• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东天山平台山复式岩体岩石成因及其对晚古生代洋脊俯冲的启示

    马志杰 柴凤梅 王雯 毛启贵 祁冬梅 张雪冰

    马志杰, 柴凤梅, 王雯, 毛启贵, 祁冬梅, 张雪冰, 2022. 东天山平台山复式岩体岩石成因及其对晚古生代洋脊俯冲的启示. 地球科学, 47(9): 3210-3228. doi: 10.3799/dqkx.2021.213
    引用本文: 马志杰, 柴凤梅, 王雯, 毛启贵, 祁冬梅, 张雪冰, 2022. 东天山平台山复式岩体岩石成因及其对晚古生代洋脊俯冲的启示. 地球科学, 47(9): 3210-3228. doi: 10.3799/dqkx.2021.213
    Ma Zhijie, Chai Fengmei, Wang wen, Mao Qigui, Qi Dongmei, Zhang Xuebing, 2022. Petrogenesis of Pingtaishan Compound Massif in the Eastern Tianshan, NW China, and Its Implications on Late Paleozoic Ridge Subduction. Earth Science, 47(9): 3210-3228. doi: 10.3799/dqkx.2021.213
    Citation: Ma Zhijie, Chai Fengmei, Wang wen, Mao Qigui, Qi Dongmei, Zhang Xuebing, 2022. Petrogenesis of Pingtaishan Compound Massif in the Eastern Tianshan, NW China, and Its Implications on Late Paleozoic Ridge Subduction. Earth Science, 47(9): 3210-3228. doi: 10.3799/dqkx.2021.213

    东天山平台山复式岩体岩石成因及其对晚古生代洋脊俯冲的启示

    doi: 10.3799/dqkx.2021.213
    基金项目: 

    国家自然科学基金项目 U1403391

    国家自然科学基金项目 42072100

    国家重点研发计划项目 2017YFC0601201

    详细信息
      作者简介:

      马志杰(1995—),男,硕士研究生,矿物学、岩石学、矿床学专业. ORCID:0000-0002-7376-5480. E-mail:1140301941@qq.com

      通讯作者:

      柴凤梅, ORCID: 0000-0001-5279-2714. E-mail: chaifengmei@163.com

    • 中图分类号: P581

    Petrogenesis of Pingtaishan Compound Massif in the Eastern Tianshan, NW China, and Its Implications on Late Paleozoic Ridge Subduction

    • 摘要: 为深入了解东天山晚古生代时期的构造演化,对东天山卡拉塔格地区平台山岩体开展了系统的野外调查,并进行了锆石U-Pb年代学和地球化学研究.平台山岩体是由辉长岩、辉绿岩、角闪辉长岩和石英闪长岩组成的复式岩体.其中辉长岩和石英闪长岩的LA-ICP-MS锆石U-Pb年龄分别为284.7±2.8 Ma和270.0±3.4 Ma.辉长岩、辉绿岩和角闪辉长岩的SiO2为44.17%~50.14%,Fe2O3T为7.63%~12.75%,MgO介于2.79%~16.80%,全碱含量低且变化大(K2O+Na2O=1.79%~6.36%),Mg#值变化大(41~73),富集Rb、Ba、Sr、U和Pb,亏损Nb、Ta、Zr、Hf和Ti等高场强元素,与岛弧岩浆岩特征一致.石英闪长岩具有髙硅(SiO2=61.15%~64.62%)、富碱(K2O+Na2O=8.50%~9.34%),富集Rb、Ba和Zr、Hf、Y,具有Eu、Sr和Ti负异常,并有高的(Ga/Al)×104比值(3.55~3.68)和Y/Nb比值(14.31~16.28),与A2型花岗岩特征相似.辉长岩、辉绿岩和角闪辉长岩属于阿拉斯加型岩体,母岩浆来源于亏损地幔与被流体交代岩石圈地幔的混合物,石英闪长岩母岩浆来源于亏损地幔与下地壳熔体的混合物.结合区域资料,本文认为早二叠世康古尔洋尚未闭合,平台山复式岩体是康古尔洋洋脊斜向俯冲的产物.

