• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    内蒙古架子山钼(银)矿区花岗岩锆石U-Pb年龄、地球化学特征及地质意义

    王振亮 杨剑洲 赵克强 付燕刚 段壮 林鲁军 席明杰 邓友茂 陆桂福

    王振亮, 杨剑洲, 赵克强, 付燕刚, 段壮, 林鲁军, 席明杰, 邓友茂, 陆桂福, 2023. 内蒙古架子山钼(银)矿区花岗岩锆石U-Pb年龄、地球化学特征及地质意义. 地球科学, 48(10): 3631-3648. doi: 10.3799/dqkx.2021.183
    引用本文: 王振亮, 杨剑洲, 赵克强, 付燕刚, 段壮, 林鲁军, 席明杰, 邓友茂, 陆桂福, 2023. 内蒙古架子山钼(银)矿区花岗岩锆石U-Pb年龄、地球化学特征及地质意义. 地球科学, 48(10): 3631-3648. doi: 10.3799/dqkx.2021.183
    Wang Zhenliang, Yang Jianzhou, Zhao Keqiang, Fu Yan'gang, Duan Zhuang, Lin Lujun, Xi Mingjie, Deng Youmao, Lu Guifu, 2023. Zircon U-Pb Age, Geochemical Characteristics and Geological Significance of Granite of Jiazishan Mo (Ag) Deposit, Inner Mongolia. Earth Science, 48(10): 3631-3648. doi: 10.3799/dqkx.2021.183
    Citation: Wang Zhenliang, Yang Jianzhou, Zhao Keqiang, Fu Yan'gang, Duan Zhuang, Lin Lujun, Xi Mingjie, Deng Youmao, Lu Guifu, 2023. Zircon U-Pb Age, Geochemical Characteristics and Geological Significance of Granite of Jiazishan Mo (Ag) Deposit, Inner Mongolia. Earth Science, 48(10): 3631-3648. doi: 10.3799/dqkx.2021.183

    内蒙古架子山钼(银)矿区花岗岩锆石U-Pb年龄、地球化学特征及地质意义

    doi: 10.3799/dqkx.2021.183
    基金项目: 

    国家重点研发计划项目 2018YFE0208300

    中国地质科学院基本科研业务费项目 AS2017J04

    详细信息
      作者简介:

      王振亮(1985-),男,硕士,工程师,从事矿产普查与勘探工作. ORCID:0000-0002-0706-0095. E-mail:wzl_217@163.com

      通讯作者:

      付燕刚, ORCID: 0000-0003-2605-7366. E-mail: fuyg_geology@163.com

    • 中图分类号: P588.12;P597.3

    Zircon U-Pb Age, Geochemical Characteristics and Geological Significance of Granite of Jiazishan Mo (Ag) Deposit, Inner Mongolia

    • 摘要: 通过对内蒙古架子山钼(银)矿区内的花岗岩进行锆石U-Pb年代学和岩石地球化学的研究,获得花岗岩LA-ICP-MS锆石U-Pb年龄为149.19±0.47 Ma,为晚侏罗世岩浆作用的产物;花岗岩具有高硅(78.59%~80.58%)、富碱(5.82%~6.34%)、低P2O5(0.002%~0.018%)、高铝饱和指数A/CNK(1.33~1.60)的特征,属于高钾钙碱性系列岩石;富集微量元素Rb、K、La、Th、U、Hf、Pb,亏损微量元素Ba、Sr、Nb、Ta、Ti、P,稀土元素配分曲线呈右倾的轻稀土元素富集型,具有明显的负Eu异常(0.25~0.49)、高分异指数(DI)(91.87~94.30)、低固结指数(SI)(1.20~2.02),表明岩石经历了高分异演化作用,为高分异I型花岗岩;176Hf/177Hf值为0.282 90~0.282 96,εHf(t)值为7.82~9.86,二阶段模式年龄(tDM2)为744~929 Ma,表明花岗岩岩浆是在新元古代亏损地幔物质部分熔融形成新生下地壳之后,经再次熔融形成.内蒙古架子山花岗岩与大兴安岭地区的晚侏罗世花岗岩岩浆基本同期侵位,其形成可能与蒙古-鄂霍茨克洋闭合后构造环境从挤压转换成碰撞后伸展有关,并可能叠加了古太平洋板块俯冲引发的弧后伸展作用.

