• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    准噶尔盆地克拉美丽气田滴西14井区石炭系蚀变凝灰岩储层热液作用过程及时限

    刘小洪 王委委 冯明友 卓宜茜 岳怀海

    刘小洪, 王委委, 冯明友, 卓宜茜, 岳怀海, 2022. 准噶尔盆地克拉美丽气田滴西14井区石炭系蚀变凝灰岩储层热液作用过程及时限. 地球科学, 47(5): 1694-1710. doi: 10.3799/dqkx.2021.188
    引用本文: 刘小洪, 王委委, 冯明友, 卓宜茜, 岳怀海, 2022. 准噶尔盆地克拉美丽气田滴西14井区石炭系蚀变凝灰岩储层热液作用过程及时限. 地球科学, 47(5): 1694-1710. doi: 10.3799/dqkx.2021.188
    Liu Xiaohong, Wang Weiwei, Feng Mingyou, Zhuo Yiqian, Yue Huaihai, 2022. Hydrothermal Process and Duration of Carboniferous Altered Tuff Reservoir in Well Dixi 14 Area of Kelameili Gas Field (Junggar Basin), NW China. Earth Science, 47(5): 1694-1710. doi: 10.3799/dqkx.2021.188
    Citation: Liu Xiaohong, Wang Weiwei, Feng Mingyou, Zhuo Yiqian, Yue Huaihai, 2022. Hydrothermal Process and Duration of Carboniferous Altered Tuff Reservoir in Well Dixi 14 Area of Kelameili Gas Field (Junggar Basin), NW China. Earth Science, 47(5): 1694-1710. doi: 10.3799/dqkx.2021.188

    准噶尔盆地克拉美丽气田滴西14井区石炭系蚀变凝灰岩储层热液作用过程及时限

    doi: 10.3799/dqkx.2021.188
    基金项目: 

    国家自然科学基金青年基金项目 41202109

    四川省创新创业训练项目 S202010615134

    详细信息
      作者简介:

      刘小洪(1980-),女,副教授,博士,主要从事储层成岩作用研究及相关教学工作. ORCID:0000-0002-0984-3894. E-mail:liuxiaohong_swpu@163.com

      通讯作者:

      冯明友,E-mail:fmyswpu@163.com

    • 中图分类号: P618

    Hydrothermal Process and Duration of Carboniferous Altered Tuff Reservoir in Well Dixi 14 Area of Kelameili Gas Field (Junggar Basin), NW China

    • 摘要: 为明确克拉美丽气田滴西地区石炭系蚀变熔结凝灰岩储层经历的流体作用及成岩孔隙演化过程,利用铸体薄片观察、扫描电镜、电子探针、阴极发光、荧光、微量/稀土元素分析及U-Pb同位素定年等方法技术开展综合研究.结果表明,火山碎屑物质的溶解及成岩转化为自生矿物的形成提供了物质基础;成岩过程中因埋藏、生烃、热液充注等活动而产生的成岩环境改变是控制区内孔隙形成及演化的重要因素:伴随着有机质的成熟,有机酸溶蚀形成大量晶屑铸模孔并在孔隙中沉淀出高岭石及石英;随着酸性流体向碱性转变,在溶蚀孔隙中沉淀出钠长石以及方解石,其充填作用使孔隙急剧减少;燕山中期(135±27 Ma)的构造热事件对储层形成及演化起到关键作用:高温、含硅热液流体的充注使基质中的伊利石转变为钾长石,同时二次溶解形成的Ca2+与流体携带的P5+、Ti4+、F-等离子结合形成含氟磷灰石、榍石充填孔隙,多余的SiO2则在孔隙中沉淀出石英.随着成岩环境再次向碱性、还原环境转变,含砷黄铁矿进一步在孔隙中形成,高岭石则进一步向绿泥石转化.温度升高引起的脱玻化、黏土矿物/沸石矿物转化、重结晶作用以及溶解作用在一定程度上增加了岩石中的次生储集空间,有利于油气的储集.

