• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于主成分的协克里金法对地下水砷空间分布预测

    张洁 梁杏 刘延锋 张鑫 孙立群 赵枫 付鹏宇

    张洁, 梁杏, 刘延锋, 张鑫, 孙立群, 赵枫, 付鹏宇, 2023. 基于主成分的协克里金法对地下水砷空间分布预测. 地球科学, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180
    引用本文: 张洁, 梁杏, 刘延锋, 张鑫, 孙立群, 赵枫, 付鹏宇, 2023. 基于主成分的协克里金法对地下水砷空间分布预测. 地球科学, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180
    Zhang Jie, Liang Xing, Liu Yanfeng, Zhang Xin, Sun Liqun, Zhao Feng, Fu Pengyu, 2023. CoKriging Method Based on Principal Components to Predict Spatial Distribution of Arsenic in Groundwater. Earth Science, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180
    Citation: Zhang Jie, Liang Xing, Liu Yanfeng, Zhang Xin, Sun Liqun, Zhao Feng, Fu Pengyu, 2023. CoKriging Method Based on Principal Components to Predict Spatial Distribution of Arsenic in Groundwater. Earth Science, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180

    基于主成分的协克里金法对地下水砷空间分布预测

    doi: 10.3799/dqkx.2021.180
    基金项目: 

    国家自然科学基金项目 41772268

    中国地质调查局项目 12120114069301

    详细信息
      作者简介:

      张洁(1997-),女,硕士研究生,主要从事区域水文地质调查与污染防治方面的研究工作.ORCID:0000-0002-8266-8658. E-mail:JZhang@cug.edu.cn

      通讯作者:

      刘延锋,ORCID:0000-0001-8313-8336. E-mail:liuyf@cug.edu.cn

    • 中图分类号: P66

    CoKriging Method Based on Principal Components to Predict Spatial Distribution of Arsenic in Groundwater

    • 摘要: 针对目前地下水砷含量的空间模拟考虑的影响因素较少,导致预测精度较低的问题.以江汉平原东部地区为例,利用地下水水化学组分对砷的影响,采用普通克里金(OK)、传统协克里金(COK)和基于主成分的协克里金(COK-Y,Y为经主成分分析得到的综合因子)对地下水体砷含量的空间分布进行模拟.结果表明:COK-Y模型的半变异函数拟合最佳,其预测结果的均方误差和平均绝对误差较OK分别降低21.7%、21.3%;较COK相差不大,分别降低3.5%、3.4%.COK-Y模型预测精度有所提升,绘制的地下水砷空间分布图更能反映砷的高度异质性,最大程度改善了克里金法的削弱效应,更符合实际.综合因子Y指示了地下水中各组分对地下水砷含量分布模拟的贡献,铁的氧化物及氢氧化物还原性溶解是高砷地下水的形成分布的主要因素,多金属矿物如重晶石、磁铁矿和钛铁矿等的风化溶蚀、解析吸附作用也对其有一定的贡献.

       

    • 图  1  研究区地理位置(a)、取样点分布(b)及A-A'地质剖面图(c)(沈帅等,2018)

      Fig.  1.  Geographical location of the study area (a), distribution of sampling points (b) and A-A' geological profile (c) (Shen et al., 2018)

      图  2  研究区地下水体砷空间分布趋势

      Fig.  2.  Spatial distribution trend of As in underground water in the study area

      图  3  3种模型生成的地下水As含量空间分布

      Fig.  3.  Spatial distribution of As content in groundwater generated by three models

      图  4  Box-Cox转换后砷浓度的预测值与实测值关系

      Fig.  4.  Relation between predicted and measured arsenic concentrations after Box-Cox conversion

      图  5  Fe2+、NH4-N与As,NH4-N与Cl-的相关关系

      Fig.  5.  Correlation of Fe2+, NH4-N and As, NH4-N and Cl-

      图  6  DOC、HCO3-与As的相关关系

      Fig.  6.  Correlation of DOC、HCO3- and As

      图  7  Ba、V、Zn与As、Se与As的相关关系

      Fig.  7.  Correlation of Ba, V, Zn and As, Se and As

      表  1  地下水砷含量的基本统计学特征

      Table  1.   Basic hydrochemical characteristics of groundwater

      单位 极小值 极大值 均值 标准差 变异系数
      As μg/L 0.06 1 015.14 46.11 89.61 1.94
      下载: 导出CSV

      表  2  相关性分析结果

      Table  2.   The results of correlation analysis

      DOC NH4-N Fe2+ Fe Mn Ba
      As Pearson相关性 0.15* 0.24** 0.42** 0.40** 0.25** 0.39**
      HCO3- Ca2+ Se V Zn
      As Pearson相关性 0.26** 0.20** 0.34** 0.21** -0.23**
      注:**在置信度(双测)为0.01时,相关性是显著的;* 在置信度(双测)为0.05时,相关性是显著的.
      下载: 导出CSV

