• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    河水-地下水侧向交互带微生物群落分布特征及其主控因子

    朱子超 刘慧 毛胜军 马奥兰 李民敬

    朱子超, 刘慧, 毛胜军, 马奥兰, 李民敬, 2023. 河水-地下水侧向交互带微生物群落分布特征及其主控因子. 地球科学, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217
    引用本文: 朱子超, 刘慧, 毛胜军, 马奥兰, 李民敬, 2023. 河水-地下水侧向交互带微生物群落分布特征及其主控因子. 地球科学, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217
    Zhu Zichao, Liu Hui, Mao Shengjun, Ma Aolan, Li Minjing, 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217
    Citation: Zhu Zichao, Liu Hui, Mao Shengjun, Ma Aolan, Li Minjing, 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217

    河水-地下水侧向交互带微生物群落分布特征及其主控因子

    doi: 10.3799/dqkx.2021.217
    基金项目: 

    国家自然科学基金重点项目 41830862

    国家创新群体项目 41521001

    湖北省创新群体项目 2018CFA028

    中央高校基础研究基金中国地质大学(武汉)项目 CUGCJ1803

    中央高校基础研究基金中国地质大学(武汉)项目 CUGQY1928

    详细信息
      作者简介:

      朱子超(1996-),男,硕士研究生,主要研究方向为河流交互带微生物群落结构. ORCID:0000-0001-7888-0464. E-mail:470109153@qq.com

      通讯作者:

      刘慧,E-mail:hliu2009@cug.edu.cn

    • 中图分类号: P69

    Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors

    • 摘要: 河水-地下水交互带独特的水文地球化过程会严重影响微生物群落分布,研究该分布特性可为一系列生物地球化学循环提供新的认识.以汉江下游侧向交互带沉积物为对象,通过16SrRNA基因高通量测序分析交互带沉积物二维剖面中微生物群落多样性、物种组成及其与环境因子的关系.研究表明:以河水补给地下水为主流方向的剖面中微生物群落分布差异性较大;交互带微生物多样性与TOC、Mn极显著负相关,与NH4+、As显著负相关,近河处水位线下分布着微生物多样性高的区域,富集氧化态的NO3-、Fe(III)、SO42-,其中大量化能异养菌丰度下降,聚磷酸盐、氨氧化和噬甲基相关功能微生物丰度升高;而交互带边缘区域微生物多样性低,TOC、NH4+、Mn和As相对较高.总之,水流交互作用决定了交互带沉积物的DO和TOC的分布,从而调控着其中微生物群落变化及多种元素的生物地球化学过程.

       

    • 图  1  研究区及采样点布置

      红线为采样点,蓝色为地下水

      Fig.  1.  Study area and sampling point layout

      图  2  交互带沉积物化学指标

      Fig.  2.  Chemical characterization of sediments in the interaction zone of the study area

      图  3  交互带沉积物微生物alpha多样性分布

      白色虚线为水位线,空心圆为采样位置

      Fig.  3.  Distribution of microbial alpha diversity in sediments of the hyporheic zone

      图  4  交互带沉积物微生物相对丰度

      科水平,样品点编号信息见图 1,每个样品数据为3个平行样品平均值

      Fig.  4.  Relative abundance of micro-organisms in the sediments of hyporheic zone

      图  5  环境因子与微生物群落的冗余分析(RDA)

      a.为代表样本的分析结果;b.为微生物组成的分析结果. 1.Burkholderiaceae;2.Caulobacteraceae;3.Sphingomonadaceae;4.Pseudomonadaceae;5.Rhizobiaceae;6.Gemmatimonadaceac;7.Xanthomonadaceac;8.Methylomirabilaceae;9.Nitrosomonadaceae;10.Enterobacteriaceae;11.Bacillaceae;12.Xanthobacteraceac;13.Moraxellaceae;14.Rhodocyclaceae;15.TRA3-20;16. Pseudonocardiaceae;17.Nitrospiraceae;18.Anaerolineaceae;19.Muribaculaceae;20.Sphingobacteriaceae

      Fig.  5.  Redundancy analysis (RDA) of environmental factors and microbial communities

      表  1  微生物alpha多样性与沉积物化学指标相关系数

      Table  1.   The correlation coefficient between microbial alpha diversity and sediment chemical indicators

      pH TOC NH4+ NO3- SO42- Fe Fe(Ⅱ) Fe(Ⅲ) Mn As Cl-
      ACE -0.130 -0.500** -0.369* 0.174 -0.239 -0.167 0.128 -0.293 -0.404** -0.394* -0.058
      Chao1 -0.135 -0.493** -0.366* 0.182 -0.231 -0.158 0.132 -0.285 -0.403** -0.390* -0.057
      Shannon -0.217 -0.436** -0.389* 0.337* -0.126 -0.018 0.210 -0.163 -0.426** -0.361* 0.016
      Simpson -0.074 -0.630** -0.492** 0.191 -0.324* -0.173 0.182 -0.336* -0.534** -0.488** -0.015
      注:** 在0.01级别(双尾),相关性显著;* 在0.05级别(双尾),相关性显著.
      下载: 导出CSV

