Origin of Deep Oil and Gas Phase State Diversity and Evaluation of Secondary Geochemical Intensity: A Case Study of Marine Oil and Gas in Tarim Basin
-
摘要: 塔里木盆地海相油气的地球化学性质与相态类型复杂多样,从一张油藏剖面上可以看到稠油、黑油、凝析油、天然气等共存.综合运用多种地球化学分析方法,获取了塔里木盆地深层海相油气的相态类型、次生作用过程等信息,通过对不同相态类型油气地球化学特征的对比研究,论证了海相油气遭受生物降解、气侵分馏、硫酸盐热化学还原反应(thermochemical sulfate reduction,TSR)、热裂解等次生地球化学作用的改造机制与过程;建立了基于硫代金刚烷、乙基降金刚烷等次生地球化学作用的产物对次生改造强度定量的评价参数公式,应用于油气性质与相态的定性预测,对于深层油气相态钻前预测具有一定的指导意义.Abstract: The geochemical properties and phase types of marine oil and gas in Tarim basin are complex and diverse. Heavy oil, normal oil, condensate and natural gas coexist from a reservoir profile. By comprehensively applying various geochemical analysis methods, the information of phase types, components and stable isotopes of deep-seated Marine oil and gas in Tarim basin is obtained, and the geochemical characteristics of different phase types of oil and gas are compared, and demonstrate a variety of secondary geochemical mechanisms and processes such as biodegradation, gas invasion and fractionation, thermochemical sulfate reduction (TSR), and thermal cracking of marine oil and gas; And further the quantitative evaluation parameters formulae for the strength of secondary transformation based on the products of secondary geochemistry such as thiadiamondoids and ethanodiamondoids were established respectively, can be effectively used in the qualitative prediction of the spatial distribution of oil and gas properties and phase behavior, the diversity of deep oil and gas phase formation mechanism and distribution of prediction before drilling and has certain theory and guiding significance.
-
图 1 塔里木盆地塔中-塔北油气藏剖面图与相态图
Fig. 1. Oil and gas reservoir profile and phase diagram of the Tazhong-Tabei area in the Tarim basin
图 8 古城-顺南地区天然气碳同位素之间的相关关系
Fig. 8. Relationship between gas carbon isotopes in the Gucheng-Shunnan area
表 1 次生地球化学作用发生条件、作用机理、产物及评价参数
Table 1. The onset conditions, mechanism, products, and evaluation parameters of secondary geochemical process
次生作用类型 发生条件 作用机理 特征产物 最终产物 评价参数 生物降解作用 浅层、温度 < 80 ℃ 细菌等生物对原油的降解改造 沥青质 稠油、沥青质 25-降藿烷、MA/A > 6 气侵作用 多期充注地区、大量天然气生成 外来天然气侵入古油藏后导致油气性质和油藏相态发生变化 金刚烷、乙基降金刚烷 天然气、轻质油 Q > 40%、δ13Cc2-c1 < 0 热裂解作用 深层高温 油藏受热力作用发生裂解,导致原油的重组分裂解成轻组分 甲烷、干沥青 干气、干沥青、焦沥青-气田 $\begin{gathered} \text { 4-+ 3-甲基双金刚烷含量 } C_1(\%) \\ =\frac{G O R}{G O R+0.98 \times 10^3} \times 100 \% \\ C_2(\%)=\left(1-C_0 / C_{\mathrm{D}}\right) \times 100 \% \end{gathered} $ 硫酸盐热化学还原反应 含碳酸岩、温度 > 140 ℃ 烃类与地层中硫酸盐在温度大于140 ℃时发生的复杂反应 硫代金刚烷、含硫化合物 硫化氢、二氧化碳等酸性气体 高浓度的硫化氢、硫代金刚烷
> 30×10-6 -
Brooks, J., Welte, D., 1984. Advances in Petroleum Geochemistry: Vol. 1. Academic Press, London. Claypool, G., Mancini, E., 1989. Geochemical Relationships of Petroleum in Mesozoic Reservoirs to Carbonate Source Rocks of Jurassic Smackover Formation, South West Alabama. American Association of Petroleum Geologists Bulletin, 73: 904-924. Connan, J. 1984. Biodegradation of Crude Oils in Reservoirs. In: Brooks, J., Welte, D. H., eds., Advances in Petroleum Geochemistry. Academic Press, London, 298-335. Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399: 54-57. https://doi.org/10.1038/19953 Dzou, L. I. P., Hughes, W. B., 1993. Geochemistry of Oils and Condensates, K Field, Offshore Taiwan: A Case Study in Migration Fractionation. Organic Geochemistry, 20(4): 437-462. https://doi.org/10.1016/0146-6380(93)90092-p Grice, K., Alexander, R., Kagi, R. I., 2000. Diamondoid Hydrocarbon Ratios as Indicators of Biodegradation in Australian Crude Oils. Organic Geochemistry, 31(1): 67-73. https://doi.org/10.1016/S0146-6380(99)00137-0 Hanin, S., Adam, P., Kowalewski, I., et al., 2002. Bridgehead Alkylated 2-Thia-Adamantanes: Novel Markers for Sulfurisation Processes Occurring under High Thermal Stress in Deep Petroleum Reservoirs. Chemical Communications, (16): 1750-1751. https://doi.org/10.1039/b203551k Hill, R. J., Tang, Y. C., Kaplan, I. R., 2003. Insights into Oil Cracking Based on Laboratory Experiments. Organic Geochemistry, 34(12): 1651-1672. https://doi.org/10.1016/S0146-6380(03)00173-6 Huang, H. P., Zhang, S. C., Su, A. G., 2001. Geochemical Processes in Petroleum Migration and Accumulation. Experimental Petroleum Geology, 23(3): 278-284(in Chinese with English abstract). Jones, D. M., Head, I. M., Gray, N. D., et al., 2007. Crude-Oil Biodegradation via Methanogenesis in Subsurface Petroleum Reservoirs. Nature, 451: 176-180. https://doi.org/10.1038/nature06484 Kissin, Y. V., 1987. Catagenesis and Composition of Petroleum: Origin of n-Alkanes and Isoalkanes in Petroleum Crudes. Geochimica et Cosmochimica Acta, 51(9): 2445-2457. https://doi.org/10.1016/0016-7037(87)90296-1 Larter, S., Wilhelms, A., Head, I., et al., 2003. The Controls on the Composition of Biodegraded Oils in the Deep Subsurface: Part 1: biodegradation Rates in Petroleum Reservoirs. Organic Geochemistry, 34(4): 601-613. https://doi.org/10.1016/s0146-6380(02)00240-1 Li, S. M., Shi, Q., Pang, X. Q., et al., 2012. Origin of the Unusually High Dibenzothiophene Oils in Tazhong-4 Oilfield of Tarim Basin and Its Implication in Deep Petroleum Exploration. Organic Geochemistry, 48: 56-80. https://doi.org/10.1016/j.orggeochem.2012.04.008 Li, X., Zhu, G. Y., Zhang, Z. Y., 2024. Genesis of Ultra-Deep Dolostone and Controlling Factors of Large-Scale Reservoir: A Case Study of the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin. Science China: Earth Sciences, 67(7): 2352-2382. https://doi.org/10.1007/s11430-023-1301-x Lin, L. H., Michael, G. E., Kovachev, G., et al., 1989. Biodegradation of TarSand Bitumens from the Ardmore and Anadarko Basins, Carter County, Oklahoma. Organic Geochemistry, 14(5): 511-523. https://doi.org/10.1016/0146-6380(89)90031-4 Losh, S., Cathles, L., Meulbroek, P., 2002. Gas Washing of Oil along a Regional Transect, Offshore Louisiana. Organic Geochemistry, 33(6): 655-663. https://doi.org/10.1016/S0146-6380(02)00025-6 Ma, A. L., Jin, Z. J., Li, H. L., et al., 2020. Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin, NW China. Earth Science, 45(5): 1737-1753(in Chinese with English abstract). Miao, Q. Y., Xu, C. G., Hao, F., et al., 2024. Hydrocarbon Charging and Accumulation Process of the Large Bozhong19-6 Condensate Gas Reservoirs in the Southwestern Bozhong Sub-Basin, Bohai Bay Basin, China. Journal of Earth Science, 35(2): 613-630. https://doi.org/10.1007/s12583-021-1457-4 Seifert, W. K., Moldowan, M. J., 1978. Applications of Steranes, Terpanes and Monoaromatics to the Maturation, Migration