      表  3  正态性转换及检验结果

      Table  3.   The results of normal conversion and test

      As Fe2+ Y
      原始数据P 0 0 0
      Box-Cox转换后P 0.36 0.52 0.55
      下载: 导出CSV

      表  4  半变异函数模型

      Table  4.   Cross function of variation model

      变量 模型 块金值 基台值 变程(km) 残差平方和RSS 决定系数R2 块金系数 空间
      依赖性
      OK S 2.35 5.72 502 0.46 0.97 0.59 中等
      COK-Fe2+ G 1.00 3.29 618.34 0.10 0.99 0.70 中等
      COK-Y S 0.41 2.51 1185 0.03 0.99 0.84 较弱
      注:球状模型(Spherical model, S),高斯模型(Gaussian model, G).
      下载: 导出CSV

      表  5  模型精度评价

      Table  5.   Comparison of precision of cross vari89+ogram models

      空间估计模型 RMSE MAE RI(%)
      OK 1.82 1.37
      COK-Fe2+ 1.47 1.12 18.8
      COK-Y 1.42 1.08 21.7
      下载: 导出CSV
    • Abdelrady, A., Sharma, S., Sefelnasr, A., et al., 2020. Characterisation of the Impact of Dissolved Organic Matter on Iron, Manganese, and Arsenic Mobilisation during Bank Filtration. Journal of Environmental Management, 258: 110003. https://doi.org/10.1016/j.jenvman.2019.110003
      Ali, Z. M., Othman, F., 2017. Selection of Variogram Model for Spatial Rainfall Mapping Using Analytical Hierarchy Procedure (Ahp). Scientia Iranica, 24(1): 28-39. https://doi.org/10.24200/sci.2017.2374
      Anawar, H. M., Akai, J., Yoshioka, T., et al., 2006. Mobilization of Arsenic in Groundwater of Bangladesh: Evidence from an Incubation Study. Environmental Geochemistry and Health, 28: 553-565. https://doi.org/10.1007/s10653-006-9054-0
      Basaran, M., Erpul, G., Ozcan, A. U., et al., 2011. Spatial Information of Soil Hydraulic Conductivity and Performance of CoKriging over Kriging in a Semi-Arid Basin Scale. Environmental Earth Sciences, 63(4): 827-838. https://doi.org/10.1007/s12665-010-0753-6
      Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., et al., 2007. Arsenic in the Environment: Biology and Chemistry. The Science of the Total Environment, 379(2/3): 109-120. https://doi.org/10.1016/j.scitotenv.2007.02.037
      Chen, Y. F., Zhou, J. L., Zeng, Y. Y., et al., 2020. Spatial Distribution of Arsenic in Soil and Its Accumulation Characteristics in Crops in Tarim Basin. Environmental Science, 41(1): 438-448 (in Chinese with English abstract).
      Cho, K. H., Sthiannopkao, S., Pachepsky, Y. A., et al., 2011. Prediction of Contamination Potential of Groundwater Arsenic in Cambodia, Laos, and Thailand Using Artificial Neural Network. Water Research, 45(17): 5535-5544. https://doi.org/10.1016/j.watres.2011.08.010
      Dalla, L. N., Fabbri, P., Mason, L., et al., 2017. Geostatistics as a Tool to Improve the Natural Background Level Definition: An Application in Groundwater. The Science of the Total Environment, 598: 330-340. https://doi.org/10.1016/j.scitotenv.2017.04.018
      Deng, Y. M., 2008. Study on Geochemical Process in High Arsenic Groundwater System in Western Hetao Basin (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Du, Y., Ma, T., Deng, Y. M., et al., 2017. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science: Processes & Impacts, 19(2): 161-172. https://doi.org/10.1039/C6EM00531D
      Duan, Y. H., 2016. Seasonal Variation and Mechanism of Arsenic Enrichment in Shallow Groundwater System: A Case Study of Jianghan Plain (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Gao, J., Zheng, T. L., Deng, Y. M., et al., 2017. Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain. Earth Science, 42(5): 716-726(in Chinese with English abstract).
      Gaus, I., Kinniburgh, D. G., Talbot, J. C., et al., 2003. Geostatistical Analysis of Arsenic Concentration in Groundwater in Bangladesh Using Disjunctive Kriging. Environmental Geology, 44(8): 939-948. https://doi.org/10.1007/s00254-003-0837-7
