• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    松辽盆地西南部DL矿床青山口组砂-泥岩协同成岩作用及其铀成矿效应

    黄少华 秦明宽 郭强 刘章月 张亮亮

    黄少华, 秦明宽, 郭强, 刘章月, 张亮亮, 2023. 松辽盆地西南部DL矿床青山口组砂-泥岩协同成岩作用及其铀成矿效应. 地球科学, 48(12): 4441-4464. doi: 10.3799/dqkx.2021.184
    引用本文: 黄少华, 秦明宽, 郭强, 刘章月, 张亮亮, 2023. 松辽盆地西南部DL矿床青山口组砂-泥岩协同成岩作用及其铀成矿效应. 地球科学, 48(12): 4441-4464. doi: 10.3799/dqkx.2021.184
    Huang Shaohua, Qin Mingkuan, Guo Qiang, Liu Zhangyue, Zhang Liangliang, 2023. Diagenesis of Sand-Mudstone from Qingshankou Formation and Their Uranium Mineralization in DL Deposit, Southwestern Songliao Basin. Earth Science, 48(12): 4441-4464. doi: 10.3799/dqkx.2021.184
    Citation: Huang Shaohua, Qin Mingkuan, Guo Qiang, Liu Zhangyue, Zhang Liangliang, 2023. Diagenesis of Sand-Mudstone from Qingshankou Formation and Their Uranium Mineralization in DL Deposit, Southwestern Songliao Basin. Earth Science, 48(12): 4441-4464. doi: 10.3799/dqkx.2021.184

    松辽盆地西南部DL矿床青山口组砂-泥岩协同成岩作用及其铀成矿效应

    doi: 10.3799/dqkx.2021.184
    基金项目: 

    中核集团第四批青年英才项目 QNYC2102

    “松辽盆地砂岩型铀矿成矿机理与成矿规律研究”项目 2017-1403

    国家自然科学基金项目 41902084

    详细信息
      作者简介:

      黄少华(1989-),男,高级工程师,博士,主要从事盆地砂岩型铀矿成矿机理及成矿规律研究. ORCID:0000-0002-7400-4632. E-mail:huangshaohua20@126.com

      通讯作者:

      秦明宽,E-mail: qinmk9818@163.com

    • 中图分类号: P611.2

    Diagenesis of Sand-Mudstone from Qingshankou Formation and Their Uranium Mineralization in DL Deposit, Southwestern Songliao Basin

    • 摘要: 为查明松辽盆地西南部DL铀矿床青山口组红杂色层砂-泥岩协同成岩作用及其铀成矿效应,系统开展了不同颜色岩石的岩石、矿物、元素及同位素特征研究.结果表明,砂、泥岩具有相似的碎屑物组成、黏土矿物组合以及主微量元素含量或比值,反映了统一的物源和构造-沉积环境;地层正常的最大埋藏演化达到了中成岩A阶段的早期.砂岩经历了酸碱交替成岩成矿作用演化,沉积-埋藏成岩期普遍发育方解石化、白云石化、菱铁矿化、伊蒙混层化、黄(白)铁矿化、高岭石化及局部(褐)赤铁矿化和铀矿化;古近纪期间深部基性岩浆侵入衍生的碱性热流体使得砂岩发生了(高锰)铁白云石化、绿泥石化、硅化、砷铅矿化以及早期铀矿的叠加改造;表生成岩阶段发育了强烈的(褐)赤铁矿化及其伴生的铀矿体.其中,红色砂岩既有原生同沉积型,也存在后生氧化成因;灰色砂岩为原生弱还原性砂岩叠加了深部流体次生还原后的氧化残留体.所有泥岩表现为碱性成岩作用,黏土矿物以伊蒙混层和伊利石为主;主要发育(褐)赤铁矿化、方解石化、白云石化、伊蒙混层化,且灰色泥岩局部发育黄铁矿化和铀矿化.同一钻孔相邻砂、泥岩在黏土矿物、Ca、Mg、Fe、Mo、U等活动性元素及碳同位素组成方面存在相似的变化规律,指示了原生不同地球化学性质岩石之间在沉积-埋藏成岩阶段短距离发生了一定的物质迁移和流体交换.目的层总体具有青山口-嫩江期同沉积-成岩预富集和潜水氧化初始成矿以及嫩江末以来多元流体耦合叠加层间氧化主成矿的两阶段板状铀成矿过程.

       

    • 图  1  研究区构造(a)-地质(b)-地层(c)及铀矿体剖面展布(d)综合图

      a.据程银行(2019);b,c.据郭福能(2017)

      Fig.  1.  Comprehensive map of structure (a)-geology (b)-stratigraphy (c) and connecting-well profile of ore bodies in the study area

      图  2  DL铀矿床青山口组砂-泥岩样品位置及岩心宏观照片

      Fig.  2.  Location of samples and photographs of rock cores of the Qingshankou Formation from DL uranium deposit

      图  3  DL铀矿床青山口组砂-泥岩镜下微观照片

      Zr.锆石;Ms.白云母;Kfs.钾长石;Dol.白云石;De.岩屑;Q.石英;Lm-Hem.褐铁矿化和赤铁矿化;C.碳屑;Cal.方解石;Ank.铁白云石;Mn-Ank.高锰铁白云石;Py.黄铁矿

      Fig.  3.  Microscopic photographs and energy spectrum of sandstone and mudstone from the Qingshankou Formation of DL uranium deposit

      图  4  DL铀矿床青山口组砂-泥岩黏土矿物及碳、氧同位素纵向分布

      Fig.  4.  Vertical distribution of clay minerals and carbon and oxygen isotopes for the sandstone and mudstone of the Qingshankou Formation in DL uranium deposit

      图  5  DL铀矿床青山口组砂-泥岩黏土及自生矿物微观照片

      Q.石英;Ab.钠长石;Kln.高岭石;S/I.伊蒙混层;Ilm.伊利石;Kfs-Sm.钾长石蒙脱石化;Fe-Chl.铁绿泥石;Ank.铁白云石;Chl.绿泥石;Dol.白云石;Mrc.白铁矿;Py.黄铁矿;U+Ti+Si.含铀、钛、硅混合物;Se-Pb.砷铅矿;U.铀矿物

      Fig.  5.  Micrographs of clay and authigenic minerals of sandstone and mudstone of the Qingshankou Formation in DL uranium deposit

      图  6  DL铀矿床青山口组砂-泥岩主量元素相关关系

      底图a据胡妍等(2020);判别函数1=-1.773TiO2+0.607Al2O3+0.76TFe2O3-1.5MgO+0.616CaO+0.509Na2O-1.224K2O-9.09;判别函数2=0.445TiO2+0.07Al2O3-0.25TFe2O3-1.142MgO+0.438CaO+1.475Na2O+1.426K2O-6.861

      Fig.  6.  Correlation of major elements for sandstone and mudstone of the Qingshankou Formation in DL uranium deposit

      图  7  DL铀矿床青山口组砂-泥岩部分元素含量及比值纵向分布

      Fig.  7.  Vertical distribution of some element contents and ratios for sandstone and mudstone of the Qingshankou Formation in DL uranium deposit

      图  8  DL铀矿床青山口组砂-泥岩稀土元素配分图

      Fig.  8.  Cobweb diagram of REE distribution for sandstone and mudstone of the Qingshankou Formation in DL uranium deposit

      图  9  DL铀矿床青山口组砂-泥岩碳酸盐胶结物C-O同位素分布图(b底图据刘建明等,1997)