       

    • 图  1  准噶尔盆地克拉美丽气田构造位置

      刘小洪等(2016a)修改

      Fig.  1.  Structure location map of the Kelameili gas field in the Junggar basin

      图  2  准噶尔盆地克拉美丽气田DX1414井石炭系储层分布柱状图

      Fig.  2.  Stratum column of the Carboniferous reservoir of well DX1414 in the Kelameili gas field, Junggar basin

      图  3  蚀变凝灰岩储层典型岩心及显微镜下特征

      a.上部灰白‒绿色蚀变凝灰岩,下部紫红色安山质含角砾凝灰岩,DX1414井,3 630~3 643 m;b.微孔隙发育,局部见肉红色的未蚀变钾长石晶屑,DX1414井,3 631.8 m;c.长石晶屑普遍发生溶蚀‒充填现象,DX1414井,3 631.8 m;d.长石溶孔中充填石英、高岭石以及榍石,DX1414井,3 631.8 m;e.长石晶屑溶蚀残余孔发育,孔隙中充填自生钠长石、石英及榍石,DX1414井,3 631.8 m;f.长石晶屑溶孔中充填石英、钠长石、高岭石、绿泥石、黄铁矿及榍石,DX1414井,3 631.8 m;g.部分长石晶屑铸模孔被方解石充填,DX1414井,3 631.8 m;h.未蚀变的钾长石、钠长石晶屑,DX1414井,3 640 m;Qz.石英;Kln.高岭石;Or.钾长石;Ab.钠长石;Spn.榍石;Py.黄铁矿;Ap.磷灰石;Cal.方解石;P.孔隙

      Fig.  3.  Macro- and micro-photographs of the Carboniferous altered tuff reservoir in the study area

      图  4  蚀变凝灰岩X衍射分析图谱特征

      Fig.  4.  Characteristics of X-ray diffraction patterns of altered tuff in the study area

      图  5  强蚀变岩扫描电镜、阴极发光及荧光特征

      a.钠长石、石英、高岭石‒绿泥石充填钾长石次生溶孔,DX1414井,3 631.8 m,SEM;b.基质中钾长石发蓝白色光,磷灰石发黄色光,石英发蓝色光,钠长石不发光,榍石中部发灰蓝色光,边部发蓝灰色光,边缘有溶蚀现象,DX1414井,3 631.8 m,CL;c.钠长石、榍石、高岭石‒绿泥石充填钠长石次生溶孔,DX1414井,3 631.8 m,SEM;d.长石晶屑溶蚀孔中充填钠长石、石英不发荧光,榍石发弱荧光,烃类发亮黄绿色荧光,DX1414井,3 631.8 m,绿光.Qz.石英;Kln.高岭石;Or.钾长石;Ab.钠长石;Spn.榍石;Py.黄铁矿;Ap.磷灰石;Cal.方解石;P.孔隙

      Fig.  5.  SEM, CL and fluorescence of strong altered tuff in the study area

      图  6  榍石电子探针背散射(BSE)图像及其稀土元素、年龄特征

      a.榍石BSE照片;b. ΣREE-Th/U图(底图据吕沅峻等,2021);c.榍石稀土元素球粒陨石标准化图(球粒陨石元素标准化数据据Sun and McDonough, 1989);d.全岩稀土元素球粒陨石标准化图(球粒陨石元素标准化数据据Sun and McDonough, 1989);e.榍石LA-ICPMS U-Pb定年结果

      Fig.  6.  The electron probe backscattering (BSE) images, REE and U-Pb data of titanite

      图  7  蚀变凝灰岩储层埋藏成岩及孔隙演化序列模式图

      埋藏史与古地温演化图据达江(2010);包裹体测温据刘小洪(2016a);Qz.石英;Cal.方解石;Kln.高岭石;Ab1.钠长石晶屑;Ab2.自生钠长石;Chl.绿泥石;Ttn.榍石;Py.黄铁矿;蓝色为孔/缝

      Fig.  7.  Burial history, diagenesis and pore evolution of altered tuff reservoir in the study area

      表  1  强蚀变‒弱蚀变岩主量元素(单位:%)组成

      Table  1.   The major element data of strong and weak altered tuffs in the study area (%)

      样品编号 深度(m) 岩性 SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Na2O+K2O Cr2O3 TiO2 MnO P2O5 SrO BaO LOI Total
      DX32 3 631.8 强蚀变岩 77.4 9.4 0.89 0.85 0.16 0.5 6.47 6.97 < 0.01 0.33 0.06 0.1 < 0.01 0.27 1.24 97.7
      DX33 3 637.2 中等
      蚀变岩
      71.9 12.5 0.94 0.77 0.13 3.51 4.74 8.25 < 0.01 0.44 0.05 0.16 0.01 0.16 0.78 96.1
      DX34 3 640 弱蚀变岩 69.8 13.45 3.86 0.82 0.44 5.55 1.57 7.12 < 0.01 0.47 0.11 0.13 0.01 0.04 1.26 97.5
      下载: 导出CSV

      表  2  蚀变凝灰岩中黄铁矿电子探针数据分析(%)及计算晶体化学式

      Table  2.   The EPMA data analysis (%) and calculated crystal formula of the pyrite in altered tuff

