 114 146 118 55.7 72.7 127 153
      Hf 5.50 6.49 4.58 4.12 2.14 3.77 4.45 4.56
      ΣREE 166.2 160.7 167.1 205.2 102.8 95.2 194.3 244.3
      LREE 135.6 117.2 147.9 179.8 96.1 78.7 179.6 226.8
      HREE 30.6 43.4 19.3 25.4 6.73 16.5 14.7 17.5
      LREE/HREE 4.4 2.7 7.7 7.1 14.3 4.8 12.2 12.9
      (La/Yb)N 3.7 1.9 6.6 7.8 16.7 3.9 12.0 12.3
      (La/Sm)N 4.0 3.3 4.1 3.8 7.2 3.0 5.3 5.1
      (Gd/Yb)N 0.6 0.4 1.0 1.2 1.6 0.8 1.4 1.3
      δEu 0.1 0.1 0.4 0.5 1.4 0.2 0.4 0.4
      δCe 1.0 1.0 1.3 0.9 1.0 1.1 1.2 1.1
      Rb/Sr 17.8 16.1 3.8 2.6 0.9 9.5 4.6 4.3
      K/Rb 86.9 81.8 128.5 141.7 357.2 158.9 191.7 184.0
      Zr/Hf 21.6 17.6 31.9 28.6 26.0 19.3 28.5 33.5
      Nb/Ta 8.1 6.6 11.2 11.4 14.0 10.1 5.8 6.0
      注:全碱ALK=Na2O+K2O;过碱指数AKI= (Na2O+K2O) /Al2O3(分子比);铝饱和指数A/CNK=Al2O3/(Na2O+K2O+CaO)(分子比);D.I.分异指数,锆石饱和温度TZr据Watson and Harrison(1983)方法计算.
      下载: 导出CSV

      表  2  禾洞岩体的Sr-Nd同位素组成和相关参数

      Table  2.   Sr-Nd isotopic compositions and parameters of granitic samples from the Hedong pluton

      样品号 13-21 # 13-27 # 13-29 # 13-32 # PM024-17h
      Rb (10-6) 438 308 115 232 243
      Sr (10-6) 27.2 119.0 128.0 50.9 55.0
      87Rb/86Sr 47.09 7.50 2.60 13.22 12.83
      87Sr/86Sr 0.818 71 0.728 46 0.714 87 0.737 08 0.736 61
      (87Sr/86Sr)t 0.711 60 0.711 39 0.708 95 0.707 00 0.707 42
      Sm (10-6) 5.62 7.76 2.37 5.33 6.87
      Nd (10-6) 20.7 38.8 16.1 31.3 42.2
      147Sm/144Nd 0.165 2 0.121 7 0.089 6 0.103 6 0.099 1
      143Nd/144Nd 0.512 30 0.512 07 0.512 23 0.512 25 0.512 26
      εNd(t) -2.6 -7.1 -4.0 -3.6 -3.4
      TDM2(Ga) 1.43 1.67 1.34 1.32 1.30
      f (%) 66 47 60 62 63
      注:f为参照DePaolo et al.(1991)的方法计算的壳幔二端元混合体系中幔源组分所占比例.计算公式为:f=(Ndc/Ndm)/[(Ndc/Ndm)+(εm-εs)/(εs-εc)],Ndc、Ndm分别代表地壳和地幔端元Nd的丰度,计算时取Ndc=25×10-6,Ndm=15×10-6εc=-15,εm=+8.
      下载: 导出CSV
    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      Bao, Z. W., Zhao, Z. H., 2003. Geochemistry and Tectonic Setting of the Fugang Aluminous A-Type Granite, Guangdong Province, China: A Preliminary Study. Geology-Geochemistry, 31(1): 52-61(in Chinese with English abstract).
      Black, L. P., Gulson, B. L., 1978. The Age of the Mud Tank Carbonatite, Strangways Range, Northern Territory. BMR Journal of Australian Geology and Geophysics, 3(3): 227-232.
      Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/s0263593300007720
      Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/S0024-4937(98)00086-3
      Charvet, J., 2013. The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198-209. https://doi.org/10.1016/j.jseaes.2013.02.015
      Chen, J., Lu, J. J., Chen, W. F., et al., 2008. W-Sn-Nb-Ta-Bearing Granites in the Nanling Range and Their Relationship to Metallogengesis. Geological Journal of China Universities, 14(4): 459-473(in Chinese with English abstract).
      Chen, J., Wang, R. C., Zhu, J. C., et al., 2013. Multiple-Aged Granitoids and Related Tungsten-Tin Mineralization in the Nanling Range, South China. Science China Earth Sciences, 56(12): 2045-2055. https://doi.org/10.1007/s11430-013-4736-9
      Chen, J. F., Guo, X. S., Tang, J. F., et al., 1999. Nd Isotopic Model Ages: Implications of the Growth of the Continental Crust of Southeastern China. Journal of Nanjing University (Natural Science), 35(6): 649-658(in Chinese with English abstract).
      Chen, J. Y., Yang, J. H., 2015. Petrogenesis of the Fogang Highly Fractionated I-Type Granitoids: Constraints from Nb, Ta, Zr and Hf. Acta Petrologica Sinica, 31(3): 846-854(in Chinese with English abstract).
      Chen, X. M., Wang, R. C., Liu, C. S., et al., 2002. Isotopic Dating and Genesis for Fogang Biotite Granites of Conghua Area, Guangdong Province. Geological Journal of China Universities, 8(3): 293-307(in Chinese with English abstract).
      DePaolo, D. J., Linn, A. M., Schubert, G., 1991. The Continental Crustal Age Distribution: Methods of Determining Mantle Separation Ages from Sm-Nd Isotopic Data and Application to the Southwestern United States. Journal of Geophysical Research, 96(B2): 2071-2088. https://doi.org/10.1029/90jb02219
      Feng, Z. H., Wang, C. Z., Liang, J. C., et al., 2011. The Emplacement Mechanisms and Growth Styles of the Guposhan-Huashan Batholith in Western Nanling Range, South China. Science China Earth Sciences, 54(1): 45-60. https://doi.org/10.1007/s11430-010-4143-4
      Fu, J. M., Ma, C. Q., Xie, C. F., et al., 2004. Geochemistry and Tectonic Setting of Xishan Aluminous A-Type Granitic Volcanic-Intrusive Complex, Southern Hunan. Journal of Earth Sciences and Environment, 26(4): 15-23(in Chinese with English abstract).
      Fu, J. M., Xie, C. F., Peng, S. B., et al., 2006. Geochemistry and Crust-Mantle Magmatic Mixing of the Qitianling Granites and Their Dark Microgranular Enclaves in Hunan Province. Acta Geoscientia Sinica, 27(6): 557-569(in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2006.06.006
      Gao, J. F., Ling, H. F., Shen, W. Z., et al., 2005. Geochemistry and Petrogenesis of Lianyang Granite Composite, West Guangdong Province. Acta Petrologica Sinica, 21(6): 1645-1656 (in Chinese with English abstract).
      Gilder, S. A., Gill, J., Coe, R. S., et al., 1996. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China. Journal of Geophysical Research: Solid Earth, 101(B7): 16137-16154. https://doi.org/10.1029/96jb00662
      Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3/4): 231-282. https://doi.org/10.1016/j.precamres.2003.12.011
      Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237-269. https://doi.org/10.1016/S0024-4937(02)00082-8
      Gu, S. Y., Hua, R. M., Qi, H. W., 2006. Geochemistry and Petrogenesis of the Yanshanian Huashan-Guposhan Granites in Guangxi. Acta Petrologica et Mineralogica, 25(2): 97-109(in Chinese with English abstract).