       

    • 图  1  研究区大地构造位置图(a)和研究区地质简图(b)

      陈衍景等(2012)修改

      Fig.  1.  The geotectonic location map of the study area (a) and the geological sketch map of the study area (b)

      图  2  内蒙古架子山钼(银)矿区0号勘探线剖面

      Fig.  2.  Geological section along No.0 exploration line of the Jiazishan ore district, Inner Mongolia

      图  3  内蒙古架子山花岗岩野外及镜下照片

      a~b.花岗岩野外照片;c~d.花岗岩镜下照片;Qtz.石英;Or.正长石

      Fig.  3.  Field and microscope photos of the granite from Jiazishan, Inner Mongolia

      图  4  内蒙古架子山花岗岩TAS图解(a)、K2O-SiO2图解(b)、岩石A/CNK-A/NK图(c)和Na2O-K2O图(d)

      图a底图据Middlemost(1994);图b底图据Rickwood(1989);图c底图据Maniar and Piccoli(1989);图d底图据Turner et al.(1996)

      Fig.  4.  TAS diagram (a), K2O-SiO2 diagram (b), A/CNK-A/NK diagram (c) and Na2O-K2O diagram (d) of the granite from Jiazishan, Inner Mongolia

      图  5  内蒙古架子山花岗岩REE配分图(a)和微量元素蛛网图(b)

      图a标准化值据Boynton(1984);图b标准化值据Sun and McDonough(1989)

      Fig.  5.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram(b) of the granite from Jiazishan, Inner Mongolia

      图  6  内蒙古架子山花岗岩锆石CL图像

      Fig.  6.  Zircon CL images of the granite from Jiazishan, Inner Mongolia

      图  7  内蒙古架子山花岗岩锆石U-Pb年龄谐和图与206Pb/238U加权平均年龄

      Fig.  7.  Zircon U-Pb concordia diagram and 206Pb/238U age weighted average diagram of the granite from Jiazishan, Inner Mongolia

      图  8  内蒙古架子山花岗岩锆石模式年龄(tDM2)和εHf(t)直方图

      Fig.  8.  Zircon histograms of tDM2 and εHf(t) of granite from Jiazishan, Inner Mongolia

      图  9  内蒙古架子山花岗岩岩石成因类型判别图解

      图a~c底图据Whalen et al.(1987)

      Fig.  9.  Petrogenetic classification diagrams of the granite from Jiazishan, Inner Mongolia

      图  10  内蒙古架子山花岗岩选择性地球化学散点图

      Fig.  10.  Selected geochemical plots of the granite from Jiazishan, Inner Mongolia

      图  11  内蒙古架子山花岗岩的锆石εHf(t)-t图解(a)及176Hf/177Hf-t图解(b)(底图据Vervoort et al., 1996)

      Fig.  11.  Magmatic zircon εHf(t)-t (a) and 176Hf/177Hf-t (b) diagrams of the granite from the Jiazishan, Inner Mongolia (base map after Vervoort et al., 1996)

      图  12  内蒙古架子山花岗岩微量元素构造环境判别图解

      图a、b底图据Pearce et al.(1984);巴根黑格其尔花岗斑岩数据来自郭向国等(2020);东福二长岩数据来自杜继宇等(2020)

      Fig.  12.  Diagrams of tectonic settings of trace elements for the granite from the Jiazishan, Inner Mongolia