      Fig.  9.  Carbon and oxygen isotopic distribution of carbonate cements from sandstone and mudstone of the Qingshankou Formation in DL uranium deposit (background map b from Liu et al., 1997)

      图  10  DL铀矿床青山口组砂-泥岩协同成岩成矿演化序列

      Fig.  10.  Evolution sequence of synergetic diagenesis and uranium mineralization for sandstone and mudstone of the Qingshankou Formation in DL uranium deposit

      图  11  DL铀矿床青山口组砂-泥岩协同成岩成矿作用模型

      Fig.  11.  Model of synergetic diagenesis and uranium mineralization for sandstone and mudstone of the Qingshankou Formation in DL uranium deposit

      表  1  DL铀矿床青山口组砂-泥岩X衍射分析结果(%)

      Table  1.   X-ray diffraction results for sandstone and mudstone of the Qingshankou Formation in DL uranium deposit

      类型 样号 伊蒙混层 伊利石 高岭石 绿泥石 混层比 石英 钾长石 斜长石 方解石 白云石 赤铁矿 黏土矿物
      红色泥岩 XT19-01 37.00 38.00 21.00 4.00 16.00 42.00 4.00 15.80 / / 3.30 34.90
      XT19-03 84.00 13.00 3.00 / 67.00 / / / / / / /
      XT19-10 13.00 25.00 59.00 3.00 19.00 28.50 5.00 14.20 8.80 / / 43.50
      XT19-12 45.00 35.00 16.00 4.00 5.00 36.00 3.80 12.90 / / 3.60 43.70
      XT19-16 36.00 40.00 19.00 5.00 20.00 44.60 4.40 9.90 / / 2.10 39.00
      XT19-20 38.00 26.00 33.00 3.00 16.00 53.90 4.70 / / / / 41.40
      XT19-27 55.00 35.00 8.00 2.00 40.00 36.40 5.90 14.40 / 8.20 / 35.10
      XT19-29 47.00 45.00 5.00 3.00 40.00 32.70 2.60 12.00 11.70 5.20 1.10 34.70
      平均值 44.38 32.13 20.50 3.43 27.88 39.16 4.34 13.20 10.25 6.70 2.53 38.90
      灰色泥岩 XT19-14 37.00 28.00 28.00 7.00 17.00 39.00 3.40 8.20 / / / 49.40
      XT19-17 31.00 36.00 29.00 4.00 20.00
      XT19-23 32.00 25.00 39.00 4.00 17.00 50.80 3.70 / / / / 45.50
      平均值 33.33 29.67 32.00 5.00 18.00 44.90 3.55 8.20 47.45
      红色砂岩 XT19-14 27.00 24.00 44.00 5.00 8.00 58.10 13.90 13.90 / 5.60 / 8.50
      XT19-04 18.00 23.00 56.00 3.00 5.00 55.50 9.60 7.50 / 12.20 / 15.20
      XT19-05 48.00 19.00 30.00 3.00 18.00 49.80 3.60 8.50 / / / 38.10
      XT19-09 21.00 7.00 69.00 3.00 5.00 65.50 7.30 / / 5.90 / 21.30
      XT19-11 43.00 20.00 32.00 5.00 49.00 35.70 24.70 19.30 / 11.20 / 9.10
      XT19-13 27.00 20.00 48.00 5.00 5.00 42.70 10.30 18.00 / 25.40 / 3.60
      XT19-15 33.00 15.00 48.00 4.00 6.00 46.90 13.70 14.30 / 15.30 / 9.80
      XT19-19 20.00 19.00 58.00 3.00 15.00 60.50 7.00 11.30 / 6.90 / 14.30
      XT19-25 24.00 22.00 51.00 3.00 16.00 30.40 4.80 6.50 / 43.90 4.10 10.30
      XT19-26 27.00 16.00 53.00 4.00 25.00 64.70 6.70 5.70 / 5.40 3.10 14.40
      XT19-28 62.00 25.00 10.00 3.00 40.00 41.80 8.70 14.40 3.50 13.40 / 18.20
      XT19-30 51.00 14.00 30.00 5.00 55.00 39.80 14.50 20.00 7.00 8.70 / 10.00
      平均值 33.42 18.67 44.08 3.83 20.58 49.28 10.40 12.67 5.25 13.99 3.60 14.40
      灰色砂岩 XT19-14 9.00 17.00 71.00 3.00 5.00 49.20 17.10 7.90 / 10.60 / 15.20
      XT19-07 17.00 15.00 64.00 4.00 5.00 46.90 22.30 6.90 / 6.70 / 17.20
      XT19-08 10.00 17.00 69.00 4.00 5.00 63.80 12.10 10.90 / 3.50 / 9.70
      XT19-18 14.00 15.00 66.00 5.00 5.00 62.30 8.30 12.10 / 5.10 / 12.20
      XT19-21 26.00 25.00 47.00 2.00 19.00 53.70 9.40 8.10 / 4.40 / 24.40
      XT19-22 15.00 16.00 67.00 2.00 5.00 53.50 12.50 8.30 / 12.60 / 13.10
      XT19-24 16.00 16.00 66.00 2.00 5.00 63.40 8.70 2.80 / 8.90 / 16.20
      平均值 15.29 17.29 64.29 3.14 7.00 56.11 12.91 8.14 7.40 15.43
      注:测试结果中的白云石为铁白云石或白云石,X衍射结果未区分.
      下载: 导出CSV

      表  2  DL铀矿床青山口组砂-泥岩主要元素含量表(%)

      Table  2.   Major element contents for sandstone and mudstone of the Qingshankou Formation in DL uranium deposit

