• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    内陆小型水体水汽传输系数和Priestley-Taylor系数的量化

    赵若男 肖薇 石立新 赵佳玉 谢成玉 谢燕红 曹畅 张弥 郑有飞

    赵若男, 肖薇, 石立新, 赵佳玉, 谢成玉, 谢燕红, 曹畅, 张弥, 郑有飞, 2023. 内陆小型水体水汽传输系数和Priestley-Taylor系数的量化. 地球科学, 48(10): 3896-3911. doi: 10.3799/dqkx.2021.227
    引用本文: 赵若男, 肖薇, 石立新, 赵佳玉, 谢成玉, 谢燕红, 曹畅, 张弥, 郑有飞, 2023. 内陆小型水体水汽传输系数和Priestley-Taylor系数的量化. 地球科学, 48(10): 3896-3911. doi: 10.3799/dqkx.2021.227
    Zhao Ruonan, Xiao Wei, Shi Lixin, Zhao Jiayu, Xie Chengyu, Xie Yanhong, Cao Chang, Zhang Mi, Zheng Youfei, 2023. Quantification of Water Vapor Transport Coefficient and Priestley-Taylor Coefficient over Small Inland Water Bodies. Earth Science, 48(10): 3896-3911. doi: 10.3799/dqkx.2021.227
    Citation: Zhao Ruonan, Xiao Wei, Shi Lixin, Zhao Jiayu, Xie Chengyu, Xie Yanhong, Cao Chang, Zhang Mi, Zheng Youfei, 2023. Quantification of Water Vapor Transport Coefficient and Priestley-Taylor Coefficient over Small Inland Water Bodies. Earth Science, 48(10): 3896-3911. doi: 10.3799/dqkx.2021.227

    内陆小型水体水汽传输系数和Priestley-Taylor系数的量化

    doi: 10.3799/dqkx.2021.227
    基金项目: 

    国家重点研发计划项目 2019YFA0607202

    国家自然科学基金 42021004

    国家自然科学基金 41975143

    河北省气象与生态环境重点实验室开放研究基金项目 Z201901H

    详细信息
      作者简介:

      赵若男(1995-),女,硕士研究生,主要从事地气交换方面的研究. ORCID:0000-0003-0514-8242. E-mail:ruonanzhao@qq.com

      通讯作者:

      肖薇,ORCID: 0000-0002-9199-2177. E-mail: wei.xiao@nuist.edu.cn

    • 中图分类号: P49

    Quantification of Water Vapor Transport Coefficient and Priestley-Taylor Coefficient over Small Inland Water Bodies

    • 摘要: 小型水体(面积 < 1 km2)数量众多,面积占全球内陆水体总面积的40%以上,在天气气候系统、水循环和水资源管理中扮演着重要角色.选取安徽省全椒县官渡村一处养殖鱼塘作为小型水体的代表,自2017年6月至2020年5月利用涡度相关方法对蒸发量进行连续观测,基于体积传输方程插补了缺失数据,在月尺度上强迫能量闭合,并利用Priestley-Taylor模型研究平流影响.研究结果表明小型水体的水汽传输系数存在夏高冬低的季节变化特征,变化范围为1.9×10-3~3.4×10-3,与风速、水面和空气温度差存在显著的相关关系.但是全球内陆水体水汽传输系数与水体面积的相关关系不显著.小型水体月尺度Priestley-Taylor模型α变化范围为1.14~1.78,8月最小,2月最大,最大值高于大型湖泊的开阔水面.与其他内陆水体相同,小型水体α系数呈现暖季低值、冷季高值的季节变化特征,说明夏季无明显平流影响,而冬季平流影响比较强烈.年尺度上,全球大型水体和小型水体的蒸发均会受到微弱的平流影响.

       

    • 图  1  研究站点示意图和观测仪器图

      a.红色五角星为研究区域位置,粉色框线为研究的鱼塘,黄色五角星为仪器架设位置,蓝色框线为风向筛选范围为28°~95°;b.涡度相关系统和小气候系统;c.四分量辐射计

      Fig.  1.  Schematic diagram of the research site and pictures of the instruments

      图  2  70 m高塔和部分观测仪器图片

      a. 通量塔;b. 70 m高度处涡度相关系统和小气候系统;c. 10 m高度处温湿度传感器

      Fig.  2.  Pictures of the 70 m tower and some instruments

      图  3  2017年6月至2020年5月气温(a)、气压(b)、大气水汽压(c)和水平风速(d)月均值的时间序列图

      Fig.  3.  Time series of monthly mean values of air temperature (a), air pressure (b), atmospheric water vapor pressure (c) and horizontal wind speed (d) from June 2017 to May 2020