      He, Z. Y., Xu, X. S., Niu, Y. L., 2010. Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 119(3-4): 621-641. https://doi.org/10.1016/j.lithos.2010.08.016
      He, Z. Y., Xu, X. S., 2012. Petrogenesis of the Late Yanshanian Mantle-Derived Intrusions in Southeastern China: Response to the Geodynamics of Paleo-Pacific Plate Subduction. Chemical Geology, 328: 208-221. https://doi.org/10.1016/j.chemgeo.2011.09.014
      Hong, D. W., Guo, W. Q., Li, G. J., et al., 1987. Petrologyand Genesis Evolution of Miarolitic Granite Belt in Fujian Coast. Science Press, Beijing (in Chinese).
      Hong, D. W., Xie, X. L., Zhang, J. S., 2002. Geological Significance of the Hangzhou-Zhuguangshan-Huashan High-εNd Granite Belt. Regional Geology of China, 21(6): 348-354(in Chinese with English abstract).
      Hsu, K. C., 1943. Tungsten Deposits of Southern Kiangsi, China. Economic Geology, 38(6): 431-474. https://doi.org/10.2113/gsecongeo.38.6.431
      Hua, R. M., Chen, P. R., Zhang, W. L., et al., 2005. Metallogeneses and Their Geodynamic Settings Related to Mesozoic Granitoids in the Nanling Range. Geological Journal of China Universities, 11(3): 291-304 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2005.03.002
      Huang, H. Q., Li, X. H., Li, W. X., et al., 2011. Formation of High 18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China. Geology, 39(10): 903-906. https://doi.org/10.1130/g32080.1
      Huang, K. W., Guo, M., Lin, J. C., et al., 2020. Geochemistry and Geochronology of Highly Fractionated I-Type Fine Grain Granite in Late Jurassic from Baisha Area of Northern Guangdong Province and Its Significance. Mineral Deposits, 39(5): 926-944 (in Chinese with English abstract).
      Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1-2): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
      Jahn, B. M., Chen, P. Y., Yen, T. P., 1976. Rb-Sr Ages of Granitic Rocks in Southeastern China and Their Tectonic Significance. Geological Society of America Bulletin, 87(5): 763. https://doi.org/10.1130/0016-7606(1976)87763: raogri>2.0.co;2 doi: 10.1130/0016-7606(1976)87763:raogri>2.0.co;2
      Jiang, H., Jiang, S. Y., Li, W. Q., et al., 2018. Highly Fractionated Jurassic I-Type Granites and Related Tungsten Mineralization in the Shirenzhang Deposit, Northern Guangdong, South China: Evidence from Cassiterite and Zircon U-Pb Ages, Geochemistry and Sr-Nd-Pb-Hf Isotopes. Lithos, 312/313: 186-203. https://doi.org/10.1016/j.lithos.2018.04.030
      Jiang, S. Y., Zhao, K. D., Jiang, Y. H., et al., 2008. Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509(in Chinese with English abstract).
      Jiang, Y. H., Jiang, S. Y., Zhao, K. D., et al., 2006. Petrogenesis of Late Jurassic Qianlishan Granites and Mafic Dykes, Southeast China: Implications for a Back-Arc Extension Setting. Geological Magazine, 143(4): 457-474. https://doi.org/10.1017/s0016756805001652
      Li, H., Palinkas, L., Watanabe, K., et al., 2018. Petrogenesis of Jurassic A-Type Granites Associated with Cu-Mo and W-Sn Deposits in the Central Nanling Region, South China: Relation to Mantle Upwelling and Intra-Continental Extension. Ore Geology Reviews, 92: 449-462. https://doi.org/10.1016/j.oregeorev.2017.11.029
      Li, J. F., Fu, J. M., Ma, C. Q., et al., 2021. LA-ICP-MS Zircon U-Pb Ages, Geochemical, Sr-Nd-Hf Isotopes Characteristics of Jinjiling Pluton in Nanling Orogenic Belt and Their Geological Implications. Earth Science, 46(4): 1231-1247 (in Chinese with English abstract).