      名称 样品编号 Fe S As Au Ag Ni Cu Se Pb Zn 总和 化学式
      黄铁矿 DX32-Py-1 44.16 48.49 6.299 - 0.005 - 0.422 - - 0.000 99.38 Fe(S1.5125As0.0841)1.596 6
      DX32-Py-2 44.35 47.52 6.912 0.059 - - - - - 0.045 98.89 Fe(S1.4822As0.0923)1.574 5
      DX32-Py-3 45.07 50.68 4.596 - - - - - - 0.000 100.35 Fe(S1.5805As0.0613)1.642 1
      DX32-Py-4 44.73 49.42 5.729 - - 0.027 - - - 0.032 99.93 Fe(S1.5415As0.0613)1.618 0
      DX32-Py-5 44.32 49.02 5.799 - - 0.011 - - - 0.000 99.14 Fe(S1.5290As0.0774)1.606 4
      注:“-”表示低于检测限.
      下载: 导出CSV

      表  3  蚀变凝灰岩中榍石电子探针数据分析(%)及计算晶体化学式

      Table  3.   The EPMA data analysis (%) and calculated crystal formula of the titanite in alterated tuff

      样品 DX32-Ttn-1 DX32-Ttn-2 DX32-Ttn-3
      SiO2 30.711 30.57 30.774
      TiO2 32.212 29.465 28.693
      Al2O3 6.351 7.954 8.388
      FeO* 0.157 0.03 0.153
      MnO - 0.017 0.017
      MgO 0.033 0.024 0.023
      CaO 26.858 27.487 27.602
      Na2O 0.037 0.048 0.073
      K2O 0.035 0.013 0.014
      F 4.53 4.73 4.27
      总和 100.92 100.34 100.01
      晶体化学式(基于O=5计算)
      Si 1.023 1.025 2 1.030 2
      Ti 0.806 8 0.743 0.722 3
      Al 0.249 3 0.314 4 0.330 9
      Fe 0.004 4 0.000 8 0.004 3
      Mn - 0.000 5 0.000 5
      Mg 0.001 6 0.001 2 0.001 1
      Ca 0.958 5 0.987 6 0.99
      Na 0.002 4 0.003 1 0.004 7
      K 0.001 4 0.000 5 0.000 6
      F 0.477 2 0.501 6 0.452
      注:FeO*为全铁含量,“-”表示低于检测限.
      下载: 导出CSV

      表  4  榍石矿物及全岩Th、U元素及稀土元素(单位:μg/g)分析结果表

      Table  4.   The analysis results of Th, U and trace and rare earth elements (μg/g)