and Source of Crude Oils. Geochimica et Cosmochimica Acta, 42(1): 77-95. https://doi.org/10.1016/0016-7037(78)90219-3 Seifert, W. K., Michael Moldowan, J., 1979. The Effect of Biodegradation on Steranes and Terpanes in Crude Oils. Geochimica et Cosmochimica Acta, 43(1): 111-126. https://doi.org/10.1016/0016-7037(79)90051-6 Seifert, W. K., Michael Moldowan, J., Demaison, G. J., 1984. Source Correlation of Biodegraded Oils. Organic Geochemistry, 6: 633-643. https://doi.org/10.1016/0146-6380(84)90085-8 Shang, P., Chen, H. H., Hu, S. Z., et al., 2020. Geochemical Characteristics of Crude Oil and Hydrocarbon Accumulation in the Ordovician of Yuqixi Area, Tarim Basin. Earth Science, 45(3): 1013-1026(in Chinese with English abstract). Sun, C. H., Zhu, G. Y., Zheng, D. M., et al., 2016. Characteristics and Controlling Factors of Fracture-Cavity Carbonate Reservoirs in the Halahatang Area, Tarim Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 1028-1036 (in Chinese with English abstract). Thompson, K. F. M., 1988. Gas-Condensate Migration and Oil Fractionation in Deltaic Systems. Marine and Petroleum Geology, 5(3): 237-246. https://doi.org/10.1016/0264-8172(88)90004-9 Wang, Y. P., Zhang, S. C., Wang, F. Y., et al., 2006. Thermal Cracking History by Laboratory Kinetic Simulation of Paleozoic Oil in Eastern Tarim Basin, NW China, Implications for the Occurrence of Residual Oil Reservoirs. Organic Geochemistry, 37(12): 1803-1815. https://doi.org/10.1016/j.orggeochem.2006.07.010 Wei, Z. B., Mankiewicz, P., Walters, C., et al., 2011. Natural Occurrence of Higher Thiadiamondoids and Diamondoidthiols in a Deep Petroleum Reservoir in the Mobile Bay Gas Field. Organic Geochemistry, 42(2): 121-133. https://doi.org/10.1016/j.orggeochem.2010.12.002 Wei, Z. B., Moldowan, J. M., Zhang, S. C., et al., 2007. Diamondoid Hydrocarbons as a Molecular Proxy for Thermal Maturity and Oil cracking: Geochemical Models from Hydrous Pyrolysis. Organic Geochemistry, 38(2): 227-249. https://doi.org/10.1016/j.orggeochem.2006.09.011 Williams, J. A., Bjorøy, M., Dolcater, D. L., et al., 1986. Biodegradation in South Texas Eocene Oils—Effects on Aromatics and Biomarkers. Organic Geochemistry, 10(1-3): 451-461. https://doi.org/10.1016/0146-6380(86)90045-8 Yan, L., Yang, M., Zhang, J. L., et al., 2020. Distribution of Cambrian Source Rocks and Evaluation and Optimization of Favorable Zones in East Tarim Basin. Natural Gas Geoscience, 31(5): 667-674(in Chinese with English abstract). Yang, C. P., Geng, A. S., Liao, Z. W., et al., 2009. Quantitative Evaluation of Gas Invasion in Tazhong Area of Tarim Basin. Science in China (Series D), 39(1): 51-60(in Chinese). Zhang, D. J., Huang, D. F., Li, J. C., 1988. Biodegraded Sequence of Karamay Oils and Semi-Quantitative Estimation of Their Biodegraded Degrees in Junggar Basin, China. Organic Geochemistry, 13(1-3): 295-302. https://doi.org/10.1016/0146-6380(88)90048-4 Zhang, S. C., Liang, D. G., Zhang, B. M., et al., 2004. Formation of Marine Oil and Gas in Tarim Basin. In: Jia, C. Z., ed., Tarim Basin Petroleum Geology and Exploration Series 7. Petroleum Industry Publishing House, Beijing, 299-344 (in Chinese). Zhang, S. C., Zhu, G. Y., He, K., 2011. The Effects of Thermochemical Sulfate Reduction