• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    内蒙古北山造山带北部早二叠世末期高镁辉长岩地球化学特征及构造意义

    张国震 辛后田 段连峰 牛文超 田健 张永

    张国震, 辛后田, 段连峰, 牛文超, 田健, 张永, 2022. 内蒙古北山造山带北部早二叠世末期高镁辉长岩地球化学特征及构造意义. 地球科学, 47(9): 3258-3269. doi: 10.3799/dqkx.2021.203
    引用本文: 张国震, 辛后田, 段连峰, 牛文超, 田健, 张永, 2022. 内蒙古北山造山带北部早二叠世末期高镁辉长岩地球化学特征及构造意义. 地球科学, 47(9): 3258-3269. doi: 10.3799/dqkx.2021.203
    Zhang Guozhen, Xin Houtian, Duan Lianfeng, Niu Wenchao, Tian Jian, Zhang Yong, 2022. Geochemical Characteristics and Tectonic Implications of the End Early Permian High Magnesium Gabbro from Northern Beishan Orogenic Belt, Inner Mongolia. Earth Science, 47(9): 3258-3269. doi: 10.3799/dqkx.2021.203
    Citation: Zhang Guozhen, Xin Houtian, Duan Lianfeng, Niu Wenchao, Tian Jian, Zhang Yong, 2022. Geochemical Characteristics and Tectonic Implications of the End Early Permian High Magnesium Gabbro from Northern Beishan Orogenic Belt, Inner Mongolia. Earth Science, 47(9): 3258-3269. doi: 10.3799/dqkx.2021.203

    内蒙古北山造山带北部早二叠世末期高镁辉长岩地球化学特征及构造意义

    doi: 10.3799/dqkx.2021.203
    基金项目: 

    中国地质调查局项目 DD20221631

    中国地质调查局项目 DD20211339

    中国地质调查局项目 DD20190472

    详细信息
      作者简介:

      张国震(1989—),男,高级工程师,博士,从事区域地质调查与矿床、岩石学研究. ORCID:0000-0002-9247-7214. E-mail:zhanggz1989@163.com

      通讯作者:

      辛后田,E-mail: 2680452804@qq.com

      段连峰,E-mail: 812197878@qq.com

    • 中图分类号: P581;P597

    Geochemical Characteristics and Tectonic Implications of the End Early Permian High Magnesium Gabbro from Northern Beishan Orogenic Belt, Inner Mongolia

    • 摘要: 在北山造山带北部百合山蛇绿混杂岩带南清河沟-红柳峡地区新识别出一套辉长岩.通过LA-ICP-MS锆石U-Pb定年,全岩主微量及Sr-Nd同位素工作,显示辉长岩侵位于278.2±1.3 Ma,具有高镁(Mg#=55~66)、低钾拉斑-钙碱性的地球化学特征,富集Rb、Ba、Sr等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素.辉长岩εNdt)介于5.64~6.77,具有较高的Sm/Yb比值,暗示岩浆起源于亏损地幔的部分熔融.较高的Mg#及Cr、Ni含量及Zr、Hf负异常,表明母岩浆经历了有限的分离结晶与地壳混染.结合区域地质资料,认为北山造山带北部增生造山作用结束时限为早-中二叠世,北山造山带古亚洲洋最终闭合可能在中二叠世之后.

       

    • 图  1  北山造山带大地构造位置简图(a)及主要蛇绿岩带分布图(b)(据Xiao et al., 2010辛后田等,2020

      Fig.  1.  Tectonic location (a) and distribution of ophiolites (b) of the Beishan orogenic belt (modified by Xiao et al., 2010; Xin et al., 2020)

      图  2  清河沟‒红柳峡地区地质简图

      Fig.  2.  Geological sketch of Qinghegou-Hongliuxia area

      图  3  北山造山带北部辉长岩野外露头及显微照片

      a. 辉长岩野外露头;b. 辉长岩手标本;c. 辉长岩成分不均一;d. 辉长岩镜下照片(正交偏光);Cpx.单斜辉石,Pl.斜长石

      Fig.  3.  Field outcrops and microphotographs of the gabbro from northern Beishan orogenic belt