       

    • 图  1  中亚造山带构造简图(a); 东天山‒北山地区地质略图(b); 卡拉塔格地质图(c); 平台山复式岩体地质图(d)

      图a据Şengör et al.,1993修编;图b据Xiao et al.,2004修编;图c据Mao et al.,2021b;图d实际填图

      Fig.  1.  A brief structural map of the Central Asian Orogenic Belt (a); sketch map of the eastern Tianshan-Beishan area (b); geological maps of the Kalatag area (c) and Pingtaishan compound massif (d)

      图  2  平台山复式岩体样品照片

      a~c.辉长岩;d~f.辉绿岩;g~i.角闪辉长岩;j~l.石英闪长岩. Qtz.石英;Pl.斜长石;Hbl.角闪石;Cpx.单斜辉石;Opx.斜方辉石;Ol.橄榄石;Ep.绿帘石;Chl.绿泥石;Mt.磁铁矿

      Fig.  2.  Photographs of samples from the Pingtaishan compound massif

      图  3  平台山复式岩体岩石系列判别图解

      a.K2O - SiO2图解,据Le Maitre(1989);b.Fe2O3T -Na2O+K2O-MgO图解,据Irvine and Baragar(1971

      Fig.  3.  Diagrams of rock series discrimination for Pingtaishan compound massif

      图  4  平台山复式岩体MgO与主微量元素构成的双变量图解

      Fig.  4.  Variation diagrams of MgO versus major and trace elements of Pingtaishan compound massif

      图  5  平台山复式岩体稀土元素球粒陨石标准化模式图(a, c, e, h)和微量元素原始地幔标准化模式图解(b, d, f, i)

      OIB、N-MORB和原始地幔和标准化数值据Sun and McDonough(1989

      Fig.  5.  Plots of chondrite-normalized REE patterns (a, c, e, h) and plots of primitive mantle-normalized trace element patterns (b, d, f, i) for Pingtaishan compound massif

      图  6  辉长岩和石英闪长岩锆石阴极发光(CL)图像、锆石U-Pb谐和图和加权平均年龄

      Fig.  6.  Cathodoluminescence (CL) image of measured zircons, zircon concordia diagrams and weighting diagrams for the gabbro and quartz diorite

      图  7  元素活动性判断图解

      Fig.  7.  Selected trace elements versus Th and Zr diagrams for discrimination element mobility

      图  8  A型花岗岩成因判别图解图解

      a.(Ga/Al)×104-Y,据Whalen et al.(1987);b. Nb-Y-3Ga,据Eby(1992

      Fig.  8.  Diagnostic diagram of petrogenesis for A-type granites

      图  9  平台山复式岩体地壳混染判别图解

      a. La/Ba-La/Nb图解;b. Nb/Zr-Th/Zr图解;c.(Nb/Th)PM-(Th/Yb)PM图解;d. Nb/Th-Nb/La图解. 数据来源:灰色区域为博格达‒觉罗塔格辉长岩,据Su et al.(2012);上地壳、下地壳数据来自Rudnick and Gao(2003);图c原始地幔标准化数据来自Sun and McDonough(1989

      Fig.  9.  Crustal contamination discrimination diagrams for the Pingtaishan compound massif

      图  10  平台山复式岩体构造判别图解

      a. Th/Yb-Ta/Yb图解,据Pearce(1982);b. Hf/3-Th-Ta图解,据Wood(1980);c. Nb -Y图解;d. Ta-Yb图解,据Pearce et al.(1984)

      Fig.  10.  Diagrams of structure discrimination for Pingtaishan compound massif

      图  11  康古尔洋洋脊俯冲构造示意图(据Mao et al., 2021d修编)

      Fig.  11.  Diagram of perspective structure of oceanic ridge subduction for the Kangguer Ocean (modified after Mao et al., 2021d)