on Occurrence of Oil-Cracking Gas and Reformation of Deep Carbonate Reservoir and the Interaction Mechanisms. Acta Petrologica Sinica, 27(3): 809-826(in Chinese with English abstract). Zhang, Y., Cao, Z. C., Chen, H. H., et al., 2023. Difference of Hydrocarbon Charging Events and Their Contribution Percentages to Ordovician Reservoirs among Strike-Slip Fault Belts in Shunbei Area, Tarim Basin. Earth Science, 48(6): 2168-2188(in Chinese with English abstract). Zhang, Z., Yang, X. Z., Hao, F., et al., 2024. Fluid Inclusion Characteristics and Hydrocarbon Accumulation Process in Lungu Area, Tarim Basin. Earth Science, 49(7): 2407-2419(in Chinese with English abstract). Zhang, Z., Zhang, Y., Zhu, G., et al., 2024a. Multiphase Pools Caused by Gas Invasion in Deep Ordovician Carbonates from the Tazhong Area, Tarim Basin, China. AAPG Bulletin, 108(5): 817-848. . https://doi.org/10.1306/12212318282 Zhang, Z., Zhu, G., Chen, W., et al., 2024b. Cryogenia-Cambrian Tectono-Sedimentary Evolution, Paleoclimate and Environment Effects, and Formation of Petroleum Resources in the Tarim Block. Earth-Science Reviews, 248: 104632. https://doi.org/10.1016/j.earscirev.2023.104632 Zhang, Z. Y., Zhu, G. Y., Zhang, Y. J., et al., 2018. The Origin and Accumulation of Multi-Phase Reservoirs in the East Tabei Uplift, Tarim Basin, China. Marine and Petroleum Geology, 98: 533-553. https://doi.org/10.1016/j.marpetgeo.2018.08.036 Zhao, J. Z., Li, Q. M., 2003. Formation and Distribution of Oil and Gas Reservoirs in Tarim Basin. In: Jia, C. Z., ed., Tarim Basin petroleum Geology and exploration Series 8. Petroleum Industry Publishing House, Beijing, 191-219 (in Chinese). Zhao, M. J., Zhang, S. C., Liao, Z. Q., 2001. The Cracking Gas from Crude Oil and Its Significance in Gas Exploration. Petroleum Exploration and Development, 28(4): 47-49(in Chinese with English abstract). Zhou, X. X., Lü, X. X., Zhu, G. Y., et al., 2019. Origin and Formation of Deep and Superdeep Strata Gas from Gucheng-Shunnan Block of the Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 177: 361-373. https://doi.org/10.1016/j.petrol.2019.02.059 Zhu, G. Y., Hou, J. K., Ren, R., et al., 2025. Tectonic-Sedimentary Responses to Major Geological Events, Source Rock Formation Mechanisms, and Resource Potential at Depths Greater than 10 000 m in the Cratonic Basins of China. APG Bulletin, 109(4): 497-544. https://doi.org/10.1306/03182523116 Zhu, G. Y., Jiang, H., Huang, S. P., et al., 2025. New Progress of Marine Hydrocarbon Accumulation Theory and Prediction of Super Large Oil and Gas Areas in Deep Strata Buried at a Depth of about 10 000 Meters in China. Acta Petrolei Sinica, 46(4): 816-842(in Chinese with English abstract). Zhu, G. Y., Li, T. T., Zhang, Z. Y., et al., 2022. Nitrogen Isotope Evidence for Oxygenated Upper Ocean during the Cryogenian Interglacial Period. Chemical Geology, 604: 120929. https://doi.org/10.1016/j.chemgeo.2022.120929 Zhu, G. Y., Wang, P. J., Li, T. T., et al., 2021a. Nitrogen Geochemistry and Abnormal Mercury Enrichment of Shales from the Lowermost Cambrian Niutitang Formation in South China: Implications for the Marine Redox Conditions and Hydrothermal Activity. Global and Planetary Change, 199: 103449. https://doi.org/10.1016/j.gloplacha.2021.103449 