      Li, W. S., Ni, P., Wang, G. G., et al., 2020. A Possible Linkage between Highly Fractionated Granitoids and Associated W-Mineralization in the Mesozoic Yaogangxian Granitic Intrusion, Nanling Region, South China. Journal of Asian Earth Sciences, 193: 104314. https://doi.org/10.1016/j.jseaes.2020.104314
      Li, X. H., Chen, Z. G., Liu, D. Y., et al., 2003. Jurassic Gabbro-Granite-Syenite Suites from Southern Jiangxi Province, SE China: Age, Origin, and Tectonic Significance. International Geology Review, 45(10): 898-921. https://doi.org/10.2747/0020-6814.45.10.898
      Li, X. H., Chung, S. L., Zhou, H. W., et al., 2004. Jurassic Intraplate Magmatism in Southern Hunan-Eastern Guangxi: 40Ar/ 39Ar Dating, Geochemistry, Sr-Nd Isotopes and Implications for the Tectonic Evolution of SE China. Geological Society, London, Special Publications, 226(1): 193-215. https://doi.org/10.1144/gsl.sp.2004.226.01.11
      Li, X. H., Li, W. X., Li, Z. X., 2007a. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885. https://doi.org/10.1007/s11434-007-0259-0
      Li, X. H., Li, Z. X., Li, W. X., 2007b. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1-2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018
      Li, X. H., Li, W. X., Wang, X. C., et al., 2009. Role of Mantle-Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China: In Situ Zircon Hf-O Isotopic Constraints. Science in China (Series D), 52(9): 1262-1278. https://doi.org/10.1007/s11430-009-0117-9
      Li, X., Wang, L. Z., Tu, B., et al., 2021. Zircon Geochronology, Geochemistry and Petrogenesis of the Taibao Pluton in Northwest Guangdong Province. Earth Science, 46(4): 1199-1216(in Chinese with English abstract).
      Li, X. H., Li, Z. X., Li, W. X., et al., 2013. Revisiting the "C-Type Adakites" of the Lower Yangtze River Belt, Central Eastern China: In-Situ Zircon Hf-O Isotope and Geochemical Constraints. Chemical Geology, 345: 1-15. https://doi.org/10.1016/j.chemgeo.2013.02.024
      Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      Ling, H. F., Shen, W. Z., Sun, T., et al., 2006. Genesis and Source Characteristics of 22 Yanshanian Granites in Guangdong Province: Study of Element and Nd-Sr Isotopes. Acta Petrologica Sinica, 22(11): 2687-2703(in Chinese with English abstract).
      Liu, C. S., Chen, X. M., Chen, P. R., et al., 2003. Subdivision, Discrimination Criteria and Genesis for A-Type Rock Suites. Geological Journal of China Universities, 9(4): 573-591(in Chinese with English abstract).
      Liu, L., Xu, X. S., Zou, H. B., 2012. Episodic Eruptions of the Late Mesozoic Volcanic Sequences in Southeastern Zhejiang, SE China: Petrogenesis and Implications for the Geodynamics of Paleo-Pacific Subduction. Lithos, 154: 166-180. https://doi.org/10.1016/j.lithos.2012.07.002
      Liu, Y., Li, T. D., Xiao, Q. H., et al., 2011. Qitianling Granite Magma Mixing Origin: The Host Rock and Its Microgranular Dioritic Enclaves of Zircon U-Pb Dating and Hf Isotope Evidence. Geological Science and Technology Information, 30(2): 1081-1091(in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Ludwig, K. R., 2001. Isoplot/Ex (Version 2.49): The Geochronological Toolkit for Excel. University of California Berkeley, Berkeley Geochronology Center, Special Publication (1a).
      Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2007. Large-Scale Tungsten-Tin Mineralization in the Nanling Region, South China: Metallogenic Ages and Corresponding Geodynamic Processes. Acta Petrologica Sinica, 23(10): 2329-2338(in Chinese with English abstract).