      类型 样号 SiO2 Al2O3 TFe2O3 MgO CaO Na2O K2O MnO TiO2 P2O5 FeO Fe3+/Fe2+ Nb/Ta Zr/Hf Al2O3/Zr K2O/Zr CaO/Zr MgO/Zr CIA
      红色泥岩 XT19-01 66.71 15.80 5.77 0.79 0.33 1.89 3.67 0.02 0.79 0.20 0.53 7.91 13.33 32.63 0.08 0.02 0.00 0.00 66.92
      XT19-03 58.61 13.42 3.79 2.27 5.56 2.36 2.39 0.11 0.57 0.13 0.48 5.52 14.30 30.50 0.12 0.02 0.05 0.02 44.07
      XT19-10 76.18 10.89 3.20 0.46 0.76 0.85 3.38 0.03 0.33 0.07 1.04 1.66 13.71 31.44 0.08 0.03 0.01 0.00 128.38
      XT19-12 63.59 16.61 6.58 1.01 0.45 1.80 3.83 0.02 0.79 0.23 0.49 9.94 14.03 33.28 0.07 0.02 0.00 0.00 67.59
      XT19-16 67.99 15.95 4.64 0.64 0.27 1.72 3.71 0.02 0.80 0.16 0.45 7.45 13.97 33.49 0.08 0.02 0.00 0.00 67.98
      XT19-20 68.37 16.17 4.86 0.54 0.24 0.36 3.15 0.02 0.81 0.22 0.86 3.72 14.46 34.58 0.07 0.01 0.00 0.00 79.97
      XT19-27 65.85 14.36 4.52 1.36 1.57 2.24 3.38 0.03 0.71 0.17 0.40 8.24 14.92 33.88 0.09 0.02 0.01 0.01 63.50
      XT19-29 61.36 12.85 3.29 1.21 5.91 2.02 3.20 0.11 0.54 0.13 0.41 5.62 14.33 33.68 0.10 0.02 0.05 0.01 74.00
      平均值 66.08 14.51 4.58 1.04 1.89 1.66 3.34 0.05 0.66 0.16 0.58 6.26 14.13 32.94 0.09 0.02 0.01 0.01 74.05
      灰色泥岩 XT19-14 66.46 17.90 2.84 0.68 0.26 1.59 3.74 0.02 0.75 0.14 0.80 2.04 13.40 33.55 0.09 0.02 0.00 0.00 71.00
      XT19-17 68.43 18.03 1.56 0.52 0.25 1.41 3.56 0.01 0.83 0.15 0.67 1.06 13.82 34.73 0.07 0.01 0.00 0.00 72.82
      XT19-23 68.36 17.34 2.03 0.48 0.26 0.54 3.19 0.02 0.82 0.22 1.43 0.34 14.07 33.48 0.08 0.01 0.00 0.00 79.57
      平均值 67.75 17.76 2.14 0.56 0.26 1.18 3.50 0.01 0.80 0.17 0.97 1.15 13.76 33.92 0.08 0.02 0.00 0.00 74.46
      红色砂岩 XT19-02 80.10 9.55 1.23 0.51 0.87 1.74 3.15 0.02 0.26 0.06 0.51 1.13 12.56 31.28 0.09 0.03 0.01 0.00 58.69
      XT19-04 73.08 11.42 2.16 0.99 2.07 0.85 3.34 0.09 0.36 0.07 0.84 1.26 12.59 30.47 0.09 0.03 0.02 0.01 67.50
      XT19-05 69.60 16.21 3.25 0.56 0.21 1.10 3.53 0.02 0.77 0.11 0.35 6.63 13.26 32.74 0.08 0.02 0.00 0.00 72.65
      XT19-09 78.38 10.58 2.14 0.59 0.97 0.22 2.90 0.04 0.37 0.09 0.36 3.96 13.81 32.70 0.08 0.02 0.01 0.00 75.11
      XT19-11 73.26 11.08 1.73 1.23 2.14 2.36 3.44 0.03 0.33 0.07 0.53 1.81 12.38 31.35 0.11 0.03 0.02 0.01 55.24
      XT19-13 68.25 8.97 1.47 2.75 4.98 1.75 2.88 0.06 0.22 0.06 0.78 0.71 12.62 32.90 0.11 0.04 0.06 0.03 51.51
      XT19-15 74.16 10.28 1.79 1.04 2.12 1.68 3.16 0.06 0.37 0.06 1.14 0.46 12.67 32.02 0.08 0.03 0.02 0.01 62.39
      XT19-19 79.62 10.44 1.47 0.31 0.61 1.17 3.34 0.06 0.28 0.09 0.40 2.14 12.73 32.14 0.08 0.02 0.00 0.00 68.05
      XT19-25 58.14 8.47 6.85 2.92 7.04 0.73 2.44 0.27 0.45 0.09 2.78 1.17 14.18 33.78 0.07 0.02 0.06 0.02 65.27
      XT19-26 77.06 10.71 3.21 0.43 0.71 0.56 3.15 0.04 0.34 0.10 0.90 2.05 14.03 33.66 0.08 0.02 0.01 0.00 72.43
      XT19-28 64.56 11.64 2.78 2.05 4.42 2.25 3.15 0.09 0.44 0.12 0.33 5.94 13.99 32.68 0.10 0.03 0.04 0.02 58.33
      XT19-30 65.48 12.22 2.33 1.32 5.01 2.65 2.78 0.08 0.48 0.13 0.25 6.66 14.60 33.14 0.14 0.03 0.06 0.02 62.01
      平均值 71.81 10.96 2.53 1.22 2.60 1.42 3.11 0.07 0.39 0.09 0.76 2.83 13.28 32.41 0.09 0.03 0.02 0.01 64.10
      灰色砂岩 XT19-06 76.19 10.46 1.81 0.80 1.56 0.81 3.25 0.04 0.28 0.06 1.30 0.31 12.63 30.87 0.09 0.03 0.01 0.01 68.24
      XT19-07 76.54 12.25 1.56 0.40 0.54 0.61 3.54 0.05 0.45 0.10 1.17 0.27 13.32 32.04 0.10 0.03 0.00 0.00 75.71
      XT19-08 81.46 10.21 0.78 0.20 0.31 0.81 3.17 0.01 0.34 0.09 0.56 0.32 13.18 31.28 0.09 0.03 0.00 0.00 69.85
      XT19-18 81.74 9.67 0.58 0.29 0.67 1.26 2.99 0.04 0.30 0.12 0.35 0.53 12.92 32.33 0.08 0.03 0.01 0.00 64.82
      XT19-21 73.59 12.98 2.66 0.60 0.74 0.65 3.11 0.04 0.62 0.13 1.48 0.64 13.33 31.79 0.08 0.02 0.00 0.00 74.40
      XT19-22 75.53 10.67 2.04 0.72 1.52 1.12 3.15 0.06 0.35 0.08 1.68 0.17 13.03 32.26 0.10 0.03 0.01 0.01 69.44
      XT19-24 76.43 10.15 2.89 0.65 1.07 0.36 3.07 0.04 0.32 0.10 1.96 0.38 12.53 31.49 0.07 0.02 0.01 0.00 75.60
      平均值 77.35 10.91 1.76 0.52 0.92 0.80 3.18 0.04 0.38 0.10 1.21 0.37 12.99 31.72 0.09 0.03 0.01 0.00 71.15
      注:CaO*=CaO-CO2(方解石)-0.5CO2(白云石)-10/3P2O5;CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100%;氧化物含量均为摩尔含量,CaO*为硅酸盐中的CaO摩尔含量,方解石和白云石通过全岩X射线衍射获得;公式参考胡妍等(2020).
      下载: 导出CSV

      表  3  DL铀矿床青山口组砂-泥岩稀土元素含量(10-6)及比值

      Table  3.   Contents and ratios of rare earth elements for sandstone and mudstone of the Qingshankou Formation in DL uranium deposit