      Gong, G., Mattevada, S., O'Bryant, S. E., 2014. Comparison of the Accuracy of Kriging and IDW Interpolations in Estimating Groundwater Arsenic Concentrations in Texas. Environmental Research, 130: 59-69. https://doi.org/10.1016/j.envres.2013.12.005
      Gunduz, O., Elci, A., Simsek, C., 2012. The Use of CoKriging Algorithm for Arsenic Mappingin Groundwater Systems. In: Proceedings of the Conference Paper, 5th International Perspective on Water Resources & the Environment, Marrakech, Morrocco, 5-7 January 2012. https://doi.org/10.13140/2.1.4773.3760
      Guo, H. M., Guo, Q., Jia, Y. F., et al., 2013. Chemical Characteristics and Geochemical Processes of High Arsenic Groundwater in Different Regions of China. Journal of Earth Sciences and Environment, 35(3): 83-96(in Chinese with English abstract)
      Hassan, M. M., Peter, J., 2007. Arsenic Risk Mapping in Bangladesh: A Simulation Technique of CoKriging Estimation from Regional Count Data. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 42(12): 1719-1728. https://doi.org/10.1080/10934520701564210
      Hooshmand, A., Delghandi, M., Izadi, A., 2011. Application of Kriging and CoKriging in Spatial Estimation of Groundwater Quality Parameters. African Journal of Agricultural Research, 6(14): 3402-3408. https://doi.org/10.5897/AJAR11.027.
      James, K. A., Meliker, J. R., Buttenfield, B. E., et al., 2014. Predicting Arsenic Concentrations in Groundwater of San Luis Valley, Colorado: Implications for Individual-Level Lifetime Exposure Assessment. Environmental Geochemistry and Health, 36(4): 773-782. https://doi.org/10.1007/s10653-014-9595-6
      Jiang, F., Wu, X. H., Xiang, W. H., et al., 2017. Spatial Variations in Soil Organic Carbon, Nitrogen and Phosphorus Concentrations Related to Stand Characteristics in Subtropical Areas. Plant and Soil, 413(1): 289-301. https://doi.org/10.1007/s11104-016-3101-0
      Levi, M. R., Rasmussen, C., 2014. Covariate Selection with Iterative Principal Component Analysis for Predicting Physical Soil Properties. Geoderma, 219/220: 46-57. https://doi.org/10.1016/j.geoderma.2013.12.013
      Li, D., Deng, Y. M., Du, Y., et al., 2021. Isotopic Indicators of Arsenic Spatial Heterogeneity of Arsenic in Ahallow Groundwater of the Central Yangtze River Lacustriine Plain. Earth Science, 46(12): 4492-4502(in Chinese with English abstract). doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112017
      Lin, Y. B., Lin, Y. P., Liu, C. W., 2006. Mapping of Spatial Multi-Scale Sources of Arsenic Variation in Groundwater on ChiaNan Floodplain of Taiwan. Science of the Total Environment, 370(1): 168-181. https://doi.org/10.1016/j.scitotenv.2006.07.002
      Liu, A. L., Wang, P. F., Ding, Y. Y., 2012. Introduction of Geostatistics. Science Press, Beijing (in Chinese).
      Liu, B. H., 2008. Encyclopedia of Petroleum Exploration and Development in China (Exploration Volume). Petroleum Industry Press, Beijing (in Chinese).
      Markhvida, M., Ceferino, L., Baker, J. W., 2018. Modeling Spatially Correlated Spectral Accelerations at Multiple Periods Using Principal Component Analysis and Geostatistics. Earthquake Engineering & Structural Dynamics, 47(5): 1107-1123. https://doi.org/10.1002/eqe.3007
      Nickson, R. T., McArthur, J. M., Ravenscroft, P., et al., 2000. Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4): 403-413. https://doi.org/10.1016/s0883-2927(99)00086-4
      Nickson, R., McArthur, J., Burgess, W., et al., 1998. Arsenic Poisoning of Bangladesh Groundwater. Nature, 395(6700): 338. https://doi.org/10.1038/26387
      Parrone, D., Ghergo, S., Frollini, E., et al., 2020. Arsenic-Fluoride Co-Contamination in Groundwater: Background and Anomalies in a Volcanic-Sedimentary Aquifer in Central Italy. Journal of Geochemical Exploration, 217: 106590. https://doi.org/10.1016/j.gexplo.2020.106590