      样品号 岩性 深度(m) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE LREE/HREE LaN/YbN δEu δCe Th U Th/U
      DX32-01 榍石 3 631.8 226.8 1 308.2 258.7 1 388.0 364.3 76.3 275.8 37.5 181.4 29.7 70.8 9.7 61.0 6.4 655.9 4 294.6 3 622.3 672.3 5.4 2.67 0.74 1.32 52.23 20.73 2.52
      DX32-02 榍石 3 631.8 235.9 1 257.5 220.9 1 088.2 249.3 53.1 184.8 25.3 119.4 19.7 45.7 6.4 41.4 4.4 427.5 3 552.0 3 105.0 447.1 6.9 4.08 0.76 1.35 39.52 12.27 3.22
      DX32-03 榍石 3 631.8 162.9 906.4 176.9 924.0 256.9 49.7 206.9 30.8 156.6 28.1 70.0 9.6 60.4 7.4 619.1 3 046.6 2 476.8 569.9 4.3 1.93 0.66 1.31 24.10 11.38 2.12
      DX32-04 榍石 3 631.8 183.1 1 116.3 211.8 1 075.4 253.0 54.1 192.3 24.8 119.5 20.5 47.5 6.4 41.5 4.3 456.6 3 350.4 2 893.7 456.7 6.3 3.16 0.75 1.39 21.85 12.11 1.80
      DX32-05 榍石 3 631.8 305.3 1 587.9 256.1 1 174.7 219.8 52.8 153.2 18.4 92.1 15.8 36.9 5.0 32.5 3.6 345.1 3 954.1 3 596.6 357.5 10.1 6.75 0.88 1.39 11.75 14.73 0.80
      DX32-06 榍石 3 631.8 198.8 1 237.7 269.7 1 521.3 512.5 207.0 535.8 88.4 564.8 120.4 311.3 41.7 258.3 30.8 3 300.3 5 898.4 3 947.0 1 951.4 2.0 0.55 1.21 1.31 5.42 5.93 0.91
      DX32-07 榍石 3 631.8 254.5 1 359.5 238.0 1 162.9 255.8 55.6 186.1 24.3 116.5 19.4 42.8 6.0 39.6 3.9 395.5 3 764.8 3 326.2 438.6 7.6 4.60 0.78 1.35 37.29 19.73 1.89
      DX32-08 榍石 3 631.8 110.9 691.0 156.1 922.8 331.3 130.2 372.9 68.9 460.0 101.2 264.4 36.4 225.3 27.0 2 720.1 3 898.4 2 342.4 1 556.0 1.5 0.35 1.13 1.29 7.06 6.63 1.06
      DX32-09 榍石 3 631.8 152.0 836.5 155.3 817.5 223.1 58.7 203.2 29.8 169.1 34.0 87.0 11.9 72.5 9.2 804.6 2 859.7 2 243.1 616.5 3.6 1.50 0.84 1.33 4.54 10.21 0.44
      DX32-10 榍石 3 631.8 148.3 815.5 151.5 787.5 234.6 55.8 209.4 34.3 198.5 38.6 100.1 14.3 90.7 10.4 847.4 2 889.5 2 193.2 696.3 3.1 1.17 0.77 1.33 3.92 8.70 0.45
      DX32-11 榍石 3 631.8 134.3 746.8 150.9 809.1 233.2 49.0 198.4 29.0 154.5 28.5 70.3 9.8 63.2 7.8 644.3 2 684.8 2 123.3 561.5 3.8 1.52 0.70 1.29 22.37 8.14 2.75
      DX32-13 榍石 3 631.8 378.1 2 360.4 438.2 2 224.4 624.3 150.0 502.2 82.8 476.4 87.1 205.2 28.4 171.3 16.3 1 782.9 7 745.1 6 175.3 1 569.8 3.9 1.58 0.82 1.42 9.20 44.09 0.21
      DX32-14 榍石 3 631.8 342.4 2 019.0 358.7 1 800.1 455.9 113.5 366.2 52.2 276.7 49.8 118.6 16.0 99.3 10.3 1 089.0 6 078.7 5 089.5 989.2 5.1 2.47 0.85 1.41 33.94 36.54 0.93
      DX32-15 榍石 3 631.8 352.6 2 231.0 410.6 2 098.5 522.8 161.7 443.3 66.9 377.1 72.2 172.5 23.9 145.2 16.0 1 676.4 7 094.0 5 777.1 1 317.0 4.4 1.74 1.03 1.44 30.13 37.82 0.80
      DX32-16 榍石 3 631.8 266.4 1 836.1 365.7 1 874.9 485.8 112.9 388.4 53.8 275.7 49.8 115.2 15.7 97.7 10.6 1 141.6 5 948.7 4 941.8 1 007.0 4.9 1.96 0.79 1.44 38.17 32.42 1.18
      DX32-17 榍石 3 631.8 203.6 1 101.5 197.0 987.6 226.7 49.0 162.6 21.7 102.3 17.4 40.2 5.7 35.7 3.9 377.8 3 154.7 2 765.4 389.3 7.1 4.09 0.78 1.35 26.13 10.58 2.47
      DX32-18 榍石 3 631.8 181.1 1 146.0 244.5 1 332.0 395.7 164.2 395.4 65.5 410.8 87.7 226.3 30.6 188.3 22.4 2 414.1 4 890.5 3 463.5 1 427.1 2.4 0.69 1.27 1.34 11.95 10.48 1.14
      DX32-19 榍石 3 631.8 346.8 1 788.7 267.8 1 175.2 202.7 52.8 146.8 17.4 83.0 14.4 34.3 4.7 30.9 3.6 324.0 4 168.9 3 833.9 335.0 11.4 8.06 0.94 1.44 12.77 15.59 0.82
      DX32-20 榍石 3 631.8 324.7 1 807.4 295.2 1 375.2 269.3 61.8 192.7 23.3 111.0 18.9 42.7 5.8 36.8 3.8 398.0 4 568.7 4 133.7 435.0 9.5 6.33 0.83 1.43 21.78 20.79 1.05
      DX32 蚀变岩 3 631.8 13.10 25.70 3.12 13.80 3.13 1.27 3.08 0.49 2.93 0.63 1.96 0.32 1.95 0.32 17.70 71.80 60.12 11.68 5.15 4.82 1.25 0.99 4.31 1.33 3.24