    • Amelin, Y., Lee, D. C., Halliday, A. N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733): 252-255. https://doi.org/10.1038/20426
      Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042
      Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
      Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8(2): 173-174.
      Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111
      Chen, Y. J., Chen, H. Y., Zaw, K., et al., 2007. Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China: An Overview. Ore Geology Reviews, 31(1-4): 139-169. https://doi.org/10.1016/j.oregeorev.2005.01.001
      Chen, Y. J., Zhang, C., Li, N., et al., 2012. Geology of the Mo Deposits in Northeast China. Journal of Jilin University (Earth Science Edition), 42(5): 1223-1268 (in Chinese with English abstract).
      Chen, Z. H., Zhang, J., Zhao, Z. D., et al., 2020. Petrogeochemistry and Geochronology of Biotite Monzonitic Granites in the Horqin Right Front Banner Area, Inner Mongolia and the Geological Significance. Earth Science Frontiers, 27(4): 172-183(in Chinese with English abstract).
      Deng, J., Wang, C., Bagas, L., et al., 2018. Crustal Architecture and Metallogenesis in the South-Eastern North China Craton. Earth-Science Reviews, 182: 251-272. https://doi.org/10.1016/j.earscirev.2018.05.001
      Du, J. Y., Song, W. M., Yang, J. L., et al., 2020. An Analysis of Zircon U-Pb Age, Geochemistry and Tectonic Setting of Dongfu Pluton in Tuquan, Middle Da Hinggan Mountains. Geological Bulletin of China, 39(6): 919-928 (in Chinese with English abstract).
      Frost, C. D., Frost, B. R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52(1): 39-53. https://doi.org/10.1093/petrology/egq070
      Ge, W. C., Wu, F. Y., Zhou, C. Y., et al., 2007. Metallogenic Age and Geodynamic Significance of Porphyry Cu-Mo Deposit in the Eastern Part of Xingmeng-Mongolia Orogenic Belt. Chinese Science Bulletin, 52(20): 2407-2417 (in Chinese). doi: 10.1360/csb2007-52-20-2407
      Gelman, S. E., Deering, C. D., Bachmann, O., et al., 2014. Identifying the Crystal Graveyards Remaining after Large Silicic Eruptions. Earth and Planetary Science Letters, 403: 299-306. https://doi.org/10.1016/j.epsl.2014.07.005
      Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3/4): 231-282. https://doi.org/10.1016/j.precamres.2003.12.011
      Guo, X. G., Huang, M. H., Wang, Z. Q., et al., 2020. Zircon U-Pb Geochronology, Geochemical Characteristics, and Sr-Nd-Pb-Hf Isotopic Composition of Granite Porphyry in the Bagenheigeqier Ore District, Inner Mongolia. Acta Geologica Sinica, 94(2): 527-552(in Chinese with English abstract).
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Hou, Z. Q., Qu, X. M., Yang, Z. S., et al., 2006. Metallogenesis in Tibetan Collisional Orogenic Belt: Ⅲ. Mineralization in Post-Collisional Extension Setting. Mineral Deposits, 25(6): 629-651(in Chinese with English abstract).
      Hu, J. M., Liu, X. W., Zhao, Y., et al., 2004. On Yanshan Intraplate Orogene: An Example from Taiyanggou Area, Lingyuan, Western Liaoning Province, Northeast China. Earth Science Frontiers, 11(3): 255-271(in Chinese with English abstract).
      Hua, B., Gao, X., Hu, Z. G., et al., 2020. Petrogenesis and Tectonic Setting of the Wuzhuxinwusu Granite, Western Xing-Meng Orogenic Belt: Evidences from Geochemistry, Zircon U-Pb Geochronology and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 36(5): 1426-1444(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.05.07