      类型 样号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE LREE HREE L/H (La/Yb)N δEu δCe
      红色泥岩 XT19-01 49.90 101.00 11.80 45.70 8.80 1.66 8.55 1.40 7.16 1.30 3.67 0.51 3.43 0.48 245.36 218.86 26.50 8.26 10.44 0.59 1.02
      XT19-03 34.20 63.30 7.63 29.20 5.35 1.19 5.25 0.81 4.35 0.84 2.43 0.36 2.40 0.34 157.64 140.87 16.77 8.40 10.22 0.69 0.96
      XT19-10 28.20 53.90 6.43 24.40 4.38 1.04 4.33 0.67 3.68 0.72 2.14 0.33 2.22 0.31 132.75 118.35 14.40 8.22 9.11 0.73 0.98
      XT19-12 57.30 115.00 12.90 49.90 9.00 1.63 8.33 1.26 6.42 1.21 3.53 0.56 3.69 0.55 271.28 245.73 25.55 9.62 11.14 0.58 1.04
      XT19-16 44.90 90.00 10.10 38.70 6.78 1.23 6.61 1.02 5.76 1.13 3.32 0.53 3.43 0.50 214.01 191.71 22.30 8.60 9.39 0.56 1.04
      XT19-20 50.50 97.30 10.90 41.40 7.13 1.36 6.95 1.04 5.66 1.11 3.31 0.51 3.32 0.51 231.01 208.59 22.42 9.31 10.91 0.59 1.02
      XT19-27 44.40 82.90 9.71 37.10 6.45 1.58 6.06 0.92 4.56 0.85 2.40 0.37 2.46 0.37 200.12 182.14 17.98 10.13 12.95 0.77 0.98
      XT19-29 34.90 64.20 7.43 28.20 4.90 1.79 4.84 0.72 3.86 0.73 2.14 0.33 2.18 0.33 156.55 141.42 15.13 9.35 11.48 1.12 0.98
      平均值 43.04 83.45 9.61 36.83 6.60 1.44 6.37 0.98 5.18 0.98 2.87 0.44 2.89 0.42 201.09 180.96 20.13 8.98 10.70 0.70 1.00
      灰色泥岩 XT19-14 53.00 106.00 12.20 48.10 8.67 1.51 7.96 1.20 6.06 1.17 3.37 0.52 3.39 0.50 253.65 229.48 24.17 9.50 11.21 0.56 1.02
      XT19-23 54.20 108.00 12.70 48.40 8.88 1.54 8.09 1.24 6.25 1.23 3.57 0.55 3.72 0.54 258.91 233.72 25.19 9.28 10.45 0.56 1.01
      XT19-17 49.70 102.00 11.70 44.20 7.45 1.33 7.20 1.17 6.90 1.40 3.91 0.64 4.11 0.61 242.32 216.38 25.94 8.34 8.67 0.56 1.04
      平均值 52.30 105.33 12.20 46.90 8.33 1.46 7.75 1.20 6.40 1.27 3.62 0.57 3.74 0.55 251.63 226.53 25.10 9.04 10.11 0.56 1.02
      红色砂岩 XT19-02 26.80 48.90 6.01 22.70 4.20 0.92 4.02 0.63 3.45 0.68 1.94 0.30 2.00 0.28 122.82 109.53 13.29 8.24 9.61 0.68 0.94
      XT19-04 27.70 50.70 6.31 24.10 4.68 1.13 4.61 0.80 4.68 0.92 2.68 0.39 2.49 0.36 131.54 114.62 16.92 6.77 7.98 0.74 0.94
      XT19-05 47.30 96.90 11.20 42.80 8.18 1.58 7.97 1.21 6.34 1.19 3.46 0.51 3.47 0.49 232.60 207.96 24.64 8.44 9.78 0.60 1.03
      XT19-09 27.90 51.40 6.11 22.60 3.99 0.87 4.15 0.65 3.65 0.72 2.21 0.35 2.29 0.33 127.22 112.87 14.35 7.86 8.74 0.65 0.97
      XT19-11 26.40 45.50 5.61 21.20 3.67 1.74 3.51 0.55 2.98 0.58 1.70 0.26 1.71 0.25 115.67 104.12 11.55 9.02 11.07 1.48 0.92
      XT19-13 23.00 43.40 5.14 19.30 3.61 0.96 3.51 0.56 3.21 0.64 1.79 0.28 1.87 0.27 107.55 95.41 12.14 7.86 8.82 0.83 0.98
      XT19-15 27.90 52.20 6.40 25.10 4.62 4.96 4.59 0.73 4.16 0.82 2.38 0.37 2.37 0.35 136.95 121.18 15.77 7.68 8.44 3.29 0.96
      XT19-19 28.60 50.60 6.34 23.90 4.36 1.25 4.27 0.68 4.01 0.76 2.22 0.36 2.39 0.36 130.10 115.05 15.05 7.65 8.58 0.89 0.92
      XT19-25 24.30 42.40 5.23 20.50 3.73 0.83 3.68 0.66 4.00 0.83 2.32 0.38 2.39 0.37 111.62 96.99 14.63 6.63 7.29 0.69 0.92
      XT19-26 27.00 47.50 5.96 22.90 4.15 0.91 3.94 0.62 3.41 0.72 2.08 0.33 2.22 0.32 122.06 108.42 13.64 7.95 8.72 0.69 0.92
      XT19-28 27.70 50.50 6.06 23.50 3.99 1.80 3.95 0.58 3.12 0.59 1.72 0.26 1.67 0.25 125.69 113.55 12.14 9.35 11.90 1.39 0.96
      XT19-30 28.80 51.90 6.34 24.50 4.18 2.15 3.97 0.58 2.88 0.53 1.59 0.24 1.55 0.23 129.44 117.87 11.57 10.19 13.33 1.61 0.94
      平均值 28.62 52.66 6.39 24.43 4.45 1.59 4.35 0.69 3.82 0.75 2.17 0.34 2.20 0.32 132.77 118.13 14.64 8.14 9.52 1.13 0.95
      灰色砂岩 XT19-06 24.50 45.10 5.59 21.30 4.07 1.02 4.02 0.67 3.82 0.75 2.16 0.32 2.14 0.30 115.76 101.58 14.18 7.17 8.21 0.77 0.94
      XT19-07 30.20 56.10 6.63 24.50 4.36 1.00 4.14 0.60 3.07 0.59 1.83 0.28 1.88 0.28 135.46 122.79 12.67 9.69 11.52 0.72 0.97
      XT19-08 30.90 56.60 7.17 27.70 5.10 1.17 4.86 0.72 3.66 0.69 2.06 0.30 2.05 0.28 143.26 128.64 14.62 8.80 10.81 0.72 0.93
      XT19-18 29.10 53.80 6.35 24.20 4.27 0.93 4.11 0.63 3.55 0.71 2.07 0.32 2.16 0.31 132.50 118.65 13.85 8.56 9.66 0.68 0.97
      XT19-21 35.60 68.00 8.25 32.00 5.89 1.27 5.58 0.87 4.85 0.95 2.71 0.43 2.87 0.41 169.68 151.01 18.67 8.09 8.90 0.68 0.97
      XT19-22 27.80 50.30 6.23 23.30 4.30 0.96 4.10 0.66 3.66 0.70 2.02 0.31 2.04 0.29 126.67 112.89 13.78 8.20 9.77 0.70 0.94
      XT19-24 33.20 63.60 7.59 29.10 5.40 1.12 5.22 0.83 4.54 0.89 2.54 0.39 2.65 0.39 157.45 140.01 17.44 8.03 8.99 0.64 0.98
      平均值 30.19 56.21 6.83 26.01 4.77 1.07 4.58 0.71 3.88 0.75 2.20 0.34 2.26 0.32 140.11 125.08 15.03 8.36 9.70 0.70 0.96
      下载: 导出CSV

      表  4  DL铀矿床青山口组砂-泥岩铀及部分伴生元素含量表(10-6)

      Table  4.   Contents of uranium and some associated elements for sandstone and mudstone of the Qingshankou Formation in DL uranium deposit