      DX33 中等蚀变岩 3 637.2 12.90 35.00 4.45 19.30 4.17 1.22 4.25 0.69 4.04 0.86 2.62 0.43 2.55 0.42 25.70 92.90 77.04 15.86 4.86 3.63 0.89 1.13 4.87 1.67 2.92
      DX34 弱蚀变岩 3 640 12.60 34.80 4.24 18.70 4.17 1.03 4.66 0.73 4.52 0.98 3.06 0.50 3.09 0.51 30.20 93.59 75.54 18.05 4.19 2.92 0.71 1.17 5.16 1.76 2.93
      下载: 导出CSV
    • Chen, C. C., Huang, Z. L., Chen, X., et al., 2018. The Formation Conditions of the Upper Carboniferous Near-Source Tuff Tight Oil Reservoir in Santanghu Basin, Xinjiang Province. Geological Bulletin of China, 37(1): 83-92 (in Chinese with English abstract).
      Chen, X., Zhong, J. H., Yuan, J., et al., 2009. Development and Formation of Paleogene Kaolinite, Bonan Subsag. Petroleum Exploration and Development, 36(4): 456-462 (in Chinese with English abstract).
      Cheng, R. H., Shen, Y. J., Yan, J. B., et al., 2010. Diagenesis of Volcaniclastic Rocks in Hailaer Basin. Acta Petrologica Sinica, 26(1): 47-54 (in Chinese with English abstract).
      Da, J., Hu, Y., Zhao, M. J., et al., 2010. Features of Source Rocks and Hydrocarbon Pooling in the Kelameili Gasfield, the Junggar Basin. Oil & Gas Geology, 31(2): 187-192 (in Chinese with English abstract).
      Fan, Y., Dong, H., Liu, Y. N., et al., 2017. LA-ICP-MS Titanite U-Pb Dating and Its Signification in the Luohe Iron Deposit in the Lu-Zong Volcanic Basin. Acta Petrologica Sinica, 33(11): 3395-3410 (in Chinese with English abstract).
      Feng, M. Y., Liu, T., Lin, T., et al., 2019. Fracture Fillings and Implication of Fluid Activities in Volcanic Rocks: Dixi Area in Kelameili Gas Field, Junggar Basin, Northwestern China. Minerals, 9(3): 154. https://doi.org/10.3390/min9030154
      Grynberg, M. E., Papava, D., Shengelia, M., et al., 1993. Petrophysical Characteristics of the Middle Ecoene Laumontite Tuff Reservoir, Samgori Field. Republic of Georgia. J. Pet. Geol. , 16: 313-322. https://doi.org/10.1306/bf9ab726-0eb6-11d7-8643000102c1865d
      Hayden, L. A., Watson, E. B., Wark, D. A., 2008. A Thermobarometer for Sphene (Titanite). Contributions to Mineralogy and Petrology, 155(4): 529-540. https://doi.org/10.1007/s00410-007-0256-y
      Horie, K., Hidaka, H., Gauthier-Lafaye, F., 2008. Elemental Distribution in Apatite, Titanite and Zircon during Hydrothermal Alteration: Durability of Immobilization Mineral Phases for Actinides. Physics and Chemistry of the Earth, Parts A/B/C, 33(14-16): 962-968. https://doi.org/10.1016/j.pce.2008.05.008
      Hu, G. H., Zhang, Q. Q., Li, J. F., et al., 2020. Emplacement Ages of Mesozoic Granites in Liaodong Area: Constraints from Zircon and Monazite U-Pb Dating. Earth Science, 45(11): 3962-3981 (in Chinese with English abstract).
      Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k
      Huang, S. J., Huang, K. K., Feng, W. L., et al., 2009. Mass Exchanges among Feldspar, Kaolinite and Illite and Their Influences on Secondary Porosity Formation in Clastic Diagenesis-A Case Study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression. Geochimica, 38(5): 498-506 (in Chinese with English abstract).
      Jin, M. Q., Li, Y. G., Wang, P., et al., 2020. Element Fractionation and Correction Method for U-Pb Dating of Titanite by Laser Ablation-Inductively Coupled Plasms-Mass Spectrometry. Rock and Mineral Analysis, 39(2): 274-284 (in Chinese with English abstract).
      Kawamoto, T., 2001. Distribution and Alteration of the Volcanic Reservoir in the Minami-Nagaoka Gas Field. Sekiyu Gijutsu Kyokaishi, 66(1): 46-55.