    • Allen, M. B., Şengör, A. M. C., Natal'in, B. A., 1995. Junggar, Turfan and Alakol Basins as Late Permian to? Early Triassic Extensional Structures in a Sinistral Shear Zone in the Altaid Orogenic Collage, Central Asia. Journal of the Geological Society, 152(2): 327-338. https://doi.org/10.1144/gsjgs.152.2.0327
      Allen, M. B., Windley, B. F., Zhang, C., 1993. Palaeozoic Collisional Tectonics and Magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics, 220(1-4): 89-115. https://doi.org/10.1016/0040-1951(93)90225-9
      Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
      Ao, S. J., Mao, Q. G., Windley, B. F., et al., 2021. The Youngest Matrix of 234 Ma of the Kanguer Accretionary Mélange Containing Blocks of N-MORB Basalts: Constraints on the Northward Subduction of the Paleo-Asian Kanguer Ocean in the Eastern Tianshan of the Southern Altaids. International Journal of Earth Sciences, 110(3): 791-808. https://doi.org/10.1007/s00531-021-01990-5
      Ao, S. J., Xiao, W. J., Han, C. M., et al., 2010. Geochronology and Geochemistry of Early Permian Mafic- Ultramafic Complexes in the Beishan Area, Xinjiang, NW China: Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids. Gondwana Research, 18(2-3): 466-478. https://doi.org/10.1016/j.gr.2010.01.004
      Branquet, Y., Gumiaux, C., Sizaret, S., et al., 2012. Synkinematic Mafic/Ultramafic Sheeted Intrusions: Emplacement Mechanism and Strain Restoration of the Permian Huangshan Ni-Cu Ore Belt (Eastern Tianshan, NW China). Journal of Asian Earth Sciences, 56: 240-257. https://doi.org/10.1016/j.jseaes.2012.05.021
      Brown, M., 1998. Ridge-Trench Interactions and High-T-Low-P Metamorphism, with Particular Reference to the Cretaceous Evolution of the Japanese Islands. Geological Society, London, Special Publications, 138(1): 137-169. https://doi.org/10.1144/gsl.sp.1996.138.01.09
      Chai, F. M., Zhang, Z. C., Dong, L. H., et al., 2007. Geochemistry and Petrogenesis of the Baishiquan Cu-Ni Sulfide-Bearing Mafic-Ultramafic Intrusion in the Central Tianshan, Xinjiang, NW China. Acta Petrologica Sinica, 23(10): 2366-2378 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.005
      Chai, F. M., Zhang, Z. C., Li, W. H., et al., 2019. The Early Paleozoic Huangtupo VMS Cu-Zn Deposit in Kalatag, Eastern Tianshan: Implications from Geochemistry and Zircon U-Pb Geochronology of Volcanic Host Rocks. Lithos, 342-343: 97-113. https://doi.org/10.1016/j.lithos.2019.05.026
      Chai, F. M., Zhang, Z. C., Mao, J. W., et al., 2008. Geology, Petrology and Geochemistry of the Baishiquan Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Xinjiang, NW China: Implications for Tectonics and Genesis of Ores. Journal of Asian Earth Sciences, 32(2-4): 218-235. https://doi.org/10.1016/j.jseaes.2007.10.014
      Chen, W., Sun, S., Zhang, Y., et al., 2005. 40Ar/39Ar Geochronology of the Qiugemingtashi-Huangshan Ductile Shear Zone in East Tianshan, Xinjiang, NW China. Acta Geologica Sinica, 79(6): 790-804 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2005.06.008
      Chen, X. J., Shu, L. S., Santosh, M., 2011. Late Paleozoic Post-Collisional Magmatism in the Eastern Tianshan Belt, Northwest China: New Insights from Geochemistry, Geochronology and Petrology of Bimodal Volcanic Rocks. Lithos, 127(3-4): 581-598. https://doi.org/10.1016/j.lithos.2011.06.008
      Chen, Z. Y., Xiao, W. J., Windley, B. F., et al., 2020. Latest Permian-Early Triassic Arc Amalgamation of the Eastern Tianshan (NW China): Constraints from Detrital Zircons and Hf Isotopes of Devonian-Triassic Sediments. Geological Journal, 55(3): 1708-1727. https://doi.org/10.1002/gj.3540
      Condie, K. C., 2005. TTGs and Adakites: Are They both Slab Melts? Lithos, 80(1-4): 33-44. https://doi.org/10.1016/j.lithos.2003.11.001
      Cui, M. M., Bai, Y., Luo, Y., et al., 2020. Characteristics, Petrogenesis and Metallogenesis of Alaskan-Type Complexes. Mineral Deposits, 39(3): 397-418 (in Chinese with English abstract).