      Huang, D. H., Du, A. D., Wu, C. Y., et al., 1996. Metallochronology of Molybdenum (Copper) Deposits in the North China Platform: Re-Os Age of Molybdenite and Its Geological Significance. Mineral Deposits, 15(4): 365-373(in Chinese with English abstract).
      Jahn, B. M., Wu, F. Y., Chen, B., 2000. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82-92. https://doi.org/10.18814/epiiugs/2000/v23i2/001
      Jiang, S. H., Bagas, L., Liu, Y. F., et al., 2018. Geochronology and Petrogenesis of the Granites in Malanyu Anticline in Eastern North China Block. Lithos, 312/313: 21-37. https://doi.org/10.1016/j.lithos.2018.04.028
      Jiang, S. H., Nie, F. J., Liu, Y. F., et al., 2010. Sulfur and Lead Isotopic Compositions of Bairendaba and Weilasituo Silver-Polymetallic Deposits, Inner Mongolia. Mineral Deposits, 29(1): 101-112(in Chinese with English abstract).
      Knudsen, T. L., Griffin, W., Hartz, E., et al., 2001. In-Situ Hafnium and Lead Isotope Analyses of Detrital Zircons from the Devonian Sedimentary Basin of NE Greenland: A Record of Repeated Crustal Reworking. Contributions to Mineralogy and Petrology, 141(1): 83-94. https://doi.org/10.1007/s004100000220
      Lee, C. T. A., Morton, D. M., 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 23-31. https://doi.org/10.1016/j.epsl.2014.10.040
      Li, R. C., Chen, H. Y., Li, G. H., et al., 2020. Geological Characteristics and Application of Short Wavelength Infra? Red Technology (SWIR) in the Fukeshan Porphyry Copper Deposit in the Great Xing'an Range Area. Earth Science, 45(5): 1517-1530(in Chinese with English abstract).
      Li, X. Y., Jiang, H., Li, W. S., 2013. Geological Characteristics and Genesis of Jiazishan Silver-Molybdenum Deposit in Keyouqian Banner, Inner Mongolia. Western Resources, (1): 150-152, 161(in Chinese with English abstract).
      Lin, Q., Ge, W. C., Wu, F. Y., et al., 2004. Geochemistry of Mesozoic Granites in Da Hinggan Ling Ranges. Acta Petrologica Sinica, 20(3): 403-412(in Chinese with English abstract).
      Liu, J., Mao, J. W., Wu, G., et al., 2013. Zircon U-Pb Dating for the Magmatic Rocks in the Chalukou Porphyry Mo Deposit in the Northern Great Xing'an Range, China, and Its Geological Significance. Acta Geologica Sinica, 87(2): 208-226(in Chinese with English abstract).
      Liu, J., Wu, G., Zhong, W., et al., 2010. Fluid Inclusion Study of the Duobaoshan Porphyry Cu(Mo) Deposit, Heilongjiang Province, China. Acta Petrologica Sinica, 26(5): 1450-1464(in Chinese with English abstract).
      Liu, J. M., Zhang, R., Zhang, Q. Z., 2004. The Regional Metallogeny of Da Hinggan Ling, China. Earth Science Frontiers, 11(1): 269-277(in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Lu, G. F., Mi, H. Z., Liu, R. D., et al., 2014. The Application of Integrated Geophysical Exploration Technology to the Prospecting for Porphyry Silver-Molybdenum Polymetallic Deposits. Geophysical and Geochemical Exploration, 38(4): 835-839(in Chinese with English abstract).
      Lü, X. B., Yang, J. S., Fan, X. J., et al., 2020. Geology and Genesis of Lead-Zinc Polymetallic Deposits in the Great Xing'an Range. Earth Science, 45(12): 4399-4427(in Chinese with English abstract).
      Ludwig, K. R., 2003. User Manual for Isoplot 3.1, A Geochronological Toolkit for Microsoft Excel. Geochronology Center Special Publication, Berkeley, 4: 472-504.
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Mao, J. W., Xie, G. Q., Zhang, Z. H., et al., 2005. Mesozoic Large-Scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings. Acta Petrologica Sinica, 21(1): 169-188(in Chinese with English abstract).