      Li, J. W., Deng, X. D., Zhou, M. F., et al., 2009. Laser Ablation ICP-MS Titanite U-Th-Pb Dating of the Tonglushan Cu-Fe-Au Skarn Deposit, Southeastern Hubei Province. Acta Mineralogica Sinica, 29(S1): 314-316.
      Lin, X. Y., Su, Y. P., Zheng, J. P., et al., 2011. Characteristics and Controlling Factors of Volcanic Reservior in Kelameili Area of Junggar Basin. Geological Science and Technology Information, 30(6): 28-37 (in Chinese with English abstract).
      Liu, X. H., Feng, M. Y., Xi, A. H., et al., 2016a. Diagenesis and Pore Evolution of Carboniferous Volcanic Reservoirs in Dixi Area, Kelameili Gas Field. Lithologic Reservoirs, 28(1): 38-48 (in Chinese with English abstract).
      Liu, X. H., Feng, M. Y., Xi, A. H., et al., 2016b. Formation and Evolution of the Reservoir Space of Subvolcanic Reservoir: A Case Study of the Well Dixi 18 Area in Kelameili Gasfield. Natural Gas Geoscience, 27(2): 278-288 (in Chinese with English abstract).
      Liu, X. H., Zhuo, Y. Q., Feng, M. Y., et al., 2022. Constrains of Eruption Environment and Hydrothermal Fluid on the Permian Pyroclastic Reservoirs in the Sichuan Basin, SW China. Petroleum, 8(1): 17-30. https://doi.org/10.1016/j.petlm.2021.03.005
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
      Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 39.
      Luo, B., Xia, M. L., Wang, H., et al., 2019. Hydrocarbon Accumulation Conditions of Permian Volcanic Gas Reservoirs in the Western Sichuan Basin. Natural Gas Industry, 39(2): 9-16 (in Chinese with English abstract).
      Lü, Y. J., Peng, J. T., Cai, Y. F., 2021. Geochemical Characteristics, U-Pb Dating of Hydrothermal Titanite from the Xingfengshan Tungsten Deposit in Hunan Province and Their Geological Significance. Acta Petrologica Sinica, 37(3): 830-846 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.12
      Meng, Y. L., Liang, H. T., Wei, W., et al., 2013. Thermodynamic Calculations of the Laumontite Dissolution and Prediction of Secondary Porosity Zones: A Case Study of Horizon of Xujiaweizi Fault Depression. Acta Sedimentologica Sinica, 31(3): 509-515 (in Chinese with English abstract).
      Pola, A., Crosta, G., Fusi, N., et al., 2012. Influence of Alteration on Physical Properties of Volcanic Rocks. Tectonophysics, 566/567: 67-86. https://doi.org/10.1016/j.tecto.2012.07.017
      Shi, X. P., Hu, Q. X., Xie, Z. W., et al., 2016. Identification Methods of Volcanic Lithology, Lithofacies: Taking the Volcanic Rocks of Dinan Alient in the Junggar Basin as an Instance. Natural Gas Geoscience, 27(10): 1808-1816 (in Chinese with English abstract).
      Song, J. Y., Qin, M. K., Cai, Y. Q., et al., 2019. Uplift- Denudation of Orogenic Belts Control on the Formation of Sandstone Type Uranium (U) Deposits in Eastern Junggar, Northwest China: Implications from Apatite Fission Track (AFT). Earth Science, 44(11): 3910-3925 (in Chinese with English abstract)
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society Special Publication, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      Thomas Kalan, H. P., Sitorus, M. E., 1994. Jatibarang Field, Geologic Study of Volcanic Reservoir for Horizontal Well Proposal. Indonesian Petroleum Association, 23rd Annual Convention Proceedings, 1: 229-244.