      Mao, J. W., Xie, G. Q., Li, X. F., et al., 2004. Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China. Earth Science Frontiers, 11(1): 45-55(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2004.01.003
      Ni, P., Wang, G. G., Li, W. S., et al., 2021. A Review of the Yanshanian Ore-Related Felsic Magmatism and Tectonic Settings in the Nanling W-Sn and Wuyi Au-Cu Metallogenic Belts, Cathaysia Block, South China. Ore Geology Reviews, 133: 104088. https://doi.org/10.1016/j.oregeorev.2021.104088
      Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      Pitcher, W. S., 1983. Granite Type and Tectonic Environment. In: Hsu, K. J., ed., Mountain Building Processes. Academic Press, London.
      Pitcher, W. S., 1997. The Nature and Origin of Granite (2nd Edition). Chapman and Hall, London.
      Qiu, J. S., Hu, J., Wang, X. L., et al., 2005. The Baishigang Pluton in Heyuan, Guangdong Province: A Highly Fractionated I-Type Granite. Acta Geologica Sinica, 79(4): 503-514(in Chinese with English abstract).
      Shu, X. J., Wang, X. L., Sun, T., et al., 2011. Trace Elements, U-Pb Ages and Hf Isotopes of Zircons from Mesozoic Granites in the Western Nanling Range, South China: Implications for Petrogenesis and W-Sn Mineralization. Lithos, 127(3/4): 468-482. https://doi.org/10.1016/j.lithos.2011.09.019
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, W. D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 262(3/4): 533-542. https://doi.org/10.1016/j.epsl.2007.08.021
      Wang, D. Z., 2004. The Study of Granitic Rocks in South China: Looking back and Forward. Geological Journal of China Universities, 10(3): 305-314(in Chinese with English abstract).
      Wang, D. H., Huang, F., Wang, Y., et al., 2020. Regional Metallogeny of Tungsten-Tin-Polymetallic Deposits in Nanling Region, South China. Ore Geology Reviews, 120: 103305. https://doi.org/10.1016/j.oregeorev.2019.103305
      Wang, F. Y., Ling, M. X., Ding, X., et al., 2011. Mesozoic Large Magmatic Events and Mineralization in SE China: Oblique Subduction of the Pacific Plate. International Geology Review, 53(5/6): 704-726. https://doi.org/10.1080/00206814.2010.503736
      Wang, Y. J., Fan, W. M., Guo, F., et al., 2003. Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China: Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45(3): 263-286. https://doi.org/10.2747/0020-6814.45.3.263
      Wang, Y., 2008. Some Further Discussions on the Genetic Type of the Early Yanshanian (Jurassic) Granitoids in the Nanling Area, SE China. Geological Review, 54(2): 162-174(in Chinese with English abstract).
      Wang, Y. J., Fan, W. M., Peng, T. P., et al., 2008. Sr-Nd-Pb Isotopic Constraints on Multiple Mantle Domains for Mesozoic Mafic Rocks beneath the South China Block Hinterland. Lithos, 106(3-4): 297-308. https://doi.org/10.1016/j.lithos.2008.07.019
      Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003. Highly Fractionated I-Type Granites in NE China (I): Geochronology and Petrogenesis. Lithos, 66(3/4): 241-273. https://doi.org/10.1016/s0024-4937(02)00222-0
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201-1219. https://doi.org/10.1007/s11430-016-5139-1
      Xu, K. Q., Sun, N., Wang, D. Z., et al., 1982. On the Origin and Metallogeny of the Granites in South China. In: Xu, K. Q., Tu, G. Z., eds., Geology of Granites and Their Metallogenetic Relations. Science Press, Beijing.
      Xu, X. B., Liang, C. H., Chen, J. J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150(in Chinese with English abstract).
      Xu, X. S., Lu, W. M., He, Z. Y., 2007. Formation Age and Origin of Fogang Granite Base and Wushi Diorite-Hornblende Gabbro Body. Science in China (Series D), 37(1): 27-38(in Chinese).
      Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 2007. The Crust of Cathaysia: Age, Assembly and Reworking of Two Terranes. Precambrian Research, 158(1-2): 51-78. https://doi.org/10.1016/j.precamres.2007.04.010
      Yang, J. H., Kang, L. F., Peng, J. T., et al., 2018. In-Situ Elemental and Isotopic Compositions of Apatite and Zircon from the Shuikoushan and Xihuashan Granitic Plutons: Implication for Jurassic Granitoid-Related Cu-Pb-Zn and W Mineralization in the Nanling Range, South China. Ore Geology Reviews, 93: 382-403. https://doi.org/10.1016/j.oregeorev.2017.12.023
      Yin, Y. T., Jin, S., Wei, W. B., et al., 2021. Lithosphere Structure and Its Implications for the Metallogenesis of the Nanling Range, South China: Constraints from 3-D Magnetotelluric Imaging. Ore Geology Reviews, 131: 104064. https://doi.org/10.1016/j.oregeorev.2021.104064
      Yuan, H. L., Gao, S. Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1/2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003
      Zhang, Y., Yang, J. H., Sun, J. F., et al., 2015. Petrogenesis of Jurassic Fractionated I-Type Granites in Southeast China: Constraints from Whole-Rock Geochemical and Zircon U-Pb and Hf-O Isotopes. Journal of Asian Earth Sciences, 111: 268-283. https://doi.org/10.1016/j.jseaes.2015.07.009
      Zhao, K. D., Jiang, S. Y., Zhu, J. C., et al., 2010. Hf Isotopic Composition of Zircons from the Huashan-Guposhan Intrusive Complex and Their Mafic Enclaves in Northeastern Guangxi: Implication for Petrogenesis. Chinese Science Bulletin, 55(6): 509-519. https://doi.org/10.1007/s11434-009-0314-0
      Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      Zhu, J. C., Chen, J., Wang, R. C., et al., 2008. Early Yanshanian NE Trending Sn/W-Bearing A-Type Granites in the Western-Middle Part of the Nanling Mts Region. Geological Journal of China Universities, 14(4): 474-484(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.002
      Zhu, J. C., Zhang, P. H., Xie, C. F., et al., 2006. Magma Mixing Origin of the Mafic Enclaves in Lisong Granite, NE Guangxi, Western Nanling Mountains. Geochimica, 35(5): 506-516(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2006.05.005
      包志伟, 赵振华, 2003. 佛冈铝质A型花岗岩的地球化学及其形成环境初探. 地质地球化学, 31(1): 52-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200301008.htm
      陈江峰, 郭新生, 汤加富, 等, 1999. 中国东南地壳增长与Nd同位素模式年龄. 南京大学学报(自然科学), 35(6): 649-658. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ199906000.htm
      陈璟元, 杨进辉, 2015. 佛冈高分异I型花岗岩的成因: 来自Nb-Ta-Zr-Hf等元素的制约. 岩石学报, 31(3): 846-854. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201503017.htm
      陈骏, 陆建军, 陈卫锋, 等, 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用. 高校地质学报, 14(4): 459-473. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804003.htm
      陈小明, 王汝成, 刘昌实, 等, 2002. 广东从化佛冈(主体)黑云母花岗岩定年和成因. 高校地质学报, 8(3): 293-307. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200203005.htm
      付建明, 马昌前, 谢才富, 等, 2004. 湘南西山铝质A型花岗质火山-侵入杂岩的地球化学及其形成环境. 地球科学与环境学报, 26(4): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200404004.htm
      付建明, 谢才富, 彭松柏, 等, 2006. 湖南骑田岭花岗岩及其暗色微粒包体的地球化学与壳幔岩浆的混合作用. 地球学报, 27(6): 557-569. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200606005.htm
      高剑峰, 凌洪飞, 沈渭洲, 等, 2005. 粤西连阳复式岩体的地球化学特征及其成因研究. 岩石学报, 21(6): 1645-1656. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200506014.htm
      顾晟彦, 华仁民, 戚华文, 2006. 广西花山-姑婆山燕山期花岗岩的地球化学特征及成因研究. 岩石矿物学杂志, 25(2): 97-109. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200602003.htm
      洪大卫, 郭文歧, 李戈晶, 等, 1987. 福建沿海晶洞花岗岩带的岩石学和成因演化. 北京: 北京科学技术出版社.