      Mao, J. W., Zhang, Z. H., Yu, J. J., et al., 2003. Geodynamic Background of Mesozoic Large-Scale Mineralization in North China and Its Adjacent Areas: Enlightenment from Accurate Dating of Metal Deposits. Science in China (Series D), 33(4): 289-299(in Chinese).
      Meng, Q. R., 2003. What Drove Late Mesozoic Extension of the Northern China-Mongolia Tract? Tectonophysics, 369(3/4): 155-174. https://doi.org/10.1016/S0040-1951(03)00195-1
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Nie, F. J., Sun, Z. J., Li, C., et al., 2011. Re-Os Isotopic Dating of Molybdenite Separates from Chalukou Porphyry Mo Polymetallic Deposit in Heilongjiang Province. Mineral Deposits, 30(5): 828-836(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2011.05.006
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Shao, J. A., Zhang, L. Q., Mou, B. L., 2011. Distribution of Uranium and Molybdenum Deposits and Their Relations with Medium Massifs in Central Asian Orogenic Zone. Journal of Jilin University (Earth Science Edition), 41(6): 1667-1675(in Chinese with English abstract).
      Sorokin, A. A., Yarmolyuk, V. V., Kotov, A. B., et al., 2004. Geochronology of Triassic-Jurassic Granitoids in the Southern Framing of the Mongol-Okhotsk Foldbelt and the Problem of Early Mesozoic Granite Formation in Central and Eastern Asia. Doklady Earth Sciences, 399(8): 1091-1094.
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1): 45-71. https://doi.org/10.1093/petrology/37.1.45
      Vervoort, J. D., Patchett, P. J., Gehrels, G. E., et al., 1996. Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes. Nature, 379(6566): 624-627. https://doi.org/10.1038/379624a0
      Wallace, S. R., 1995. The Clima-Type Molybdenite Deposits: What They are, Where They are, and Why They are. Economic Geology, 90: 1359-1380.
      Wang, J. C., Wang, Y. H., Zhang, M., et al., 2016. The Granite Petrogenesis in the Area of the Gaoerqi Lead-Zinc-Silver Deposit, Inner Mongolia: Constraints of Geochemistry, Zircon U-Pb Geochronology and Hf Isotope. Geoscience, 30(5): 961-980(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2016.05.003
      Wang, L., Zhang, S. T., Fang, Y., et al., 2021. Integrated Exploration Model for Concealed Ore Deposit: A Case Study from Shuitou Fluorite Deposit, Inner Mongolia, North China. Journal of Earth Science, 32(2): 370-389. https://doi.org/10.1007/s12583-021-1427-x
      Wang, R. L., Zhang, Z. C., Zeng, Q. D., et al., 2018. The Characteristics of Ore-Forming Fluids and Ore-Forming Mechanism of the Diyanqinamu Super-Large Molybdenum Deposit, Inner Mongolia. Acta Petrologica Sinica, 34(12): 3582-3596(in Chinese with English abstract).
      Wang, S. W., Wang, J. G., Zhang, D., et al., 2009. Geochronological Study on Taipinggou Molybdenum Deposit in Da Hinggan Mountain. Acta Petrologica Sinica, 25(11): 2913-2923(in Chinese with English abstract).
      Wang, Y. H., Zhang, F. F., Liu, J. J., et al., 2018. Genesis of the Wurinitu W-Mo Deposit, Inner Mongolia, Northeast China: Constraints from Geology, Fluid Inclusions and Isotope Systematics. Ore Geology Reviews, 94: 367-382. https://doi.org/10.1016/j.oregeorev.2018.01.031
      Wei, Q. G., Yuan, Z. L., Yao, J. M., et al., 2009. Characteristics of Mo Deposits in the Eastern Qinling and Comparison with Those in Climax-Henderson. Geotectonica et Metallogenia, 33(2): 259-269(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.02.010
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007a. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238(in Chinese with English abstract).