      DeBari, S. M., Coleman, R. G., 1989. Examination of the Deep Levels of an Island Arc: Evidence from the Tonsina Ultramafic-Mafic Assemblage, Tonsina, Alaska. Journal of Geophysical Research: Solid Earth, 94(B4): 4373-4391. https://doi.org/10.1029/JB094iB04p04373
      Dickinson, W. R., Snyder, W. S., 1979. Geometry of Triple Junctions Related to San Andreas Transform. Journal of Geophysical Research: Solid Earth, 84(B2): 561-572. https://doi.org/10.1029/JB084iB02p00561
      Du, L., Long, X. P., Yuan, C., et al., 2018. Petrogenesis of Late Paleozoic Diorites and A-Type Granites in the Central Eastern Tianshan, NW China: Response to Post-Collisional Extension Triggered by Slab Breakoff. Lithos, 318-319: 47-59. https://doi.org/10.1016/j.lithos.2018.08.006
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)0200641: csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2
      Gibson, I. L., Kirkpatrick, R. J., Emmerman, R., et al., 1982. The Trace Element Composition of the Lavas and Dikes from a 3-km Vertical Section through the Lava Pile of Eastern Iceland. Journal of Geophysical Research: Solid Earth, 87(B8): 6532-6546. https://doi.org/10.1029/JB087iB08p06532
      Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2010. In-Situ U-Pb, Hf and Re-Os Isotopic Analyses of the Xiangshan Ni-Cu-Co Deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the Timing and Genesis of the Mineralization. Lithos, 120(3-4): 547-562. https://doi.org/10.1016/j.lithos.2010.09.019
      Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2009.04.010
      Irvine, T. N., 1974. Petrology of the Duke Island Ultramafic Complex Southern Alaska. Geological Society of America Memoir, 138: 240. https://doi.org/10.1130/MEM138-p1
      Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
      Iwamori, H., 2000. Thermal Effects of Ridge Subduction and Its Implications for the Origin of Granitic Batholith and Paired Metamorphic Belts. Earth and Planetary Science Letters, 181(1-2): 131-144. https://doi.org/10.1016/S0012-821X(00)00182-5
      Laurent-Charvet, S., Charvet, J., Monié, P., et al., 2003. Late Paleozoic Strike-Slip Shear Zones in Eastern Central Asia (NW China): New Structural and Geochronological Data. Tectonics, 22(2): 1009-1032. https://doi.org/10.1029/2001TC901047
      Le Maitre, R. W., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford.
      Li, H. Q., Chen, F. W., Lu, Y. F., et al., 2004. Zircon SHRIMP U-Pb Age and Strontium Isotopes of Mineralized Granitoids in the Sanchakou Copper Polymetallic Depoist, East Tianshan Mountains. Acta Geoscientica Sinica, 25(2): 191-195 (in Chinese with English abstract).
      Li, J. Y., 2004. Late Neoproterozoic and Paleozoic Tectonic Framework and Evolutionof Eastern Xinjiang, NW China. Geological Review, 50(3): 304-322 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2004.03.015
      Lightfoot, P. C., Hawkesworth, C. J., Sethna, S. F., 1987. Petrogenesis of Rhyolites and Trachytes from the Deccan Trap: Sr, Nd and Pb Isotope and Trace Element Evidence. Contributions to Mineralogy and Petrology, 95(1): 44-54. https://doi.org/10.1007/BF00518029
      Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      Luo, T., Chen, J. P., Liao, Q. A., et al., 2020. A Back-Arc Basin in Eastern Tianshan, Central Asia: Evidence from Geochronology and Geochemistry of Carboniferous Basalts. Earth Science, 45(1): 194-210 (in Chinese with English abstract).
      Lü, X. Q., Mao, Q. G., Guo, N. X., et al., 2020. Re-Os Isotopic Dating of Pyrrhotite from Yueyawan Cu-Ni Sulfide Deposit in Kalatage Area of East Tianshan Mountain and Its Geological Significance. Earth Science, 45(9): 3475-3486 (in Chinese with English abstract).
      Ma, R. S., Shu, L. S., Sun, J. Q., 1997. Tectonic Evolution and Metallogeny of Eastern Tianshan Mountains. Geological Publishing House, Beijing (in Chinese).