      类型 样号 Y Mo Th U U/Th 类型 样号 Y Mo Th U U/Th
      红色泥岩 XT19-01 32.20 0.86 15.20 2.40 0.16 红色砂岩 XT19-11 15.70 0.39 6.80 1.34 0.20
      XT19-03 21.00 0.43 10.70 1.46 0.14 XT19-13 17.70 0.31 6.18 1.63 0.26
      XT19-10 18.40 0.56 7.68 3.39 0.44 XT19-15 22.40 0.44 8.14 3.69 0.45
      XT19-12 31.80 0.83 15.70 2.29 0.15 XT19-19 20.90 0.46 8.20 3.49 0.43
      XT19-16 31.00 0.90 13.80 3.01 0.22 XT19-25 23.40 0.68 7.11 5.06 0.71
      XT19-20 30.60 0.78 12.60 3.86 0.31 XT19-26 18.70 0.48 7.56 3.65 0.48
      XT19-27 21.90 0.48 10.40 1.74 0.17 XT19-28 16.10 0.31 6.91 1.21 0.18
      XT19-29 20.30 0.35 8.72 2.04 0.23 XT19-30 14.50 0.24 5.33 0.81 0.15
      平均值 25.90 0.65 11.85 2.52 0.23 平均值 19.86 0.46 7.96 2.66 0.33
      灰色泥岩 XT19-14 30.50 1.29 15.10 6.99 0.46 灰色砂岩 XT19-06 18.70 0.35 7.15 13.70 1.92
      XT19-17 36.20 1.70 15.10 1564.00 103.58 XT19-07 15.30 0.34 7.76 68.90 8.88
      XT19-23 31.90 1.89 15.70 47.80 3.04 XT19-08 17.80 0.34 7.03 4.94 0.70
      平均值 32.87 1.63 15.30 539.60 35.69 XT19-18 19.50 0.54 7.96 32.00 4.02
      红色砂岩 XT19-02 17.00 0.48 8.65 1.57 0.18 XT19-21 25.90 0.50 10.70 4.16 0.39
      XT19-04 23.80 0.45 8.44 2.22 0.26 XT19-22 18.90 0.31 7.72 7.17 0.93
      XT19-05 29.10 0.86 14.40 5.05 0.35 XT19-24 23.80 0.58 8.52 14.40 1.69
      XT19-09 19.00 0.41 7.83 2.24 0.29 平均值 19.99 0.42 8.12 20.75 2.65
      下载: 导出CSV

      表  5  DL铀矿床青山口组砂-泥岩碳酸盐胶结物C-O同位素结果(‰)

      Table  5.   Carbon and oxygen isotopic compositions of carbonate cements from sandstone and mudstone of the Qingshankou Formation in DL uranium deposit