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007b. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract).
      Wu, F. Y., Jahn, B. M., Wilder, S. A., et al., 2003. Highly Fractionated I-Type Granites in NE China (Ⅰ): Geochronology and Petrogenesis. Lithos, 66(3/4): 241-273. https://doi.org/10.1016/S0024-4937(02)00222-0
      Wu, F. Y., Sun, D. Y., Li, H., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
      Wu, G. B., Liu, J. M., Zeng, Q. D., et al., 2014. Occurrences of Silver in the Shuangjianzishan Pb-Zn-Ag Deposit and Its Implications for Mineral Processing. Earth Science Frontiers, 21(5): 105-115(in Chinese with English abstract).
      Wu, Y. B., Zheng, Y. F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Dating Interpretation. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xie, Y. H., Li, X. W., Zhu, X. Y., et al., 2020. Petrogenesis and Mineralization Chronology Study on the Mo Deposit of the Haisugou Intrusive Mass, Inner Mongolia, and Its Geological Implications. Earth Science, 45(1): 43-60 (in Chinese with English abstract).
      Xu, W. L., Wang, F., Pei, F. P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353(in Chinese with English abstract).
      Yang, L. Q., Gao, X., Shu, Q. H., 2017. Multiple Mesozoic Porphyry-Skarn Cu (Mo-W) Systems in Yidun Terrane, East Tethys: Constraints from Zircon U-Pb and Molybdenite Re-Os Geochronology. Ore Geology Reviews, 90: 813-826. https://doi.org/10.1016/j.oregeorev.2017.01.030
      Yao, L., Lü, Z. C., Ye, T. Z., et al., 2017. Zircon U-Pb Age, Geochemical and Nd-Hf Isotopic Characteristics of Quartz Porphyry in the Baiyinchagan Sn Polymetallic Deposit, Inner Mongolia, Southern Great Xing'an Range, China. Acta Petrologica Sinica, 33(10): 3183-3199(in Chinese with English abstract).
      Ying, J. F., Zhou, R. H., Zhang, R. C., et al., 2010. Geochronological Framework of Mesozoic Volcanic Rocks in the Great Xing'an Range, NE China, and Their Geodynamic Implications. Journal of Asian Earth Sciences, 39(6): 786-793. https://doi.org/10.1016/j.jseaes.2010.04.035
      Zeng, Q. D., Liu, J. M., Qin, K. Z., et al., 2013. Types, Characteristics, and Time-Space Distribution of Molybdenum Deposits in China. International Geology Review, 55(11): 1311-1358. https://doi.org/10.1080/00206814.2013.774195
      Zeng, Q. D., Liu, J. M., Yu, C. M., et al., 2011. Metal Deposits in the Da Hinggan Mountains, NE China: Styles, Characteristics, and Exploration Potential. International Geology Review, 53(7): 846-878. https://doi.org/10.1080/00206810903211492
      Zhai, M. G., 2017. Granites: Leading Study Issue for Continental Evolution. Acta Petrologica Sinica, 33(5): 1369-1380(in Chinese with English abstract).
      Zhang, H., Zhang, Y. F., Xu, Y. H., et al., 2016. Geological Characteristics of the Diyanqinamu Molybdenum Deposit in Inner Mongolia and Its Mineralization Genesis. Geology and Exploration, 52(3): 451-461(in Chinese with English abstract).
      Zhang, J. H., Gao, S., Ge, W. C., et al., 2010. Geochronology of the Mesozoic Volcanic Rocks in the Great Xing'an Range, Northeastern China: Implications for Subduction-Induced Delamination. Chemical Geology, 276(3-4): 144-165. https://doi.org/10.1016/j.chemgeo.2010.05.013
      Zhang, K., Nie, F. J., Hou, W. R., et al., 2012. Re-Os Isotopic Age Dating of Molybdenite Separates from Hashitu Mo Deposit in Linxi County of Inner Mongolia and Its Geological Significance. Mineral Deposits, 31(1): 129-138(in Chinese with English abstract).