      Ma, Z. J., Chai, F. M., Xu, Q. F., et al., 2021. The Discovery of Low-Carboniferous Arc Volcanic Rocks and Its Tectonic Significance at the Kalatag Area in the Eastern Tianshan. Chinese Journal of Geology, 56(3): 683-700 (in Chinese with English abstract).
      Mao, J. W., Pirajno, F., Zhang, Z. H., et al., 2008. A Review of the Cu-Ni Sulphide Deposits in the Chinese Tianshan and Altay Orogens (Xinjiang Autonomous Region, NW China): Principal Characteristics and Ore-Forming Processes. Journal of Asian Earth Sciences, 32(2-4): 184-203. https://doi.org/10.1016/j.jseaes.2007.10.006
      Mao, Q. G., Ao, S. J., Windley, B. F., et al., 2021a. Middle Triassic Lower Crust-Derived Adakitic Magmatism: Thickening of the Dananhu Intra-Oceanic Arc and Its Implications for Arc-Arc Amalgamation in the Eastern Tianshan (NW China). Geological Journal, 56(6): 3137-3154. https://doi.org/10.1002/gj.4095
      Mao, Q. G., Ao, S. J., Windley, B. F., et al., 2021c. Petrogenesis of Late Carboniferous-Early Permian Mafic-Ultramafic-Felsic Complexes in the Eastern Central Tianshan, NW China: The Result of Subduction-Related Transtension? Gondwana Research, 95: 72-87. https://doi.org/10.1016/j.gr.2021.03.007
      Mao, Q. G., Ao, S. J., Windley, B. F., et al., 2021d. Cu-Ni Mineralization in Early Permian Mafic Complexes in the Kalatage Area of Eastern Tianshan (NW China): Petrogenetic Constraints from Geochronology, Geochemistry, and Hf-Sr-Nd-Os Isotopes. Ore Geology Reviews, 136: 104258. https://doi.org/10.1016/j.oregeorev.2021.104258
      Mao, Q. G., Fang, T. H., Wang, J. B., et al., 2010. Geochronology Studies of the Early Paleozoic Honghai Massive Sulfide Deposits and Its Geological Significance in Kalatage Area, Eastern Tianshan Mountain. Acta Petrologica Sinica, 26(10): 3017-3026 (in Chinese with English abstract).
      Mao, Q. G., Wang, J. B., Xiao, W. J., et al., 2021b. From Ordovician Nascent to Early Permian Mature Arc in the Southern Altaids: Insights from the Kalatage Inlier in the Eastern Tianshan, NW China. Geosphere, 17(2): 647-683. https://doi.org/10.1130/GES02232.1.
      Mao, Q. G., Xiao, W. J., Fang, T. H., et al., 2014. Geochronology, Geochemistry and Petrogenesis of Early Permian Alkaline Magmatism in the Eastern Tianshan: Implications for Tectonics of the Southern Altaids. Lithos, 190-191: 37-51. https://doi.org/10.1016/j.lithos.2013.11.011
      Mao, Q. G., Xiao, W. J., Han, C. M., et al., 2006. Zircon U-Pb Age and the Geochemistry of the Baishiquan Mafic-Ultramafic Complex in the Eastern Tianshan, Xinjiang Province: Constraints on the Closure of the Paleo-Asian Ocean. Acta Petrologica Sinica, 22(1): 153-162 (in Chinese with English abstract).
      Mao, Q. G., Xiao, W. J., Windley, B. F., et al., 2021e. Early Permian Subduction-Related Transtension in the Turpan Basin, East Tianshan (NW China): Implications for Accretionary Tectonics of the Southern Altaids. Geological Magazine, 158(1): 175-198. https://doi.org/10.1017/s0016756819001006
      Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesite: Orogenic Andesite and Related Rocks. Willy, Chichester.
      Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Pearce, J. A., Thirlwall, M. F., Ingram, G., et al., 1992. Isotopic Evidence for the Origin of Boninites and Related Rocks Drilled in the Izu-Bonin (Osagawara) Forearc, Leg 125. Proceedings of the Ocean Drilling Program, 125: 237-261. https://doi.org/10.2973/odp.proc.sr.125.134.1992
      Pirajno, F., Mao, J. W., Zhang, Z. C., et al., 2008. The Association of Mafic-Ultramafic Intrusions and A-Type Magmatism in the Tian Shan and Altay Orogens, NW China: Implications for Geodynamic Evolution and Potential for the Discovery of New Ore Deposits. Journal of Asian Earth Sciences, 32(2-4): 165-183. https://doi.org/10.1016/j.jseaes.2007.10.012
      Qin, K. Z., Fang, T. H., Wang, S. L., et al., 2001. Discovery of the Kalatage Cu-Au Mineralized District and Its Prospecting Potentiality, Paleozoic Window at the South Margin of the Tu-Ha Basin. Chinese Geology, 28(3): 16-23 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2001.03.004