      Tomaru, H., Lu, Z. L., Fehn, U., et al., 2009. Origin of Hydrocarbons in the Green Tuff Region of Japan: 129I Results from Oil Field Brines and Hot Springs in the Akita and Niigata Basins. Chemical Geology, 264(1-4): 221-231. doi: 10.1016/j.chemgeo.2009.03.008
      Wang, J., Zhang, J., Zhang, X. J., et al., 2019. Rb-Sr Geochronology, Stable Isotopic Analyses and Geological Significance of the Tianbaoshan Pb-Zn Deposit in Sichuan Province, China. Earth Science, 44(9): 3026-3041 (in Chinese with English abstract).
      Wang, Y., Shi, Y. H., Chen, B. L., et al., 2021. Characteristics of Early Paleozoic Magmatism in Fengxian Area, West Qinling: Evidence from Petrogeochemistry, Zircon U-Pb Age and Hf Isotope. Earth Science, 46(6): 2016-2036 (in Chinese with English abstract).
      Wu, X. Z., Guo, Q. L., Zhang, W., et al., 2021. Characteristics of Volcanic Reservoirs and Hydrocarbon Accumulation of Carboniferous System in Junggar Basin, China. Journal of Earth Science, 32(4): 972-985. https://doi.org/10.1007/s12583-020-1119-y
      Xiang, H., Zhang, L., Zhong, Z. Q., et al., 2007. Titanite: U-Pb Dating and Applications on Defining P-T-t Path of Metamorphic Rocks. Advances in Earth Science, 22(12): 1258-1267 (in Chinese with English abstract).
      Yan, Y. T., Li, S. R., Jia, B. J., et al., 2012. Composition Typomorphic Characteristics and Statistic Analysis of Pyrite in Gold Deposits of Different Genetic Types. Earth Science Frontiers, 19(4): 214-226 (in Chinese with English abstract).
      Yang, X. P., Qiu, Y. N., 2002. Formation Process and Distribution of Laumontite in Yanchang Formation (Upper Triassic) of Ordos Basin. Acta Sedimentologica Sinica, 20(4): 628-632 (in Chinese with English abstract).
      Ye, K., Ye, D. N., 1996. High Pressure Effect of P+Mg+ F=Si+Al+OH Special Substitution in High Aluminum Cornistone. Chinese Science Bulletin, 41(9): 811-814 (in Chinese). doi: 10.1360/csb1996-41-9-811
      Yuan, D., 2013. Lithology, Lithofacies and Reservoir Characteristics of Carboniferous Volcanic Clastic Rock in Dixi Area, Junggar Basin (Dissertation). Southwest Petroluem University, Chengdu (in Chinese with English abstract).
      Zhang, L. Y., Ji, Y. L., Liu, L., et al., 2012. Origin of Anomalously High Porosity in Pyroclastic Reservoirs: A Case Study on the Northern Region of the East Sub-Sag in Nanbeier Sag. Acta Petrolei Sinica, 33(5): 814-821 (in Chinese with English abstract).
      Zhang, S. Y., Zhu, J., Wen, G., et al., 2015. Significant of Volcanic Eruption Spatiotemporal Sequence in Batamayineishan Formation, Ludong Region, Junggar Basin. Journal of Central South University (Science and Technology), 46(1): 199-207 (in Chinese with English abstract).
      Zhu, Q. Q., Xie, G. Q., Jiang, Z. S., et al., 2014. Characteristics and In Situ U-Pb Dating of Hydrothermal Titanite by LA-ICPMS of the Jingshandian Iron Skarn Deposit, Hubei Province. Acta Petrologica Sinica, 30(5): 1322-1338 (in Chinese with English abstract).
      Zhu, S. F., Zhu, X. M., Wu, D., et al., 2014. Alteration of Volcanics and Its Controlling Factors in the Lower Permian Reservoirs at Northwestern Margin of Junggar Basin. Oil & Gas Geology, 35(1): 77-85 (in Chinese with English abstract).
      陈常超, 黄志龙, 陈旋, 等, 2018. 新疆三塘湖盆地上石炭统近源凝灰岩致密油藏形成条件. 地质通报, 37(1): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201801009.htm
      陈鑫, 钟建华, 袁静, 等, 2009. 渤南洼陷古近系高岭石发育特征及转化机理. 石油勘探与开发, 36(4): 456-462. doi: 10.3321/j.issn:1000-0747.2009.04.007
      程日辉, 沈艳杰, 颜景波, 等, 2010. 海拉尔盆地火山碎屑岩的成岩作用. 岩石学报, 26(1): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201001007.htm