      图  4  北山造山带北部辉长岩地球化学图解

      a.全碱-SiO2图解,据Wilson(1989);b. K2O-SiO2图解,据Rollinson(1993

      Fig.  4.  Geochemical diagrams of the gabbro from northern Beishan orogenic belt

      图  5  北山造山带北部辉长岩原始地幔标准化微量元素蛛网图(a);球粒陨石标准化稀土元素配分曲线(b)

      原始地幔及球粒陨石参考值引自Sun and McDonough(1998)

      Fig.  5.  Primitive mantle-normalized trace element patterns (a) and chondrite-normalized REE distribution patterns (b) of the gabbro from northern Beishan orogenic belt

      图  6  北山造山带北部辉长岩部分锆石阴极发光图像

      Fig.  6.  CL images of selected zircons of the gabbro from northern Beishan orogenic belt

      图  7  北山造山带北部辉长岩锆石U-Pb谐和图与加权平均年龄

      Fig.  7.  Zircon U-Pb concordia diagrams and weighted mean age of the gabbro from northern Beishan orogenic belt

      图  8  北山造山带北部辉长岩(87Sr/86Sr)i-εNd(t)图解(据DePaolo and Wasserburg,1979

      Fig.  8.  (87Sr/86Sr)i-εNd(t) diagram of the gabbro from northern Beishan orogenic belt(modified by DePaolo and Wasserburg, 1979)

      图  9  北山造山带北部辉长岩岩浆演化判别图解

      a. Mg#-SiO2判别图解;b. Mg#-Al2O3判别图解;c. La-La/Sm判别图解,Allègre and Minster(1978);d. La/Sm-Sm/Yb判别图解,Aldanmaz et al.(2000);Cpx.单斜辉石;Ol.橄榄石;Plag.斜长石;Fe-Ti.铁钛氧化物

      Fig.  9.  Discrimination diagrams of magma evolution of the gabbro from northern Beishan orogenic belt

      图  10  北山造山带北部辉长岩Th/Nb-Ta/Nd判别图解(a;Aldanmaz et al., 2008)和Nb/Yb-Th/Yb判别图解(b;Pearce, 2008

      Fig.  10.  Th/Nb-Ta/Nd (a; Aldanmaz et al., 2008) and Nb/Yb-Th/Yb (b; Pearce, 2008) diagrams for the gabbro from northern Beishan orogenic belt

      图  11  北山造山带北部百合山洋演化模式

      Fig.  11.  Evolution model of the Baiheshan Ocean of the northern Beishan orogenic belt

    • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95. https://doi.org/10.1016/S0377-0273(00)00182-7
      Aldanmaz, E., Yaliniz, M. K., Güctekin, A., et al., 2008. Geochemical Characteristics of Mafic Lavas from the Neotethyan Ophiolites in Western Turkey: Implications for Heterogeneous Source Contribution during Variable Stages of Ocean Crust Generation. Geological Magazine, 145(1): 37-54. https://doi.org/10.1017/s0016756807003986
      Allègre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1-25. https://doi.org/10.1016/0012-821X(78)90123-1
      Ao, S. J., Xiao, W. J., Han, C. M., et al., 2010. Geochronology and Geochemistry of Early Permian Mafic-Ultramafic Complexes in the Beishan Area, Xinjiang, NW China: Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids. Gondwana Research, 18(2-3): 466-478. https://doi.org/10.1016/j.gr.2010.01.004
      Ao, S. J., Xiao, W. J., Han, C. M., et al., 2012. Cambrian to Early Silurian Ophiolite and Accretionary Processes in the Beishan Collage, NW China: Implications for the Architecture of the Southern Altaids. Geological Magazine, 149(4): 606-625. https://doi.org/10.1017/s0016756811000884
      DePaolo, D. J., Wasserburg, G. J., 1979. Neodymium Isotopes in Flood Basalts from the Siberian Platform and Inferences about Their Mantle Sources. Proceedings of the National Academy of Sciences of the United States of America, 76(7): 3056-3060. https://doi.org/10.1073/pnas.76.7.3056
      Duan, L. F., Niu, W. C., Zhang, Y., et al., 2020. The Petrogenesis of Quartz Diorite (350 Ma) from the Baiheshan Area of the Beishan Orogenic Belt, and Its Chronological Constraint on Hongshishan-Baiheshan Ocean's Subduction Initiation. Geological Bulletin of China, 39(9): 1330-1340 (in Chinese with English abstract).
      Guo, Q. Q., Xiao, W. J., Windley, B. F., et al., 2012. Provenance and Tectonic Settings of Permian Turbidites from the Beishan Mountains, NW China: Implications for the Late Paleozoic Accretionary Tectonics of the Southern Altaids. Journal of Asian Earth Sciences, 49: 54-68. https://doi.org/10.1016/j.jseaes.2011.03.013
      Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341-2357. https://doi.org/10.1093/petrology/egm062
      He, F., Xu, L. Q., Su, H. W., et al., 2004. Characteristics and Tectonic Setting of Middle-Permian A-Type Granites in Tianshuijing Area, West of Inner Mongolia. Northwestern Geology, 37(3): 7-14 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2004.03.002
      Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627-630. https://doi.org/10.1130/0091-7613(2000)28627: reecoz>2.0.co;2 doi: 10.1130/0091-7613(2000)28627:reecoz>2.0.co;2
      Huang, Y. Q., Jiang, Y. D., Yu, Y., et al., 2020. Nd-Hf Isotopic Decoupling of the Silurian-Devonian Granitoids in the Chinese Altai: A Consequence of Crustal Recycling of the Ordovician Accretionary Wedge? Journal of Earth Science, 31(1): 102-114. https://doi.org/10.1007/s12583-019-1217-x
      Jahn, B. M., Windley, B., Natal'in, B., et al., 2004. Phanerozoic Continental Growth in Central Asia. Journal of Asian Earth Sciences, 23(5): 599-603. https://doi.org/10.1016/S1367-9120(03)00124-X
      Kröner, A., Windley, B. F., Badarch, G., et al., 2007. Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. Geological Society of America Memoirs, 200: 181-209. https://doi.org/10.1130/2007.1200(11)
      Lassiter, J., DePaolo, D. L., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In: John, J. M., Millard, F. C., eds., Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, Washington D. C. .
      Li, M., Xin, H. T., Ren, B. F., et al., 2019. Petrogenesis and Tectonic Significance of the Late Palaeozoic Granitoids in Hazhu Area, Inner Mongolia. Earth Science, 44(1): 328-343 (in Chinese with English abstract).
      Li, J. J., Peng, Y., Zhang, T., et al., 2021. Division of Metallogenic Units in North China. North China Geology, 44(3): 4-24 (in Chinese with English abstract).