      Qin, K. Z., Su, B. X., Sakyi, P. A., et al., 2011. SIMS Zircon U-Pb Geochronology and Sr-Nd Isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in Correlation with Flood Basalts in Tarim Basin (NW China): Constraints on a Ca. 280 Ma Mantle Plume. American Journal of Science, 311(3): 237-260. https://doi.org/10.2475/03.2011.03
      Qin, K. Z., Zhang, L. C., Ding, K. S., et al., 2009. Mineralization Type, Petrogenesis of Ore-Bearing Intrusions and Mineralogical Characteristics of Sanchakou Copper Deposits in Eastern Tianshan. Acta Petrologica Sinica, 25(4): 845-861 (in Chinese with English abstract).
      Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1-2): 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4
      Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
      Şengör, A. M. C., Natal'in, B. A., 1996. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annual Review of Earth and Planetary Sciences, 24(1): 263-337. https://doi.org/10.1146/annurev.earth.24.1.263
      Shen, X. M., Zhang, H. X., Ma, L., 2010. Ridge Subduction and the Possible Evidences in Chinese Altay, Xinjiang. Geotectonica et Metallogenia, 34(2): 181-195 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2010.02.004
      Shu, L. S., Wang, B., Zhu, W. B., et al., 2011. Timing of Initiation of Extension in the Tianshan, Based on Structural, Geochemical and Geochronological Analyses of Bimodal Volcanism and Olistostrome in the Bogda Shan (NW China). International Journal of Earth Sciences, 100(7): 1647-1663. https://doi.org/10.1007/s00531-010-0575-5
      Sisson, V. B., Pavlis, T. L., Roeske, S. M., et al., 2003. Introduction: An Overview of Ridge-Trench Interactions in Modern and Ancient Settings. Geological Society of America Special Paper, 371: 1-18. https://doi.org/10.1130/0-8137-2371-X.1
      Song, X. Y., Xie, W., Deng, Y. F., et al., 2011. Slab Break-Off and the Formation of Permian Mafic-Ultramafic Intrusions in Southern Margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127(1-2): 128-143. https://doi.org/10.1016/j.lithos.2011.08.011
      Su, B. X., Qin, K. Z., Sun, H., et al., 2012. Subduction-Induced Mantle Heterogeneity Beneath Eastern Tianshan and Beishan: Insights from Nd-Sr-Hf-O Isotopic Mapping of Late Paleozoic Mafic-Ultramafic Complexes. Lithos, 134-135: 41-51. https://doi.org/10.1016/j.lithos.2011.12.011
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, Y., Wang, J. B., Li, Y. C., et al., 2018. Recognition of Late Ordovician Yudai Porphyry Cu (Au, Mo) Mineralization in the Kalatag District, Eastern Tianshan Terrane, NW China: Constraints from Geology, Geochronology, and Petrology. Ore Geology Reviews, 100: 220-236. https://doi.org/10.1016/j.oregeorev.2017.07.011
      Sun, Y., Wang, J. B., Lü, X. Q., et al., 2019b. Geochronology, Petrogenesis and Tectonic Implications of the Newly Discovered Cu-Ni Sulfide-Mineralized Yueyawan Gabbroic Complex, Kalatag District, Northwestern Eastern Tianshan, NW China. Ore Geology Reviews, 109: 598-614. https://doi.org/10.1016/j.oregeorev.2019.05.009
      Sun, Y., Wang, J. B., Wang, Y. W., et al., 2019a. Ages and Origins of Granitoids from the Kalatag Cu Cluster in Eastern Tianshan, NW China: Constraints on Ordovician-Devonian Arc Evolution and Porphyry Cu Fertility in the Southern Central Asian Orogenic Belt. Lithos, 330/331: 55-73. https://doi.org/10.1016/j.lithos.2019.02.002
      Tang, D. M., Qin, K. Z., Su, B. X., et al., 2013. Magma Source and Tectonics of the Xiangshanzhong Mafic-Ultramafic Intrusion in the Central Asian Orogenic Belt, NW China, Traced from Geochemical and Isotopic Signatures. Lithos, 170-171: 144-163. https://doi.org/10.1016/j.lithos.2013.02.013
      Taylor, H. P., 1967. The Zoned Ultramafic Complexes of Southeastern Alaska. In: Wyllie, P. J., ed., Ultramafic and Related Rocks. John Wiley & Sons, New York.