      洪大卫, 谢锡林, 张季生, 2002. 试析杭州-诸广山-花山高εNd值花岗岩带的地质意义. 地质通报, 21(6): 348-354. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200206012.htm
      华仁民, 陈培荣, 张文兰, 等, 2005. 南岭与中生代花岗岩类有关的成矿作用及其大地构造背景. 高校地质学报, 11(3): 291-304. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503002.htm
      黄孔文, 郭敏, 林杰春, 等, 2020. 粤北白沙地区晚侏罗世高分异I型细粒花岗岩年代学、地球化学特征及其地质意义. 矿床地质, 39(5): 926-944. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202005011.htm
      蒋少涌, 赵葵东, 姜耀辉, 等, 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496-509. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804006.htm
      李剑锋, 付建明, 马昌前, 等, 2021. 南岭金鸡岭岩体LA-ICP-MS锆石U-Pb年龄、地球化学和Sr-Nd-Hf同位素特征及其地质意义. 地球科学, 46(4): 1231-1247. doi: 10.3799/dqkx.2020.170
      李响, 王令占, 涂兵, 等, 2021. 粤西北印支期太保岩体的锆石U-Pb年代学、地球化学及岩石成因. 地球科学, 46(4): 1199-1216. doi: 10.3799/dqkx.2020.193
      凌洪飞, 沈渭洲, 孙涛, 等, 2006. 广东省22个燕山期花岗岩的源区特征及成因: 元素及Nd-Sr同位素研究. 岩石学报, 22(11): 2687-2703. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103004.htm
      刘昌实, 陈小明, 陈培荣, 等, 2003. A型岩套的分类、判别标志和成因. 高校地质学报, 9(4): 573-591. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200304010.htm
      刘勇, 李廷栋, 肖庆辉, 等, 2011. 骑田岭花岗岩体的岩浆混合成因: 寄主岩及其暗色闪长质包体的锆石U-Pb年龄和Hf同位素证据. 地质科技情报, 30(2): 1081-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201102005.htm
      毛景文, 谢桂青, 郭春丽, 等, 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710003.htm
      毛景文, 谢桂青, 李晓峰, 等, 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401002.htm
      邱检生, 胡建, 王孝磊, 等, 2005. 广东河源白石冈岩体: 一个高分异的I型花岗岩. 地质学报, 79(4): 503-514. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200504010.htm
      王德滋, 2004. 华南花岗岩研究的回顾与展望. 高校地质学报, 10(3): 305-314. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200403000.htm
      汪洋, 2008. 南岭燕山早期花岗岩成因类型的进一步探讨. 地质论评, 54(2): 162-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200802004.htm
      徐夕生, 鲁为敏, 贺振宇, 2007. 佛冈花岗岩基及乌石闪长岩-角闪辉长岩体的形成年龄和起源. 中国科学(D辑), 37(1)27-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701002.htm
      徐先兵, 梁承华, 陈家驹, 等, 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学, 46(4): 1133-1150. doi: 10.3799/dqkx.2020.151
      朱金初, 陈骏, 王汝成, 等, 2008. 南岭中西段燕山早期北东向含锡钨A型花岗岩带. 高校地质学报, 14(4): 474-484. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804004.htm
      朱金初, 张佩华, 谢才富, 等, 2006. 桂东北里松花岗岩中暗色包体的岩浆混合成因. 地球化学, 35(5): 506-516. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200605005.htm
    • dqkxzx-48-10-3577-附表1-2.doc
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  813
    • HTML全文浏览量:  564
    • PDF下载量:  150
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-08-08
    • 网络出版日期:  2023-10-31
    • 刊出日期:  2023-10-25

    目录

      /

      返回文章
      返回