      Zhang, Q., Ran, H., Li, C. D., 2012. A-Type Granite: What is the Essence? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract).
      Zhang, Q., Wang, Y. L., Jin, W. J., et al., 2008. Criteria for the Recognition of Pre-, Syn- and Post-Orogenic Granitic Rocks. Geological Bulletin of China, 27(1): 1-18 (in Chinese with English abstract).
      Zhang, Z. L., Zeng, Q. D., Qu, W. J., et al., 2009. The Molybdenite Re-Os Dating from the Nianzigou Mo Deposit, Inner Mongolia and Its Geological Significance. Acta Petrologica Sinica, 25(1): 212-218(in Chinese with English abstract).
      Zhao, K. Q., 2016. Study on Magmatic Fluid Action and Mineralization of Mesozoic Porphyry Molybdenum Metallogenic System in the Eastern Xingmeng Orogenic Belt (Dissertation). Jilin University, Changchun(in Chinese with English abstract).
      Zhao, K. Q., Sun, J. G., Bai, L. A., et al., 2017. Petrogenesis and Mo Mineralization of a Granitic Complex, Da Hinggan Mountains, NE China: Insights from Zircon U-Pb Dating, Major and Trace Element Geochemistry, and Sr-Nd-Pb Isotopes. Geological Journal, 52(1): 110-130. https://doi.org/10.1002/gj.2736
      Zhu, D. C., Mo, X. X., Wang, L. Q., et al., 2009. Petrogenesis of Highly Fractionated I-Type Granites in the Zayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Science in China (Series D), 52(9): 1223-1239. https://doi.org/10.1007/s11430-009-0132-x
      Zorin, Y. A., 1999. Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region (Russia) and Mongolia. Tectonophysics, 306(1): 33-56. https://doi.org/10.1016/S0040-1951(99)00042-6
      陈衍景, 张成, 李诺, 等, 2012. 中国东北钼矿床地质. 吉林大学学报(地球科学版), 42(5): 1223-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205002.htm
      陈泽翰, 章佳, 赵志丹, 等, 2020. 内蒙古科尔沁右翼前旗地区黑云母二长花岗岩的岩石地球化学、年代学特征及其地质意义. 地学前缘, 27(4): 172-183. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202004017.htm
      杜继宇, 宋维民, 杨佳林, 等, 2020. 大兴安岭中段东福岩体锆石U-Pb年龄、地球化学特征及构造背景. 地质通报, 39(6): 919-928. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202006012.htm
      葛文春, 吴福元, 周长勇, 等, 2007. 兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义. 科学通报, 52(20): 2407-2417. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200720014.htm
      郭向国, 黄蒙辉, 王兆强, 等, 2020. 内蒙古巴根黑格其尔铅锌矿花岗斑岩锆石U-Pb年代学、地球化学及Sr-Nd-Pb-Hf同位素研究. 地质学报, 94(2): 527-552. doi: 10.3969/j.issn.0001-5717.2020.02.012
      侯增谦, 曲晓明, 杨竹森, 等, 2006. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用. 矿床地质, 25(6): 629-651. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1498.htm
      胡健民, 刘晓文, 赵越, 等, 2004. 燕山板内造山带早期构造变形演化: 以辽西凌源太阳沟地区为例. 地学前缘, 11(3): 255-271. doi: 10.3321/j.issn:1005-2321.2004.03.025
      华北, 高雪, 胡兆国, 等, 2020. 兴蒙造山带西段乌珠新乌苏花岗岩岩石成因和构造背景: 地球化学、U-Pb年代学和Sr-Nd-Hf同位素约束. 岩石学报, 36(5): 1426-1444. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202203007.htm
      黄典豪, 杜安道, 吴澄宇, 等, 1996. 华北地台钼(铜)矿床成矿年代学研究: 辉钼矿铼-锇年龄及其地质意义. 矿床地质, 15(4): 365-373. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2012S1302.htm
      江思宏, 聂凤军, 刘翼飞, 等, 2010. 内蒙古拜仁达坝及维拉斯托银多金属矿床的硫和铅同位素研究. 矿床地质, 29(1): 101-112. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201001011.htm
      李如操, 陈华勇, 李光辉, 等, 2020. 大兴安岭地区富克山斑岩铜钼矿床地质特征与SWIR勘查应用. 地球科学, 45(5): 1517-1530. doi: 10.3799/dqkx.2019.192
      李学源, 姜惠, 李文圣, 2013. 内蒙古科右前旗架子山银钼矿床地质特征及成因探讨. 西部资源, (1): 150-152, 161. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201301111.htm
      林强, 葛文春, 吴福元, 等, 2004. 大兴安岭中生代花岗岩类的地球化学. 岩石学报, 20(3): 403-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403004.htm
      刘建明, 张锐, 张庆洲, 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(1): 269-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401036.htm