      Parvin, S. A., Mehrdad, C., Bahareh, L., 2018. Spatial Distribution of Arsenic under the Influence of Chemical Fertilizers Using Geostatistics in Eghlid, Fars, Iran. Archives of Hygiene Sciences, 7(4): 303-311. doi: 10.29252/ArchHygSci.7.4.303
      Podgorski, J., Berg, M., 2020. Global Threat of Arsenic in Groundwater. Science, 368(6493): 845-850. https://doi.org/10.1126/science.aba1510
      Qin, Q. Q., Wang, H. Y., Lei, X. D., et al., 2020. Spatial Variability in the Amount of Forest Litter at the Local Scale in Northeastern China: Kriging and CoKriging Approaches to Interpolation. Ecology and Evolution, 10(2): 778-790. https://doi.org/10.1002/ece3.5934
      Román-Ross, G., Cuello, G. J., Turrillas, X., et al., 2006. Arsenite Sorption and Co-Precipitation with Calcite. Chemical Geology, 233(3-4): 328-336. https://doi.org/10.1016/j.chemgeo.2006.04.007
      Shen, S., Ma, T., Du, Y., et al., 2018. Spatial Distribution of Nitrogen in Shallow Groundwater in the Eastern Jianghan Plain. Environmental Science and Technology, 41(2): 47-56(in Chinese with English abstract).
      Wallis, I., Prommer, H., Berg, M., et al., 2020. The River-Groundwater Interface as a Hotspot for Arsenic Release. Nature Geoscience, 13(4): 288-295. https://doi.org/10.1038/s41561-020-0557-6
      Wang, J., Xie, Z. M., Wang, J., et al, 2021. Influence of Bioreduction of Arsenic-Bearing Goethite by Bacterial under Sulfur Mediation on Migration and Transformation of Arsenic. Earth Science, 46 (2): 642-651(in Chinese with English abstract).
      Xue, Y., Chen, L. P., 2007. Statistical Modeling and R Software. Tsinghua University Press, Beijing(in Chinese).
      Yang, Q. Y., Luo, W. Q., Jiang, Z. C., et al., 2016. Improve the Prediction of Soil Bulk Density by CoKriging with Predicted Soil Water Content as Auxiliary Variable. Journal of Soils and Sediments, 16(1): 77-84. https://doi.org/10.1007/s11368-015-1193-4
      Yu, J. H., Yang, W. Q., 2005. Multivariate Statistical Analysis and Application. Sun Yat-sen University Press, Guangzhou (in Chinese).
      Yu, K., 2016. Study on the Source of Organic Matter in High Arsenic Groundwater System and Its Influence on the Dynamic Change of Arsenic—Taking Jianghan Plain as an Example (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Zheng, X. Q., Lü, L. N., 2018. Geostatistics (Modern Spatial Statistics). Science Press, Beijing (in Chinese).
      陈云飞, 周金龙, 曾妍妍, 等, 2020. 塔里木盆地东南缘绿洲区土壤砷空间分布及农作物砷富集特征. 环境科学. 41(1): 438-448. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001053.htm
      邓娅敏, 2008. 河套盆地西部高砷地下水系统中的地球化学过程研究(博士学位论文). 武汉: 中国地质大学.
      段艳华, 2016. 浅层地下水系统中砷富集的季节性变化与机理研究: 以江汉平原为例(博士学位论文). 武汉: 中国地质大学.
      高杰, 郑天亮, 邓娅敏, 等, 2017. 江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响. 地球科学, 42(5): 716-726. doi: 10.3799/dqkx.2017.059
      郭华明, 郭琦, 贾永锋, 等, 2013. 中国不同区域高砷地下水化学特征及形成过程. 地球科学与环境学报, 35(3): 83-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201303010.htm
      李典, 邓娅敏, 杜尧, 等, 2021. 长江中游河湖平原浅层地下水中砷空间异质性的同位素指示. 地球科学, 46(12): 4492-4502. doi: 10.3799/dqkx.2021.054
      刘爱利, 王培法, 丁园圆, 2012. 地统计学概论. 北京: 科学出版社.
      刘宝和, 2008. 中国石油勘探开发百科全书·勘探卷. 北京: 石油工业出版社.
      沈帅, 马腾, 杜尧, 等, 2018. 江汉平原东部浅层地下水氮的空间分布特征. 环境科学与技术, 41(2): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201802008.htm
      王晶, 谢作明, 王佳, 等, 2021. 硫介导细菌还原载砷铁矿对砷迁移转化的影响. 地球科学, 46(2): 642-651. doi: 10.3799/dqkx.2020.054
      薛毅, 陈立萍, 2007. 统计建模与R软件. 北京: 清华大学出版社.
      于凯, 2016. 高砷地下水系统中有机质来源及其对砷动态变化的影响研究: 以江汉平原为例(博士学位论文). 武汉: 中国地质大学.
      余锦华, 杨维权, 2005. 多元统计分析与应用. 广州: 中山大学出版社.
      郑新奇, 吕利娜, 2018. 地统计学(现代空间统计学). 北京: 科学出版社.
    • 加载中
    图(7) / 表(5)
    计量
    • 文章访问数:  310
    • HTML全文浏览量:  368
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-06-30
    • 网络出版日期:  2023-10-31
    • 刊出日期:  2023-10-25

    目录

      /

      返回文章
      返回