      Liu, W. G., Wei, S., Zhang, J., et al., 2020. An Improved Separation Scheme for Sr through Fluoride Coprecipitation Combined with a Cation-Exchange Resin from Geological Samples with High Rb/Sr Ratios for High-Precision Determination of Sr Isotope Ratios. Journal of Analytical Atomic Spectrometry, 35(5): 953-960. https://doi.org/10.1039/d0ja00035c
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      Mao, Q. G., Xiao, W. J., Windley, B. F., et al., 2012. The Liuyuan Complex in the Beishan, NW China: A Carboniferous-Permian Ophiolitic Fore-Arc Sliver in the Southern Altaids. Geological Magazine, 149(3): 483-506. https://doi.org/10.1017/s0016756811000811
      McKenzie, D., O'Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
      Niu, W. C., Xin, H. T., Duan, L. F., et al., 2020. Geochemical Characteristics, Zircon U-Pb Age of SSZ Ophiolite in the Baiheshan Area of the Beishan Orogenic Belt, Inner Mongolia, and Its Indication for the Evolution of the Paleo-Asian Ocean. Geological Bulletin of China, 39(9): 1317-1329 (in Chinese with English abstract).
      Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
      Qi, R. R., Huang, Z. B., Jin, X., 2006. Geochemical Characteristics and Tectonic Implications of the Dashishan A-Type Granitic Intrusive in Beishan Area, Gansu Province. Acta Petrologica et Mineralogica, 25(2): 90-96 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2006.02.002
      Ren, B. F., Ren, Y. W., Niu, W. C., et al., 2019. Zircon U-Pb Ages and Hf Isotope Characteristics of the Volcanic Rocks from Queershan Group in the Hazhudongshan Area of Beishan, Inner Mongolia and Their Geological Significance. Earth Science, 44(1): 298-311 (in Chinese with English abstract)
      Rollinson, H. R., 1993. Using Geochemical Data: Evaluaiton, Presentation, Interdretation. Longman Scientific & Technical, New York.
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4
      Song, D. F., Xiao, W. J., Windley, B. F., et al., 2016. Metamorphic Complexes in Accretionary Orogens: Insights from the Beishan Collage, Southern Central Asian Orogenic Belt. Tectonophysics, 688: 135-147. https://doi.org/10.1016/j.tecto.2016.09.012
      Su, B. X., Qin, K. Z., Sakyi, P. A., et al., 2012. Geochronologic-Petrochemical Studies of the Hongshishan Mafic-Ultramafic Intrusion, Beishan Area, Xinjiang (NW China): Petrogenesis and Tectonic Implications. International Geology Review, 54(3): 270-289. https://doi.org/10.1080/00206814.2010.543011
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tian, J., Duan, X. L., Cheng, X. Y., 2020. Source Characteristics of the Late Silurian-Early Devonian Intrusive Rocks in the Central Part of the Beishan Orogenic Belt, NW China. Geological Survey and Research, 34(3): 207-211 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-4135.2020.03.002
      Tian, Z. H., Xiao, W. J., Shan, Y. H., et al., 2013. Mega-Fold Interference Patterns in the Beishan Orogen (NW China) Created by Change in Plate Configuration during Permo-Triassic Termination of the Altaids. Journal of Structural Geology, 52: 119-135. https://doi.org/10.1016/j.jsg.2013.03.016
      Wang, S. Q., Hu, X. J., Yang, Z. L., 2020. Detrital Zircon Geochronology and Tectonic Significance of Metamorphic Rocks from Chaganchulu Area, North of Erlianhot, Inner Mongolia. Geological Survey and Research, 43(4): 287-292 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-4135.2020.04.001
      Wei, Y. S., Yan, T., Yang, W. B., et al., 2020. The Establishment of Late Paleozoic Stratigraphic Framework in the Northern Belt of Beishan Orogenic Belt of Inner Mongolia. Geological Bulletin of China, 39(9): 1367-1388 (in Chinese with English abstract).
      Wilson, M., 1989. Igneous Petrogenesis. Unwim Hyman, London.
      Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022