      表  2  冗余分析(RDA)的蒙特卡洛置换检验

      Table  2.   Monte Carlo permutation test for redundancy analysis (RDA)

      环境因子 TOC Fe(Ⅲ) SO42- NO3- Fe Mn pH As NH4+
      r2 0.619 8 0.420 4 0.387 7 0.373 8 0.357 0 0.346 5 0.297 2 0.254 8 0.217 3
      P 0.001 0.001 0.002 0.002 0.001 0.002 0.002 0.006 0.011
      下载: 导出CSV

      表  3  微生物群落结构β多样性差异性检验

      Table  3.   Dissimilarity tests for β diversity of microbial community structure

      组别 第1组
      第2组
      第1组
      第3组
      第2组
      第3组
      R 0.895 7 0.701 9 0.840 8
      p 0.001 0.001 0.001
      下载: 导出CSV
    • Abraham, W. R., Rohde, M., Bennasar, A., 2014. The Family Caulobacteraceae. In: Rosenberg, E., et al., eds., The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Heidelberg, 179-205. https://doi.org/10.1007/978-3-642-30197-1_259
      Allison, S. D., Martiny, J. B. H., 2008. Resistance, Resilience, and Redundancy in Microbial Communities. Proceedings of the National Academy of Sciences of the United States of America, 105 (Supplement_1): 11512-11519. https://doi.org/10.1073/pnas.0801925105
      Benner, S. G., Smart, E. W., Moore, J. N., 1995. Metal Behavior during Surface-Groundwater Interaction, Silver Bow Creek, Montana. Environmental Science & Technology, 29(7): 1789-1795. https://doi.org/10.1021/es00007a015
      Bott, T. L., Kaplan, L. A., 1985. Bacterial Biomass, Metabolic State, and Activity in Stream Sediments: Relation to Environmental Variables and Multiple Assay Comparisons. Applied and Environmental Microbiology, 50(2): 508-522. https://doi.org/10.1128/aem.50.2.508-522.1985
      Chain, P., Lamerdin, J., Larimer, F., et al., 2003. Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas Europaea. Journal of Bacteriology, 185(9): 2759-2773. https://doi.org/10.1128/jb.185.9.2759-2773.2003
      Chen, J. W., Ge, J. W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092(in Chinese with English abstract).
      Coenye, T., 2014. The Family Burkholderiaceae. In: Rosenberg, E., et al., eds., The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Heidelberg, 759-776.
      DeFlaun, M. F., Mayer, L. M., 1983. Relationships between Bacteria and Grain Surfaces in Intertidal Sediments1. Limnology and Oceanography, 28(5): 873-881. https://doi.org/10.4319/lo.1983.28.5.0873
      Febria, C. M., Fulthorpe, R. R., Williams, D. D., 2010. Characterizing Seasonal Changes in Physicochemistry and Bacterial Community Composition in Hyporheic Sediments. Hydrobiologia, 647(1): 113-126. https://doi.org/10.1007/s10750-009-9882-x
      Feris, K. P., Ramsey, P. W., Frazar, C., et al., 2003. Structure and Seasonal Dynamics of Hyporheic Zone Microbial Communities in Free-Stone Rivers of the Western United States. Microbial Ecology, 46(2): 200-215. https://doi.org/10.1007/BF03036883
      Fischer, H., Kloep, F., Wilzcek, S., et al., 2005. A River's Liver-Microbial Processes within the Hyporheic Zone of a Large Lowland River. Biogeochemistry, 76(2): 349-371. https://doi.org/10.1007/s10533-005-6896-y
      Gayraud, S., Philippe, M., 2003. Influence of Bed-Sediment Features on the Interstitial Habitat Available for Macroinvertebrates in 15 French Streams. International Review of Hydrobiology, 88(1): 77-93. https://doi.org/10.1002/iroh.200390007
      Harvey, J. W., Fuller, C. C., 1998. Effect of Enhanced Manganese Oxidation in the Hyporheic Zone on Basin-Scale Geochemical Mass Balance. Water Resources Research, 34(4): 623-636. https://doi.org/10.1029/97wr03606
      Lee, J. H., Fredrickson, J. K., Kukkadapu, R. K., et al., 2012. Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments. Environmental Science & Technology, 46(7): 3721-3730. https://doi.org/10.1021/es204528m
      Lin, X. J., McKinley, J., Resch, C. T., et al., 2012. Spatial and Temporal Dynamics of the Microbial Community in the Hanford Unconfined Aquifer. The ISME Journal, 6(9): 1665-1676. https://doi.org/10.1038/ismej.2012.26
      Liu, S. N., Chui, T. F. M., 2019. Numerical Modelling to Evaluate the Nitrogen Removal Rate in Hyporheic Zone and Its Implications for Stream Management. Hydrological Processes, 33(24): 3084-3097. https://doi.org/10.1002/hyp.13548