      类型 样号 δCV-PDB δOV-PDB δOV-SMOW Z t (℃) 类型 样号 δCV-PDB δOV-PDB δOV-SMOW Z t (℃)
      红色泥岩 XT19-01 -3.30 -12.40 18.10 114.37 86.59 红色砂岩 XT19-15 -2.50 -17.20 13.10 113.61 121.82
      XT19-03 -2.80 -11.60 19.00 115.79 81.16 XT19-19 -0.80 -17.40 12.90 117.00 123.39
      XT19-10 -5.60 -13.20 17.30 109.26 92.14 XT19-26 0.30 -17.70 12.70 119.10 125.76
      XT19-12 -3.90 -14.10 16.30 112.29 98.54 XT19-30 -3.60 -16.90 13.50 111.51 119.48
      XT19-16 -4.10 -16.30 14.10 110.79 114.86 XT19-11 -4.20 -16.70 13.70 110.38 117.94
      XT19-20 -1.90 -13.80 16.70 116.54 96.39 XT19-25 -0.80 -17.90 12.40 116.75 127.34
      XT19-27 -5.00 -12.70 17.80 110.74 88.66 XT19-28 -4.90 -16.80 13.50 108.90 118.71
      XT19-29 -5.10 -16.10 14.30 108.84 113.34 平均值 -1.96 -17.07 13.29 114.78 120.86
      平均值 -3.96 -13.78 16.70 112.32 96.46 灰色砂岩 XT19-06 -0.20 -17.20 13.20 118.32 121.82
      灰色泥岩 XT19-14 -4.50 -17.60 12.80 109.32 124.96 XT19-07 0.30 -17.00 13.40 119.45 120.26
      XT19-23 -2.90 -15.00 15.50 113.89 105.10 XT19-08 -1.60 -16.50 13.90 115.81 116.40
      平均值 -3.70 -16.30 14.15 111.61 115.03 XT19-18 -1.60 -18.00 12.30 115.06 128.14
      红色砂岩 XT19-02 -3.30 -16.50 13.90 112.32 116.40 XT19-21 0.30 -17.30 13.10 119.30 122.60
      XT19-04 -0.10 -17.00 13.40 118.63 120.26 XT19-22 0.30 -17.70 12.60 119.10 125.76
      XT19-09 1.40 -17.70 12.70 121.35 125.76 XT19-24 -0.10 -18.20 12.10 118.03 129.74
      XT19-13 -3.10 -16.00 14.40 112.98 112.58 平均值 -0.37 -17.41 12.94 117.87 123.53
      注:Z(%NaCl)=2.048×(δ13CPDB+50)+0.498×(δ18OPDB+50),据Keith and Weber(1964)t=16.9-4.38×(δ18OPDB-δw)+0.1×(δ18OPDB-δw)2,据Shackleton(1974),其中,δw为当时海水氧同位素值,取0.
      下载: 导出CSV
    • Bonnetti, C., Cuney, M., Malartre, F., et al., 2015. The Nuheting Deposit, Erlian Basin, NE China: Synsedimentary to Diagenetic Uranium Mineralization. Ore Geology Reviews, 69: 118-139. https://doi.org/10.1016/j.oregeorev.2015.02.010
      Bonnetti, C., Liu, X.D., Yan, Z.B., et al., 2017. Coupled Uranium Mineralisation and Bacterial Sulphate Reduction for the Genesis of the Baxingtu Sandstone-Hosted U Deposit, SW Songliao Basin, NE China. Ore Geology Reviews, 82: 108-129. https://doi.org/10.1016/j.oregeorev.2016.11.013
      Chen, L.L., Wan, L.F., Huang, L.Z., 2015. Analysis of Coordinated Diagenesis of Sandstones and Mudstones in Xihu Sag, East China Sea. Offshore Oil, 35(2): 18-24(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2336.2015.02.018
      Chen, X.L., Guo, Q.Y., Fang, X.H., et al., 2008. Discussion on the Differences between Epigenetic Oxidized and Primary Red Beds. World Nuclear Geoscience, 25(4): 187-194(in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2008.04.001
      Cheng, Y.H., 2019. Sedimentary Filling and Tectonic Thermal Events since Later Cretaceous in the Songliao Basin (Dissertation). China University of Geosciences, Beijing, 28-190(in Chinese with English abstract).
      Cheng, Y.H., Wang, S.Y., Zhang, T.F., et al., 2020. Regional Sandstone-Type Uranium Mineralization Rooted in Oligo-Miocene Tectonic Inversion in the Songliao Basin, NE China. Gondwana Research, 88: 88-105. https://doi.org/10.1016/j.gr.2020.08.002
      Chu, H.X., Chi, G.X., Bosman, S., et al., 2015. Diagenetic and Geochemical Studies of Sandstones from Drill Core DV10-001 in the Athabasca Basin, Canada, and Implications for Uranium Mineralization. Journal of Geochemical Exploration, 148: 206-230. https://doi.org/10.1016/j.gexplo.2014.10.002
      Curtis, C.D., 1978. Possible Links between Sandstone Diagenesis and Depth-Related Geochemical Reactions Occurring in Enclosing Mudstones. Journal of the Geological Society, 135(1): 107-117. https://doi.org/10.1144/gsjgs.135.1.0107
      Ding, B., Liu, H.X., Li, P., et al., 2018. The Feature of Diagenetic Alteration of Ore-Bearing Sandstone in Mengqiguer Uranium Deposits, Ili Basin, and the Effect of Diagenetic and Mineralization of Its Organic-Inorganic Fluid. Geological Review, 64(1): 149-164(in Chinese with English abstract).
      Fan, A.P., Liu, Y.Q., Yang, R.C., et al., 2007. Study on Diagenesis of Sandstone Type Uranium Deposits in Dongsheng Area, Ordos Basin. Science in China (Series D), 37(Suppl. 1): 166-172(in Chinese).
      Fang, W.X., 2020. Classification and Types of Diagenetic Lithofacies Systems in the Sedimentary Basin. Geological Bulletin of China, 39(11): 1692-1714(in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2020.11.003
      Freed, R.L., Peacor, D.R., 1992. Diagenesis and the Formation of Authigenic Illite-Rich I/S Crystals in Gulf Coast Shales: TEM Study of Clay Separates. SEPM Journal of Sedimentary Research, 62(2): 220-234. https://doi.org/10.1306/d42678ca-2b26-11d7-8648000102c1865d
      Guo, F.N., 2017. Uranium Metallogenic Regularity and Prospect Prediction of Upper Cretaceous Yaojia Formation in Southern Songliao Basin (Dissertation). East China University of Technology, Nanchang, 18-70(in Chinese with English abstract).
      He, J., Wang, H., Garzanti, E.G., 2020. Petrographic Analysis and Classification of Sand and Sandstone. Earth Science, 45(6): 2186-2198(in Chinese with English abstract).
      Hu, L.F., Liu, X.G., 2020. The Relation of Uranium Mineralization to the Heterogeneity of Sand Body in the Lower Submember, Lower Member of Zhiluo Formation in Nongshengxin Area, Northeastern Ordos Basin. Uranium Geology, 36(4): 250-260(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2020.04.003
      Hu, Y., Hu, Y.X., Zhang, X., et al., 2020. Geochemical Features and Geological Significance of Sandstone-Type Uranium Deposit in Zhenyuan Area, Southwestern Ordos Basin. Geoscience, 34(6): 1153-1165(in Chinese with English abstract).
      Huang, S.H., Qin, M.K., Liu, Z.Y., et al., 2016. Impact of Diagenesis and Hydrocarbon Charging on Sandstone Uranium Mineralization: An Example of Toutunhe Formation in Liuhuanggou Area, Southern Junggar Basin. Acta Sedimentologica Sinica, 34(2): 250-259(in Chinese with English abstract).
      Huang, S.J., Huang, K.K., Feng, W.L., et al., 2009. Mass Exchanges among Feldspar, Kaolinite and Illite and Their Influences on Secondary Porosity Formation in Clastic Diagenesis: A Case Study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression. Geochimica, 38(5): 498-506(in Chinese with English abstract).
      Jia, L.C., Cai, J.F., Huang, X., et al., 2018. Petrological Characteristics and Diagenesis of Sandstone of the Lower Yaojia Formation in Baolongshan Uranium Deposit, South of Songliao Basin. Uranium Geology, 34(5): 264-273(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2018.05.002