      Thorkelson, D. J., 1996. Subduction of Diverging Plates and the Principles of Slab Window Formation. Tectonophysics, 255(1-2): 47-63. https://doi.org/10.1016/0040-1951(95)00106-9
      Wang, B., Cluzel, D., Jahn, B. M., et al., 2014. Late Paleozoic Pre- and Syn-Kinematic Plutons of the Kangguer-Huangshan Shear Zone: Inference on the Tectonic Evolution of the Eastern Chinese North Tianshan. American Journal of Science, 314(1): 43-79. https://doi.org/10.2475/01.2014.02
      Wang, B., Cluzel, D., Shu, L. S., et al., 2009. Evolution of Calc-Alkaline to Alkaline Magmatism through Carboniferous Convergence to Permian Transcurrent Tectonics, Western Chinese Tianshan. International Journal of Earth Sciences, 98(6): 1275-1298. https://doi.org/10.1007/s00531-008-0408-y
      Wang, J. B., Wang, Y. W., He, Z. J., 2006. Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China. Geology in China, 33(3): 461-469 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.03.002
      Wang, P. X., Guo, F., Wang, Z. N., 2020. Zircon U-Pb Geochronology, Geochemistry and Geological Significance of Granitoids in the Yazigou, Qimantage Area of East Kunlun Mountains. Geoscience, 34(5): 987-1000 (in Chinese with English abstract).
      Wang, Q., Wyman, D. A., Zhao, Z. H., et al., 2007. Petrogenesis of Carboniferous Adakites and Nb-Enriched Arc Basalts in the Alataw Area, Northern Tianshan Range (Western China): Implications for Phanerozoic Crustal Growth in the Central Asia Orogenic Belt. Chemical Geology, 236(1-2): 42-64. https://doi.org/10.1016/j.chemgeo.2006.08.013
      Wang, Y., Li, J. Y., Li, W. Q., 2002. 40Ar-39Ar Chronological Evidence of Dextral Shear and Tectonic Evolution of the Eastern Tianshan Orogenic Belt. Xinjiang Geology, 20(4): 315-319 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2002.04.004
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Springer, London.
      Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022
      Windley, B. F., Xiao, W. J., 2018. Ridge Subduction and Slab Windows in the Central Asian Orogenic Belt: Tectonic Implications for the Evolution of an Accretionary Orogen. Gondwana Research, 61: 73-87. https://doi.org/10.1016/j.gr.2018.05.003
      Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. https://doi.org/10.1016/0012-821X(80)90116-8
      Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.001
      Xiao, Q. H., Deng, J. F., Ma, D. Q., 2002. The Ways of Investigation on Granitoids. Geological Publishing House, Beijing (in Chinese).
      Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553-1594. https://doi.org/10.2475/10.2010.12
      Xiao, W. J., Windley, B. F., Badarch, G., et al., 2004. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 161(3): 339-342. https://doi.org/10.1144/0016-764903-165
      Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
      Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      Yu, M. J., Wang, Y. W., Wang, J. B., et al., 2019. The Mineralization of the Kalatage Arc, Eastern Tianshan, NW China: Insights from the Geochronology of the Meiling Cu-Zn(-Au) Deposit. Ore Geology Reviews, 107: 72-86. https://doi.org/10.1016/j.oregeorev.2018.12.009
      Yuan, C., Sun, M., Wilde, S., et al., 2010. Post-Collisional Plutons in the Balikun Area, East Chinese Tianshan: Evolving Magmatism in Response to Extension and Slab Break-Off. Lithos, 119(3-4): 269-288. https://doi.org/10.1016/j.lithos.2010.07.004
      Zhang, Y. X., Yaxiaer, Y., Zhang, B. W., et al., 2021. Geochronology, Geochemistry and Tectonic Significance of Quartz Monzonite in Hardaban, Southern Wenquan, Xinjiang. Chinese Journal of Geology, 56(4): 1192-1213 (in Chinese with English abstract).
      Zhou, D. W., Liu, Y. Q., Xing, X. J., et al., 2006. Formation of the Permian Basalts and Implications of Geochemical Tracing for Paleo-Tectonic Setting and Regional Tectonic Background in the Turpan-Hami and Santanghu Basins, Xinjiang. Science in China (Series D), 36(2): 143-153 (in Chinese).