      Lowell, J. L., Gordon, N., Engstrom, D., et al., 2009. Habitat Heterogeneity and Associated Microbial Community Structure in a Small-Scale Floodplain Hyporheic Flow Path. Microbial Ecology, 58(3): 611-620. https://doi.org/10.1007/s00248-009-9525-9
      Lu, S. D., Sun, Y. J., Zhao, X., et al., 2016. Sequencing Insights into Microbial Communities in the Water and Sediments of Fenghe River, China. Archives of Environmental Contamination and Toxicology, 71(1): 122-132. https://doi.org/10.1007/s00244-016-0277-5
      Nogaro, G., Datry, T., Mermillod-Blondin, F., et al., 2010. Influence of Streambed Sediment Clogging on Microbial Processes in the Hyporheic Zone. Freshwater Biology, 55(6): 1288-1302. https://doi.org/10.1111/j.1365-2427.2009.02352.x
      Nogaro, G., Datry, T., Mermillod-Blondin, F., et al., 2013. Influence of Hyporheic Zone Characteristics on the Structure and Activity of Microbial Assemblages. Freshwater Biology, 58(12): 2567-2583. https://doi.org/10.1111/fwb.12233
      Olsen, D. A., Townsend, C. R., 2003. Hyporheic Community Composition in a Gravel-Bed Stream: Influence of Vertical Hydrological Exchange, Sediment Structure and Physicochemistry. Freshwater Biology, 48(8): 1363-1378. https://doi.org/10.1046/j.1365-2427.2003.01097.x
      Pascual, J., García-López, M., Bills, G. F., et al., 2015. Pseudomonas Granadensis sp. nov., a New Bacterial Species Isolated from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_2): 625-632. https://doi.org/10.1099/ijs.0.069260-0
      Ren, J., Cheng, J. Q., Yang, J., et al., 2018. A Review on Using Heat as a Tool for Studying Groundwater-Surface Water Interactions. Environmental Earth Sciences, 77(22): 1-13. https://doi.org/10.1007/s12665-018-7959-4
      Sackett, J. D., Shope, C. L., Bruckner, J. C., et al., 2019. Microbial Community Structure and Metabolic Potential of the Hyporheic Zone of a Large Mid-Stream Channel Bar. Geomicrobiology Journal, 36(9): 765-776. https://doi.org/10.1080/01490451.2019.1621964
      Sliva, L., Williams, D. D., 2005. Exploration of Riffle-Scale Interactions between Abiotic Variables and Microbial Assemblages in the Hyporheic Zone. Canadian Journal of Fisheries and Aquatic Sciences, 62(2): 276-290. https://doi.org/10.1139/f04-190
      Stegen, J. C., Johnson, T., Fredrickson, J. K., et al., 2018. Publisher Correction: Influences of Organic Carbon Speciation on Hyporheic Corridor Biogeochemistry and Microbial Ecology. Nature Communications, 9: 1034. https://doi.org/10.1038/s41467-018-02922-9
      Takaichi, S., Maoka, T., Takasaki, K., et al., 2010. Carotenoids of Gemmatimonas Aurantiaca (Gemmatimonadetes): Identification of a Novel Carotenoid, Deoxyoscillol 2-Rhamnoside, and Proposed Biosynthetic Pathway of Oscillol 2, 2'-Dirhamnoside. Microbiology, 156(3): 757-763. https://doi.org/10.1099/mic.0.034249-0
      Wilhelm, R. C., Murphy, S. J. L., Feriancek, N. M., et al., 2020. Paraburkholderia Madseniana sp. nov., a Phenolic Acid-Degrading Bacterium Isolated from Acidic Forest Soil. International Journal of Systematic and Evolutionary Microbiology, 70(3): 2137-2146. https://doi.org/10.1099/ijsem.0.004029
      Xiao, Y. N., Zhong, X. L., Wang, B. C., et al., 2020. Microbial Community Structure and Function and Their Influencing Factors in the Soil of Horqin Area of Tongliao City, Inner Mongolia. Earth Science, 45(3): 1071-1081(in Chinese with English abstract).
      Yuan, X. Z., Luo, G. Y., 2003. A Brief Review for Ecological Studies on Hyporheic Zone of Stream Ecosystem. Acta Ecologica Sinica, 23(5): 956-964(in Chinese).
      谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. doi: 10.3799/dqkx.2019.289
      肖玉娜, 钟信林, 王北辰, 等, 2020. 通辽科尔沁地区土壤微生物群落结构和功能及其影响因素. 地球科学, 45(3): 1071-1081. doi: 10.3799/dqkx.2019.067
      袁兴中, 罗固源, 2003. 溪流生态系统潜流带生态学研究概述. 生态学报, 23(5): 956-964. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200305016.htm
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  288
    • HTML全文浏览量:  513
    • PDF下载量:  31
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-08-24
    • 网络出版日期:  2023-10-31
    • 刊出日期:  2023-10-25

    目录

      /

      返回文章
      返回