      达江, 胡咏, 赵孟军, 等, 2010. 准噶尔盆地克拉美丽气田油气源特征及成藏分析. 石油与天然气地质, 31(2): 187-192. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201002011.htm
      范裕, 董赫, 刘一男, 等, 2017. 安徽庐枞盆地罗河铁矿床中榍石LA-ICP-MS U-Pb定年及其意义. 岩石学报, 33(11): 3395-3410. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711004.htm
      黄思静, 黄可可, 冯文立, 等, 2009. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究. 地球化学, 38(5): 498-506. doi: 10.3321/j.issn:0379-1726.2009.05.009
      靳梦琪, 李艳广, 王鹏, 等, 2020. 榍石LA-ICP-MS U-Pb定年中元素分馏的影响及校正研究. 岩矿测试, 39(2): 274-284. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202002014.htm
      胡国辉, 张琪琪, 李建锋, 等, 2020. 辽东地区中生代花岗岩的侵位时代: 锆石和独居石U‐Pb年代学. 地球科学, 45(11): 3962-3981. doi: 10.3799/dqkx.2020.293
      林向洋, 苏玉平, 郑建平, 等, 2011. 准噶尔盆地克拉美丽气田复杂火山岩储层特征及控制因素. 地质科技情报, 30(6): 28-37. doi: 10.3969/j.issn.1000-7849.2011.06.004
      刘小洪, 冯明友, 郗爱华, 等, 2016a. 克拉美丽气田滴西地区石炭系火山岩储层成岩作用及孔隙演化. 岩性油气藏, 28(1): 38-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201601007.htm
      刘小洪, 冯明友, 郗爱华, 等, 2016b. 次火山岩储层储集空间形成及演化——以克拉美丽气田滴西18井区为例. 天然气地球科学, 27(2): 278-288. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201602011.htm
      罗冰, 夏茂龙, 汪华, 等, 2019. 四川盆地西部二叠系火山岩气藏成藏条件分析. 天然气工业, 39(2): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201902004.htm
      吕沅峻, 彭建堂, 蔡亚飞, 2021. 湖南杏枫山钨矿床热液榍石的地球化学特征、U-Pb定年及其地质意义. 岩石学报, 37(3): 830-846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103012.htm
      孟元林, 梁洪涛, 魏巍, 等, 2013. 浊沸石溶蚀过程的热力学计算与次生孔隙发育带预测: 以徐家围子断陷深层为例. 沉积学报, 31(3): 509-515. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201303014.htm
      石新朴, 胡清雄, 解志薇, 等, 2016. 火山岩岩性、岩相识别方法: 以准噶尔盆地滴南凸起火山岩为例. 天然气地球科学, 27(10): 1808-1816. doi: 10.11764/j.issn.1672-1926.2016.10.1808
      宋继叶, 秦明宽, 蔡煜琦, 等, 2019. 准东构造隆升对砂岩型铀成矿作用的制约: 磷灰石裂变径迹证据. 地球科学, 44(11): 3910-3925. doi: 10.3799/dqkx.2018.331
      王健, 张均, 张晓军, 等, 2019. 四川天宝山矿床闪锌矿Rb-Sr年代学、稳定同位素及地质意义. 地球科学, 44(9): 3026-3041. doi: 10.3799/dqkx.2018.192
      王永, 石永红, 陈柏林, 等, 2021. 西秦岭凤县地区早古生代岩浆作用特征——来自岩石地球化学、锆石U-Pb年龄及Hf同位素的证据. 地球科学, 46(6): 2016-2036. doi: 10.3799/dqkx.2020.233
      向华, 张利, 钟增球, 等, 2007. 榍石: U-Pb定年及变质P-T-t轨迹的建立. 地球科学进展, 22(12): 1258-1267. doi: 10.3321/j.issn:1001-8166.2007.12.006
      严育通, 李胜荣, 贾宝剑, 等, 2012. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析. 地学前缘, 19(4): 214-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204024.htm
      杨晓萍, 裘怿楠, 2002. 鄂尔多斯盆地上三叠统延长组浊沸石的形成机理、分布规律与油气关系. 沉积学报, 20(4): 628-632. doi: 10.3969/j.issn.1000-0550.2002.04.015
      叶凯, 叶大年, 1996. 高铝榍石中P+Mg+F=Si+Al+OH特殊替代的高压效应. 科学通报, 41(9): 811-814. doi: 10.3321/j.issn:0023-074X.1996.09.012
      袁丹, 2013. 准噶尔盆地滴西地区石炭系火山碎屑岩岩性岩相及储层特征(硕士学位论文). 成都: 西南石油大学.
      张丽媛, 纪友亮, 刘立, 等, 2012. 火山碎屑岩储层异常高孔隙成因——以南贝尔凹陷东次凹北洼槽为例. 石油学报, 33(5): 814-821. doi: 10.3969/j.issn.1001-8719.2012.05.017
      张生银, 朱军, 文革, 等, 2015. 准噶尔盆地陆东地区巴塔玛依内山组火山喷发时空序列及其石油地质意义. 中南大学学报(自然科学版), 46(1): 199-207. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201501027.htm
      朱乔乔, 谢桂青, 蒋宗胜, 等, 2014. 湖北金山店大型矽卡岩型铁矿热液榍石特征和原位微区LA-ICPMS U-Pb定年. 岩石学报, 30(5): 1322-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201405010.htm
      朱世发, 朱筱敏, 吴冬, 等, 2014. 准噶尔盆地西北缘下二叠统油气储层中火山物质蚀变及控制因素. 石油与天然气地质, 35(1): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201401011.htm
    • 加载中
    图(7) / 表(4)
    计量
    • 文章访问数:  881
    • HTML全文浏览量:  829
    • PDF下载量:  56
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-07-26
    • 刊出日期:  2022-05-25

    目录

      /

      返回文章
      返回