      Zhou, G. C., Wang, Y. W., Shi, Y., et al., 2019. Geochronology and Geochemistry of Mafic Intrusions in the Kalatag Area, Eastern Tianshan. Acta Petrologica Sinica, 35(10): 3189-3212 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.14
      Zhou, M. F., Lesher, C. M., Yang, Z. X., et al., 2004. Geochemistry and Petrogenesis of 270 Ma Ni-Cu-(PGE) Sulfide-Bearing Mafic Intrusions in the Huangshan District, Eastern Xinjiang, Northwest China: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Chemical Geology, 209(3-4): 233-257. https://doi.org/10.1016/j.chemgeo.2004.05.005
      Zhou, T. F., Yuan, F., Zhang, D. Y., et al., 2010. Geochronology, Tectonic Setting and Mineralization of Granitoids in Jueluotage Area, Eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 26(2): 478-502 (in Chinese with English abstract).
      柴凤梅, 张招崇, 董连慧, 等, 2007. 新疆中天山白石泉含铜镍矿镁铁‒超镁铁岩体地球化学特征与岩石成因. 岩石学报, 23(10): 2366-2378. doi: 10.3969/j.issn.1000-0569.2007.10.005
      陈文, 孙枢, 张彦, 等, 2005. 新疆东天山秋格明塔什‒黄山韧性剪切带40Ar/39Ar年代学研究. 地质学报, 79(6): 790-804. doi: 10.3321/j.issn:0001-5717.2005.06.008
      崔梦萌, 白洋, 罗扬, 等, 2020. 阿拉斯加型岩体的基本特征、成岩过程及成矿作用. 矿床地质, 39(3): 397-418.
      侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      李华芹, 陈富文, 路远发, 等, 2004. 东天山三岔口铜矿区矿化岩体SHRIMP U-Pb年代学及锶同位素地球化学特征研究. 地球学报, 25(2): 191-195. doi: 10.3321/j.issn:1006-3021.2004.02.018
      李锦轶, 2004. 新疆东部新元古代晚期和古生代构造格局及其演变. 地质论评, 50(3): 304-322. doi: 10.3321/j.issn:0371-5736.2004.03.015
      罗婷, 陈继平, 廖群安, 等, 2020. 东天山觉罗塔格构造带石炭纪弧后盆地: 来自基性火山岩的证据. 地球科学, 45(1): 194-210. doi: 10.3799/dqkx.2018.325
      吕晓强, 毛启贵, 郭娜欣, 等, 2020. 东天山卡拉塔格地区月牙湾铜镍硫化物矿床磁黄铁矿Re-Os同位素测定及其地质意义. 地球科学, 45(9): 3475-3486. doi: 10.3799/dqkx.2019.228
      马瑞士, 舒良树, 孙家齐, 1997. 东天山构造演化与成矿. 北京: 地质出版社.
      马志杰, 柴凤梅, 许强奋, 等, 2021. 东天山卡拉塔格晚石炭世岛弧火山岩发现的地质意义. 地质科学, 56(3): 683-700. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202103002.htm
      毛启贵, 方同辉, 王京彬, 等, 2010. 东天山卡拉塔格早古生代红海块状硫化物矿床精确定年及其地质意义. 岩石学报, 26(10): 3017-3026. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010013.htm
      毛启贵, 肖文交, 韩春明, 等, 2006. 新疆东天山白石泉铜镍矿床基性‒超基性岩体锆石U-Pb同位素年龄、地球化学特征及其对古亚洲洋闭合时限的制约. 岩石学报, 22(1): 153-162. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601016.htm
      秦克章, 方同辉, 王书来, 等, 2001. 吐哈盆地南缘古生代"天窗"卡拉塔格铜金矿化区的发现及其成矿潜力. 中国地质, 28(3): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200103003.htm
      秦克章, 张连昌, 丁奎首, 等, 2009. 东天山三岔口铜矿床类型、赋矿岩石成因与矿床矿物学特征. 岩石学报, 25(4): 845-861. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904010.htm
      沈晓明, 张海祥, 马林, 2010. 洋脊俯冲及其在新疆阿尔泰地区存在的可能证据. 大地构造与成矿学, 34(2): 181-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201002006.htm
      王京彬, 王玉往, 何志军, 2006. 东天山大地构造演化的成矿示踪. 中国地质, 33(3): 461-469. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603001.htm
      王盘喜, 郭峰, 王振宁, 2020. 东昆仑祁漫塔格鸭子沟地区花岗岩类岩石年代学、地球化学及地质意义. 现代地质, 34(5): 987-1000.
      王瑜, 李锦轶, 李文铅, 2002. 东天山造山带右行剪切变形及构造演化的40Ar-39Ar年代学证据. 新疆地质, 20(4): 315-319. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200204005.htm
      吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm
      肖庆辉, 邓晋福, 马大铨, 2002. 花岗岩研究思维与方法. 北京: 地质出版社.
      张宇昕, 亚夏尔·亚力坤, 张博文, 等, 2021. 新疆温泉南部哈尔达坂石英二长岩年代学、地球化学及构造意义. 地质科学, 56(4): 1192-1213. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202104014.htm
      周鼎武, 柳益群, 邢秀娟, 等, 2006. 新疆吐‒哈、三塘湖盆地二叠纪玄武岩形成古构造环境恢复及区域构造背景示踪. 中国科学(D辑), 36(2): 143-153. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200602003.htm
      周国超, 王玉往, 石煜, 等, 2019. 东天山卡拉塔格地区镁铁质岩体年代学、岩石地球化学研究. 岩石学报, 35(10): 3189-3212. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201910015.htm
      周涛发, 袁峰, 张达玉, 等, 2010. 新疆东天山觉罗塔格地区花岗岩类年代学、构造背景及其成矿作用研究. 岩石学报, 26(2): 478-502. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002014.htm
    • dqkxzx-47-9-3210-附表1-2.doc
    • 加载中
    图(11)
    计量
    • 文章访问数:  1028
    • HTML全文浏览量:  559
    • PDF下载量:  84
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-13
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回