Zhu, G. Y., Li, T. T., Zhao, K., et al., 2021b. Mo Isotope Records from Lower Cambrian Black Shales, Northwestern Tarim Basin (China): Implications for the Early Cambrian Ocean. GSA Bulletin, 134(1-2): 3-14. https://doi.org/10.1130/b35726.1 Zhu, G. Y., Zhang, Z. Y., Jiang, H., et al., 2023a. Evolution of the Cryogenian Cratonic Basins in China, Paleo-Oceanic Environment and Hydrocarbon Generation Mechanism of Ancient Source Rocks, and Exploration Potential in 1 000 m-Deep Strata. Earth-Science Reviews, 244: 104506. https://doi.org/10.1016/j.earscirev.2023.104506 Zhu, G. Y., Li, X., Li, T. T., et al., 2023b. Genesis Mechanism and Mg Isotope Difference between the Sinian and Cambrian Dolomites in Tarim Basin. Science China Earth Sciences, 66(2): 334-357. https://doi.org/10.1007/s11430-021-1010-6 Zhu, G. Y., Li, X., Zhao, B., et al., 2024. Genesis and Reservoir Preservation Mechanism of 10 000 m Ultradeep Dolomite in Chinese Craton Basin. Deep Underground Science and Engineering, : dug2.12112. https://doi.org/10.1002/dug2.12112 Zhu, G. Y., Zhang, S. C., Su, J., et al., 2012. The Occurrence of Ultra-Deep Heavy Oils in the Tabei Uplift of the Tarim Basin, NW China. Organic Geochemistry, 52: 88-102. https://doi.org/10.1016/j.orggeochem.2012.08.012 Zhu, G. Y., Zhang, Z. Y., Zhou, X. X., et al., 2019a. The Complexity, Secondary Geochemical Process, Genetic Mechanism and Distribution Prediction of Deep Marine Oil and Gas in the Tarim Basin, China. Earth-Science Reviews, 198: 102930. https://doi.org/10.1016/j.earscirev.2019.102930 Zhu, G. Y., Zhang, Z. Y., Milkov, A. V., et al., 2019b. Diamondoids as Tracers of Late Gas Charge in Oil Reservoirs: Example from the Tazhong Area, Tarim Basin, China. Fuel, 253: 998-1017. https://doi.org/10.1016/j.fuel.2019.05.030 Zhu, G. Y., Milkov, A. V., Zhang, Z. Y., et al., 2019c. Formation and Preservation of a Giant Petroleum Accumulation in Superdeep Carbonate Reservoirs in the Southern Halahatang Oil Field Area, Tarim Basin, China. AAPG Bulletin, 103(7): 1703-1743. https://doi.org/10.1306/11211817132 黄海平, 张水昌, 苏爱国, 2001. 油气运移聚集过程中的地球化学作用. 石油实验地质, 23(3): 278-284. 马安来, 金之钧, 李慧莉, 等, 2020. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存. 地球科学, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157 尚培, 陈红汉, 胡守志, 等, 2020. 塔里木盆地于奇西地区奥陶系原油特征及油气充注过程. 地球科学, 45(3): 1013-1026. doi: 10.3799/dqkx.2019.046 孙崇浩, 朱光有, 郑多明, 等, 2016. 塔里木盆地哈拉哈塘地区超深碳酸盐岩缝洞型储集层特征与控制因素. 矿物岩石地球化学通报, 35(5): 1028-1036. 闫磊, 杨敏, 张君龙, 等, 2020. 塔里木盆地塔东地区寒武系烃源岩分布及有利区带评价优选. 天然气地球科学, 31(5): 667-674. 杨楚鹏, 耿安松, 廖泽文, 等, 2009. 塔里木盆地塔中地区油藏气侵定量评价. 中国科学(D辑:), 39(1): 51-60. 张水昌, 梁狄刚, 张宝民, 等, 2004. 塔里木盆地海相油气的生成. 见: 贾承造, 主编. 塔里木盆地石油地质与勘探丛书(卷七). 北京: 石油工业出版社, 299-344. 张水昌, 朱光有, 何坤, 2011. 硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制. 岩石学报, 27(3): 809-826. 张钰, 曹自成, 陈红汉, 等, 2023. 顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性. 地球科学, 48(6): 2168-2188. doi: 10.3799/dqkx.2023.103 张泽, 杨宪彰, 郝芳, 等, 2024. 塔里木盆地轮古地区流体包裹体特征与油气成藏过程. 地球科学, 49(7): 2407-2419. doi: 10.3799/dqkx.2022.494 赵靖舟, 李启明, 2003. 塔里木盆地油气藏形成与分布规律. 见: 贾承造, 主编. 塔里木盆地石油地质与勘探丛书(卷八). 北京: 石油工业出版社, 191-219. 赵孟军, 张水昌, 廖志勤, 2001. 原油裂解气在天然气勘探中的意义. 石油勘探与开发, 28(4): 47-49. 朱光有, 姜华, 黄士鹏, 等, 2025. 中国海相油气成藏理论新进展与万米深层超大型油气区预测. 石油学报, 46(4): 816-842. -