      Xiao, W. J., Li, J. L., Song, D. F., et al., 2019. Structural Analyses and Spatio-Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract).
      Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553-1594. https://doi.org/10.2475/10.2010.12
      Xin, H. T., Niu, W. C., Tian, J., et al., 2020. Spatio-Temporal Structure of Beishan Orogenic Belt and Evolution of Paleo-Asian Ocean, Inner Mongolia. Geological Bulletin of China, 39(9): 1297-1316 (in Chinese with English abstract).
      Yang, H. Q., Li, Y., Zhao, G. B., et al., 2010. Character and Structural Attribute of the Beishan Ophiolite. Northwestern Geology, 43(1): 26-36 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2010.01.002
      Yu, J. Y., Li, X. M., Wang, G. Q., et al., 2012. Zircon U-Pb Ages of Huitongshan and Zhangfangshan Ophiolite in Beishan of Gansu-Inner Mongolia Border Area and Their Significance. Geological Bulletin of China, 31(12): 2038-2045 (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2012.12.013
      Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908X.2004.tb00755.x
      Zhang, Y. Y., Dostal, J., Zhao, Z. H., et al., 2011. Geochronology, Geochemistry and Petrogenesis of Mafic and Ultramafic Rocks from Southern Beishan Area, NW China: Implications for Crust-Mantle Interaction. Geoanalytical Research, 20(4): 816-830. https://doi.org/10.1016/j.gr.2011.03.008
      Zhou, M. F., Lesher, C. M., Yang, Z. X., et al., 2004. Geochemistry and Petrogenesis of 270 Ma Ni-Cu-(PGE) Sulfide-Bearing Mafic Intrusions in the Huangshan District, Eastern Xinjiang, Northwest China: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Chemical Geology, 209(3-4): 233-257. https://doi.org/10.1016/j.chemgeo.2004.05.005
      Zuo, G. C., Liu, Y. K., Liu, C. Y., 2003. Framework and Evolution of the Tectonic Structure in Beishan Area Across Gansu Provence, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region. Acta Geologica Gansu, 12(1): 1-15 (in Chinese with English abstract).
      段连峰, 牛文超, 张永, 等, 2020. 内蒙古北山造山带百合山地区350 Ma石英闪长岩的成因及对红石山-百合山洋俯冲时限的制约. 地质通报, 39(9): 1330-1340.
      贺锋, 许立权, 苏宏伟, 等, 2004. 内蒙古西部甜水井地区中二叠世A型花岗岩. 西北地质, 37(3): 7-14. doi: 10.3969/j.issn.1009-6248.2004.03.002
      李敏, 辛后田, 任邦方, 等, 2019. 内蒙古哈珠地区晚古生代花岗岩类成因及其构造意义. 地球科学, 44(1): 328-343. doi: 10.3799/dqkx.2018.238
      李俊建, 彭翼, 张彤, 等, 2021. 华北地区成矿单元划分. 华北地质, 44(3): 4-24. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202103002.htm
      牛文超, 辛后田, 段连峰, 等, 2020. 内蒙古北山造山带百合山SSZ型蛇绿岩地球化学特征、锆石U-Pb年龄及其对古亚洲洋演化的指示. 地质通报, 39(9): 1317-1329.
      齐瑞荣, 黄增保, 金霞, 2006. 甘肃北山大石山A型花岗岩体的地球化学特征及构造意义. 岩石矿物学杂志, 25(2): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200602002.htm
      任邦方, 任云伟, 牛文超, 等, 2019. 内蒙古北山哈珠东山泥盆系雀儿山群火山岩锆石U-Pb年龄、Hf同位素特征及其地质意义. 地球科学, 44(1): 298-311. doi: 10.3799/dqkx.2018.356
      田健, 段霄龙, 程先钰, 2020. 北山造山带中部晚志留世-早泥盆世侵入岩源区特征及其反映的陆壳增生机制. 地质调查与研究, 34(3): 207-211.
      王树庆, 胡晓佳, 杨泽黎, 2020. 内蒙古二连浩特北部查干楚鲁地区变质岩系碎屑锆石年代学及地质意义. 地质调查与研究, 43(4): 287-292. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202004001.htm
      卫彦升, 闫涛, 杨五宝, 等, 2020. 内蒙古北山造山带北带晚古生代地层时空格架的建立. 地质通报, 39(9): 1367-1388.
      肖文交, 李继亮, 宋东方, 等, 2019. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687. doi: 10.3799/dqkx.2019.979
      辛后田, 牛文超, 田健, 等, 2020. 内蒙古北山造山带时空结构与古亚洲洋演化. 地质通报, 39(9): 1297-1316.
      杨合群, 李英, 赵国斌, 等, 2010. 北山蛇绿岩特征及构造属性. 西北地质, 43(1): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201001003.htm
      余吉远, 李向民, 王国强, 等, 2012. 甘肃北山地区辉铜山和帐房山蛇绿岩LA-ICP-MS锆石U-Pb年龄及地质意义. 地质通报, 31(12): 2038-2045. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201212013.htm
      左国朝, 刘义科, 刘春燕, 2003. 甘新蒙北山地区构造格局及演化. 甘肃地质, 12(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200301000.htm
    • dqkxzx-47-9-3258-附表2.docx
      dqkxzx-47-9-3258-附表1.docx
      dqkxzx-47-9-3258-附表3.docx
    • 加载中
    图(11)
    计量
    • 文章访问数:  783
    • HTML全文浏览量:  521
    • PDF下载量:  91
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-03
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回