      Jiao, Y.Q., Wu, L.Q., Rong, H., et al., 2018. Geological Modeling of Uranium Reservoir: The Geological Foundation of Revealing the Metallogenic Mechanism and Solving "Remaining Uranium". Earth Science, 43(10): 3568-3583(in Chinese with English abstract).
      Keith, M.L., Weber, J.N., 1964. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28(10-11): 1787-1816. https://doi.org/10.1016/0016-7037(64)90022-5
      Lin, C.Y., Wang, W.G., Dong, C.M., et al., 2020. Status Quo of Sandstone Compaction Research and Its Advancement. Acta Sedimentologica Sinica, 38(3): 538-553(in Chinese with English abstract).
      Liu, H.X., Ding, B., Liu, Z.Y., et al., 2017. Genesis of Strong Kaolinization in Ore-Bearing Sandstone from Mengqiguer Uranium Deposit, Yili Basin, China. Acta Mineralogica Sinica, 37(Suppl. 1): 40-48(in Chinese with English abstract).
      Liu, J.M., Liu, J.J., Gu, X.X., 1997. Basin Fluids and Their Related Ore Deposits. Acta Petrologica et Mineralogica, 16(4): 341-352(in Chinese with English abstract).
      Liu, S.B., Shen, Z.M., Liu, H.N., et al., 2013. Mechanism of Water-Rock Interaction of the Upper Triassic Xujiahe Formation in the Middle Part of Western Sichuan Depression. Acta Petrolei Sinica, 34(1): 47-58(in Chinese with English abstract).
      Liu, Y.Q., Li, J.H., Feng, Q., et al., 2009. Diagenesis with Its Responsivity of Ore-Forming on Triassic and Jurassic in Ordos Basin. Acta Petrologica Sinica, 25(10): 2331-2339(in Chinese with English abstract).
      Luo, J.L., Li, C., Lei, C., et al., 2020. Discussion on Research Advances and Hot Issues in Diagenesis of Clastic-Rock Reservoirs. Journal of Palaeogeography, 22(6): 1021-1040(in Chinese with English abstract).
      Luo, Y., Ma, H.F., Xia, Y.L., et al., 2007. Geologic Characteristics and Metallogenic Model of Qianjiadian Uranium Deposit in Songliao Basin. Uranium Geology, 23(4): 193-200(in Chinese with English abstract).
      MacQuaker, J.H.S., Taylor, K.G., Keller, M., et al., 2014. Compositional Controls on Early Diagenetic Pathways in Fine-Grained Sedimentary Rocks: Implications for Predicting Unconventional Reservoir Attributes of Mudstones. AAPG Bulletin, 98(3): 587-603. https://doi.org/10.1306/08201311176
      Morad, S., Al-Ramadan, K., Ketzer, J.M., et al., 2010. The Impact of Diagenesis on the Heterogeneity of Sandstone Reservoirs: A Review of the Role of Depositional Facies and Sequence Stratigraphy. AAPG Bulletin, 94(8): 1267-1309. https://doi.org/10.1306/04211009178
      Nie, F.J., Yan, Z.B., Xia, F., et al., 2017. Hot Fluid Flows in the Sandstone-Type Uranium Deposit in the Kailu Basin, Northeast China. Geological Bulletin of China, 36(10): 1850-1866(in Chinese with English abstract).
      Polito, P.A., Kyser, T.K., Jackson, M.J., 2006. The Role of Sandstone Diagenesis and Aquifer Evolution in the Formation of Uranium and Zinc-Lead Deposits, Southern McArthur Basin, Northern Territory, Australia. Economic Geology, 101(6): 1189-1209. https://doi.org/10.2113/gsecongeo.101.6.1189
      Reynolds, R.L., Goldhaber, M.B., 1983. Iron Disulfide Minerals and the Genesis of Roll-Type Uranium Deposits. Economic Geology, 78(1): 105-120. https://doi.org/10.2113/gsecongeo.78.1.105
      Rong, H., Jiao, Y.Q., Wu, L.Q., et al., 2019. Origin of the Carbonaceous Debris and Its Implication for Mineralization within the Qianjiadian Uranium Deposit, Southern Songliao Basin. Ore Geology Reviews, 107: 336-352. https://doi.org/10.1016/j.oregeorev.2019.02.036
      Schindler, M., Legrand, C.A., Hochella, M.F., 2015. Alteration, Adsorption and Nucleation Processes on Clay-Water Interfaces: Mechanisms for the Retention of Uranium by Altered Clay Surfaces on the Nanometer Scale. Geochimica et Cosmochimica Acta, 153: 15-36. https://doi.org/10.1016/j.gca.2014.12.020
      Shackleton, N.J., 1974. Attainment of Isotopic Equilibrium between Ocean Water and the Benthonic Foraminifera Genus Uvigerina: Isotopic Changes in the Ocean during the Last Glacial. Colloque International CNRS, 219: 203-209.
      Song, B.R., Sun, H., Yang, S.L., et al., 2020. Characteristics and Uranium Mineralization of Ore-Bearing Rock Series in Qianjiadian Sandstone-Type Uranium Deposits, Songliao Basin. Journal of Palaeogeography, 22(2): 309-320(in Chinese with English abstract).
      Spinks, S.C., Parnell, J., Bellis, D., et al., 2016. Remobilization and Mineralization of Selenium-Tellurium in Metamorphosed Red Beds: Evidence from the Munster Basin, Ireland. Ore Geology Reviews, 72: 114-127. https://doi.org/10.1016/j.oregeorev.2015.07.007
      Sun, G.Q., Lü, J.W., Zhao, M.J., et al., 2015. Diagenesis and Sedimentary Environment of Miocene Series in Eboliang Ⅲ Area. Acta Sedimentologica Sinica, 33(2): 337-347(in Chinese with English abstract).
      Surdam, R.C., Crossey, L.J. Hagen, E.S., et al., 1989. Organic-Inorganic Interactions and Sandstone Diagenesis. AAPG Bulletin, 73 (1): 1-23. https://doi.org/10.1306/703c9ad7-1707-11d7-8645000102c1865d
      Tan, X.F., Ran, T., Luo, L., et al., 2016. The"Sand-Mud"Sedimentary Record and Its Diagenetic System in Shore-Shallow Lacustrine: A Case Study of Eocene Kongdian Formation in Jiyang Depression. Advances in Earth Science, 31(6): 615-633(in Chinese with English abstract).
      Vinokurov, S.F., Magazina, L.O., Strelkova, E.A., 2017. Rare Earth and Other Rare Elements in Uranium Ores of Paleovalley Deposits in the Vitim District: Distribution, Occurrence, and Applied Implications. Geology of Ore Deposits, 59(2): 156-175. https://doi.org/10.1134/s1075701517020052
      Wang, M., Tang, H.M., Liu, S., et al., 2017. Formation Mechanism of Differential Sandstone Densification Modes and Its Impact on Reservoir Quality: A Case Study of Upper Paleozoic Permian in Eastern Part of Sulige Gas Field, Ordos Basin. Journal of China University of Mining & Technology, 46(6): 1282-1300(in Chinese with English abstract).
      Wu, B.L., Wei, A.J., Hu, L., et al., 2016. The Epigenetic Alteration Stable Isotope Characteristics of the Dongsheng Uranium Ore District and Their Geological Implications. Geological Bulletin of China, 35(12): 2133-2145(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2016.12.021
      Xia, F.Y., Jiao, Y.Q., Rong, H., et al., 2019. Geochemical Characteristics and Geological Implications of Sandstones from the Yaojia Formation in Qianjiadian Uranium Deposit, Southern Songliao Basin. Earth Science, 44(12): 4235-4251(in Chinese with English abstract).
      Xia, Y.L., Zheng, J.W., Li, Z.Y., et al., 2010. Metallogenic Characteristics and Metallogenic Model of Qianjiadian Uranium Deposit in Songliao Basin. Mineral Deposits, 29(Suppl. 1): 154-155(in Chinese with English abstract).