      刘军, 毛景文, 武广, 等, 2013. 大兴安岭北部岔路口斑岩钼矿床岩浆岩锆石U-Pb年龄及其地质意义. 地质学报, 87(2): 208-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302008.htm
      刘军, 武广, 钟伟, 等, 2010. 黑龙江省多宝山斑岩型铜(钼)矿床成矿流体特征及演化. 岩石学报, 26(5): 1450-1464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005011.htm
      陆桂福, 米宏泽, 刘瑞德, 等, 2014. 综合物探在斑岩型银钼多金属矿勘查中的应用. 物探与化探, 38(4): 835-839. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201404036.htm
      吕新彪, 杨俊声, 范谢均, 等, 2020. 大兴安岭地区铅锌多金属矿床时空分布、地质特征及成因. 地球科学, 45(12): 4399-4427. doi: 10.3799/dqkx.2020.995
      毛景文, 谢桂青, 张作衡, 等, 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm
      毛景文, 张作衡, 余金杰, 等, 2003. 华北及邻区中生代大规模成矿的地球动力学背景: 从金属矿床年龄精测得到启示. 中国科学(D辑), 33(4): 289-299. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304000.htm
      聂凤军, 孙振江, 李超, 等, 2011. 黑龙江岔路口钼多金属矿床辉钼矿铼-锇同位素年龄及地质意义. 矿床地质, 30(5): 828-836. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201105007.htm
      邵济安, 张履桥, 牟保磊, 2011. 中亚造山带东段铀、钼矿床分布与中间地块的关系. 吉林大学学报(地球科学版), 41(6): 1667-1675. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106002.htm
      王继春, 王银宏, 张梅, 等, 2016. 内蒙古高尔旗银铅锌矿区花岗岩的岩石成因: 地球化学、锆石U-Pb年代学及Hf同位素约束. 现代地质, 30(5): 961-980. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202201030.htm
      王瑞良, 张招崇, 曾庆栋, 等, 2018. 内蒙古迪彦钦阿木超大型钼矿床成矿流体特征及成矿机制. 岩石学报, 34(12): 3582-3596. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812009.htm
      王圣文, 王建国, 张达, 等, 2009. 大兴安岭太平沟钼矿床成矿年代学研究. 岩石学报, 25(11): 2913-2923. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911022.htm
      魏庆国, 原振雷, 姚军明, 等, 2009. 东秦岭钼矿带成矿特征及其与美国克莱马克斯-亨德森钼矿带的对比. 大地构造与成矿学, 33(2): 259-269. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200902011.htm
      吴福元, 李献华, 杨进辉, 等, 2007a. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm
      吴福元, 李献华, 郑永飞, 等, 2007b. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      吴冠斌, 刘建明, 曾庆栋, 等, 2014. 内蒙古双尖子山铅锌银矿床银的赋存状态及其指示意义. 地学前缘, 21(5): 105-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405012.htm
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
      谢元惠, 李小伟, 祝新友, 等, 2020. 内蒙古海苏沟岩体中钼矿床成岩成矿年代学、地球化学及地质意义. 地球科学, 45(1): 43-60. doi: 10.3799/dqkx.2018.341
      许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412008.htm
      姚磊, 吕志成, 叶天竺, 等, 2017. 大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U-Pb年龄、地球化学和Nd-Hf同位素特征及地质意义. 岩石学报, 33(10): 3183-3199. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201710014.htm
      翟明国, 2017. 花岗岩: 大陆地质研究的突破口以及若干关键科学问题: "岩石学报"花岗岩专辑代序. 岩石学报, 33(5): 1369-1380. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202308010.htm
      张昊, 张乙飞, 胥燕辉, 等, 2016. 内蒙古迪彦钦阿木钼矿的地质特征和矿床成因. 地质与勘探, 52(3): 451-461. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201603006.htm
      张可, 聂凤军, 侯万荣, 等, 2012. 内蒙古林西县哈什吐钼矿床辉钼矿铼-锇年龄及其地质意义. 矿床地质, 31(1): 129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201201012.htm
      张旗, 冉皞, 李承东, 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621-626. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201302014.htm
      张旗, 王元龙, 金惟俊, 等, 2008. 造山前、造山和造山后花岗岩的识别. 地质通报, 27(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200801002.htm
      张作伦, 曾庆栋, 屈文俊, 等, 2009. 内蒙碾子沟钼矿床辉钼矿Re-Os同位素年龄及其地质意义. 岩石学报, 25(1): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200901019.htm
      赵克强, 2016. 兴蒙造山带东部中生代斑岩型钼矿成矿系统的岩浆流体作用与成矿研究(博士学位论文). 长春: 吉林大学.
    • dqkxzx-48-10-3631-附表1-3.doc
    • 加载中
    图(12)
    计量
    • 文章访问数:  429
    • HTML全文浏览量:  409
    • PDF下载量:  51
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-08-10
    • 网络出版日期:  2023-10-31
    • 刊出日期:  2023-10-25

    目录

      /

      返回文章
      返回