      Xing, X.J., Liu, Y.Q., Li, W.H., et al., 2008. Sandstone Diagenesis and Uranium Mineralization of the Zhiluo Formation in the Diantou Area, Southern Ordos Basin. Acta Geoscientica Sinica, 29(2): 179-188(in Chinese with English abstract).
      Xu, Z., Wu, R.G., Yu, D.G., et al., 2011. Features of Hydrothermal Alteration of Sandstone-Type Uranium in Songliao Basin: A Case of Study in Sandstone-Type Uranium Deposit of Baolongshan Section. Journal of East China Institute of Technology (Natural Science), 34(3): 201-208(in Chinese with English abstract).
      Xu, Z.L., Li, J.G., Zhu, Q., et al., 2019. Late Cretaceous Paleoclimate Change and Its Impact on Uranium Mineralization in the Kailu Depression, Southwest Songliao Basin. Ore Geology Reviews, 104: 403-421. https://doi.org/10.1016/j.oregeorev.2018.10.020
      Yan, X.L., 2018. Characteristics and Uranium Mineralization of Upper Cretaceous Diabase in Qianjiadian Area, Songliao Basin. Journal of Northeast Petroleum University, 42(1): 40-48, 123(in Chinese with English abstract).
      Yang, T., 2017. Synergistic Diagenetic Evolution of Deep-Water Gravity Flow Sandstones-Mudstones and Genesis of High Quality Reservoirs in the Third Member of the Shahejie Formation, Dongying Depression (Dissertation). China University of Petroleum, Qingdao, 93-186(in Chinese with English abstract).
      Ying, F.X., 2004. Diagenesis and Numerical Simulation of Clastic Reservoir in Petroliferous Basins in China. Petroleum Industry Press, Beijing, 21-160(in Chinese).
      Zhang, M.Y., Zheng, J.W., Tian, S.F., et al., 2005. Research on Existing State of Uranium and Uranium Ore-Formation Age at Qianjiadian Uranium Deposit in Kailu Depression. Uranium Geology, 21(4): 213-218(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2005.04.005
      Zhang, Q., Zhu, X.M., Steel, R.J., et al., 2014. Variation and Mechanisms of Clastic Reservoir Quality in the Paleogene Shahejie Formation of the Dongying Sag, Bohai Bay Basin, China. Petroleum Science, 11(2): 200-210. https://doi.org/10.1007/s12182-014-0333-6
      Zhang, X.F., 2013. Synergistic Diagenesis of Argillaceous Source Rocks and Sandstones of Shahejie Formation in Southern Dongying Depression and Their Petroleum Geological Significance (Dissertation). Nanjing University, Nanjing, 28-125(in Chinese with English abstract).
      Zhao, J.H., Jin, Z.J., 2021. Mudstone Diagenesis: Research Advances and Prospects. Acta Sedimentologica Sinica, 39(1): 58-72(in Chinese with English abstract).
      Zhao, L., Cai, C.F., Jin, R.S., et al., 2018. Mineralogical and Geochemical Evidence for Biogenic and Petroleum-Related Uranium Mineralization in the Qianjiadian Deposit, NE China. Ore Geology Reviews, 101: 273-292. https://doi.org/10.1016/j.oregeorev.2018.07.025
      Zhong, D.K., Zhu, X.M., Zhang, Q., 2004. Variation Characteristics of Sandstone Reservoirs When Sandstone and Mudstone are Interbedded at Different Buried Depths. Acta Geologica Sinica, 78(6): 863-871(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2004.06.018
      Zhu, Q., Jiao, Y.Q., Wu, L.Q., et al., 2015. Petrology and Diagenesis of the Uranium Reservoir in the Yaojia Formation of Songliao Basin, Qianjiadian Area. China Sciencepaper, 10(15): 1802-1808(in Chinese with English abstract).
      陈琳琳, 万丽芬, 黄龙泽, 2015. 浅析东海西湖凹陷砂-泥岩协同成岩作用. 海洋石油, 35(2): 18-24.
      陈晓林, 郭庆银, 方锡珩, 等, 2008. 试论后生氧化红层与原生红层的区别. 世界核地质科学, 25(4): 187-194. doi: 10.3969/j.issn.1672-0636.2008.04.001
      程银行, 2019. 松辽盆地晚白垩世以来沉积充填及构造演化研究(博士学位论文). 北京: 中国地质大学, 28-190.
      丁波, 刘红旭, 李平, 等, 2018. 伊犁盆地蒙其古尔铀矿床含矿砂岩成岩蚀变特征及其有机-无机流体成岩成矿效应. 地质论评, 64(1): 149-164.
      樊爱萍, 柳益群, 杨仁超, 等, 2007. 鄂尔多斯盆地东胜地区砂岩型铀矿成岩作用研究. 中国科学(D辑), 37(增刊1): 166-172.
      方维萱, 2020. 论沉积盆地内成岩相系划分及类型. 地质通报, 39(11): 1692-1714.
      郭福能, 2017. 松辽盆地西南部上白垩统姚家组铀成矿规律与远景预测(硕士学位论文). 南昌: 东华理工大学, 18-70.
      何杰, 王华, Garzanti, E G., 2020. 砂岩(砂)的岩相分析和分类标准. 地球科学, 45(6): 2186-2198. doi: 10.3799/dqkx.2019.217
      胡立飞, 刘小刚, 2020. 鄂尔多斯盆地东北部农胜新地区直罗组下段下亚段砂体非均质性与铀矿化的关系. 铀矿地质, 36(4): 250-260.
      胡妍, 胡永兴, 张翔, 等, 2020. 鄂尔多斯盆地西南缘镇原地区砂岩型铀矿元素地球化学特征及地质意义. 现代地质, 34(6): 1153-1165.
      黄少华, 秦明宽, 刘章月, 等, 2016. 成岩作用与油气侵位对砂岩铀成矿的约束: 以淮南硫磺沟地区头屯河组砂岩铀成矿为例. 沉积学报, 34(2): 250-259.
      黄思静, 黄可可, 冯文立, 等, 2009. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究. 地球化学, 38(5): 498-506. doi: 10.3321/j.issn:0379-1726.2009.05.009
      贾立城, 蔡建芳, 黄笑, 等, 2018. 宝龙山铀矿床姚家组下段砂岩岩石学特征与成岩作用. 铀矿地质, 34(5): 264-273.
      焦养泉, 吴立群, 荣辉, 等, 2018. 铀储层地质建模: 揭示成矿机理和应对"剩余铀"的地质基础. 地球科学, 43(10): 3568-3583. doi: 10.3799/dqkx.2018.229
      林承焰, 王文广, 董春梅, 等, 2020. 砂岩压实作用研究现状及进展. 沉积学报, 38(3): 538-553.
      刘红旭, 丁波, 刘章月, 等, 2017. 伊犁盆地蒙其古尔铀矿床含矿目的层强高岭石化成因. 矿物学报, 37(增刊1): 40-48.
      刘建明, 刘家军, 顾雪祥, 1997. 沉积盆地中的流体活动及其成矿作用. 岩石矿物学杂志, 16(4): 341-352.
      刘四兵, 沈忠民, 刘昊年, 等, 2013. 川西坳陷中段上三叠统须家河组水岩相互作用机制. 石油学报, 34(1): 47-58.
      柳益群, 李继红, 冯乔, 等, 2009. 鄂尔多斯盆地三叠-侏罗系的成岩作用及其成藏成矿响应. 岩石学报, 25(10): 2331-2339.
      罗静兰, 李弛, 雷川, 等, 2020. 碎屑岩储集层成岩作用研究进展与热点问题讨论. 古地理学报, 22(6): 1021-1040.
      罗毅, 马汉峰, 夏毓亮, 等, 2007. 松辽盆地钱家店铀矿床成矿作用特征及成矿模式. 铀矿地质, 23(4): 193-200.
      聂逢君, 严兆彬, 夏菲, 等, 2017. 内蒙古开鲁盆地砂岩型铀矿热流体作用. 地质通报, 36(10): 1850-1866.
      宋柏荣, 孙慧, 杨松林, 等, 2020. 松辽盆地钱家店砂岩型铀矿床含矿岩系组成特征与铀成矿作用. 古地理学报, 22(2): 309-320.
      孙国强, 吕婧文, 赵明君, 等, 2015. 柴达木盆地鄂博梁Ⅲ号中新统成岩作用及沉积环境. 沉积学报, 33(2): 337-347.
      谭先锋, 冉天, 罗龙, 等, 2016. 滨浅湖环境中"砂—泥"沉积记录及成岩作用系统: 以济阳坳陷古近系孔店组为例. 地球科学进展, 31(6): 615-633.
      王猛, 唐洪明, 刘枢, 等, 2017. 砂岩差异致密化成因及其对储层质量的影响: 以鄂尔多斯盆地苏里格气田东区上古生界二叠系为例. 中国矿业大学学报, 46(6): 1282-1300.
      吴柏林, 魏安军, 胡亮, 等, 2016. 内蒙古东胜铀矿区后生蚀变的稳定同位素特征及其地质意义. 地质通报, 35(12): 2133-2145.
      夏飞勇, 焦养泉, 荣辉, 等, 2019. 松辽盆地南部钱家店铀矿床姚家组砂岩地球化学特征及地质意义. 地球科学, 44(12): 4235-4251. doi: 10.3799/dqkx.2019.045
      夏毓亮, 郑纪伟, 李子颖, 等, 2010. 松辽盆地钱家店铀矿床成矿特征和成矿模式. 矿床地质, 29(增刊1): 154-155.
      邢秀娟, 柳益群, 李卫宏, 等, 2008. 鄂尔多斯盆地南部店头地区直罗组砂岩成岩演化与铀成矿. 地球学报, 29(2): 179-188.
      徐喆, 吴仁贵, 余达淦, 等, 2011. 松辽盆地砂岩型铀矿床的热液作用特征: 以宝龙山地段砂岩铀矿为例. 东华理工大学学报(自然科学版), 34(3): 201-208.
      颜新林, 2018. 松辽盆地钱家店地区上白垩统辉绿岩特征及铀成矿作用. 东北石油大学学报, 42(1): 40-48, 123.
      杨田, 2017. 东营凹陷沙三段深水重力流砂岩与泥岩协同成岩演化及优质储层成因(博士学位论文). 青岛: 中国石油大学, 93-186.
      应凤祥, 2004. 中国含油气盆地碎屑岩储集层成岩作用与成岩数值模拟. 北京: 石油工业出版社, 21-160.
      张明瑜, 郑纪伟, 田时丰, 等, 2005. 开鲁坳陷钱家店铀矿床铀的赋存状态及铀矿形成时代研究. 铀矿地质, 21(4): 213-218.
      张雪芬, 2013. 东营凹陷南部沙河街组砂—泥岩协同成岩作用及其石油地质意义(博士学位论文). 南京: 南京大学, 28-125.
      赵建华, 金之钧, 2021. 泥岩成岩作用研究进展与展望. 沉积学报, 39(1): 58-72.
      钟大康, 朱筱敏, 张琴, 2004. 不同埋深条件下砂泥岩互层中砂岩储层物性变化规律. 地质学报, 78(6): 863-871.
      朱强, 焦养泉, 吴立群, 等, 2015. 松辽盆地钱家店地区姚家组铀储层岩石学特征及成岩作用. 中国科技论文, 10(15): 1802-1808.
    • 加载中
    图(11) / 表(5)
    计量
    • 文章访问数:  239
    • HTML全文浏览量:  477
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-20
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回