      图  4  2017年6月至2020年5月鱼塘半小时尺度潜热通量的时间序列图

      蓝色圆圈为观测数据;灰色实线为插补数据

      Fig.  4.  Time series of latent heat fluxes on half-hourly scale in the fish pond from June 2017 to May 2020

      图  5  水汽传输系数CE的季节变化

      2019年9月份以及2020年3、4月份观测的有效数据较少,没有呈现出相应的CE

      Fig.  5.  Seasonal changes of water vapor transport coefficient CE

      图  6  水汽传输系数CE与风速(a)和Ts-Ta (b)的相关关系

      Fig.  6.  Correlation coefficients between transfer coefficient for water vapor CE and wind speed (a) and Ts-Ta (b)

      图  7  2017年6月至2020年5月月平均净辐射、感热通量、潜热通量、波文比、热储量变化的时间序列

      其中能量收支项单位均为W/m2,波文比无量纲.a.月平均净辐射; b.感热通量; c.潜热通量; d.波文比; e.热储量

      Fig.  7.  Time series of monthly mean net radiation, sensible heat flux, latent heat flux, Bowen ratio, and heat storage from June 2017 to May 2020

      图  8  2017年6月至2020年5月每月P-T模型系数α值的时间序列

      虚线为α的默认值1.26

      Fig.  8.  The time series of the monthly P-T model coefficient α values from June 2017 to May 2020

      图  9  季节尺度(a)和年尺度(b)LE观测值与$ \Delta /(\Delta +\gamma )({R}_{n}-G) $关系及α系数的反算结果

      Fig.  9.  Correlation between seasonal scale (a) and annual scale (b) LE observations and $ \Delta /(\Delta +\gamma )({R}_{n}-G) $, and the inverse calculation results of α coefficient

      图  10  月尺度α值与温度差(a)、比湿差(b)和饱和水汽压差(c)月平均值的相关关系

      Fig.  10.  Correlation between the monthly values of α and temperature difference (a), specific humidity difference (b) and saturated vapor pressure difference (c)

      图  11  文献中水汽传输系数CE10与水体面积的关系

      Fig.  11.  The relationship between the water vapor transfer coefficient CE10 and the area of the water bodies in the literature

      图  12  全球不同内陆水体月、季节和年尺度上α值的研究结果

      Fig.  12.  Results of monthly, seasonal and annual mean values of α over different inland water bodies across the world

      表  1  基于蒸发量观测数据和水汽传输方程方法反算的全球水体CE结果

      Table  1.   CE results of global water bodies based on evaporation observation data and inverse calculation of water vapor transport equation method

      大洲 水体名称 国家/
      地区
      经纬度 面积
      (km2)
      观测时段 观测高度
      (m)
      时间
      长度
      CE
      (10-3)
      CE10
      (10-3)
      文献


      Emaiksoun Lake 美国 61°55′12″N, 113°43′48″W 1.857 2008—2010无冰期 - 数月 - 1.83 Potter(2011)
      Great Slave Lake 加拿大 41°N, 121°W 27 000 1997—1999无冰期 16.9 数月 - 2.0 Blanken et al.(2003)
      Castle Lake 美国 32°15′36″N, 90°01′12″W 0.2 08-21~11-14 2.8 < 3个月 - 1.9 Strub and Powell (1987)
      Ross Rarnett Reservoir 美国 72°17′54″N, 126°10′24″E 134 2007-09-01~2008-02-28 4 6个月 - 1.2 Liu et al.(2009)
      欧洲 Siberian thermokarst lake 西伯利亚 61°50′N,
      24°17′E
      1.21 2014-06-24~
      08-16无冰期
      2.39 数月 - 2.2 Franz et al.(2018)
      Lake Kuivajärvi 芬兰 61°13′48″N, 25°3′E 0.63 2010—2011
      (06~10)
      1.7 10个月 1.9 1.45 Mammarella et al.(2015)
      Lake
      Valkea-Kotinen
      芬兰 0.041 2005—2008
      (04~10)
      - 21个月 - 1.0 Nordbo et al.(2011)
      Lake Tämnaren 瑞典 60°0′N,
      17°20′E
      37 1994-06
      (12,13, 20)
      3 3天 1.07 1.0 Heikinheimo et al.(1999)
      亚洲 Lake Kasumigaura 日本 36°02′35″N, 140°24′42″E 220 2008—2010 3.72 3年 - 1.1 Wei et al.(2016)
      鄂陵湖 中国 35°01′28″N, 97°38′59″E 610 2011-07~
      2011-11
      3 5个月 - 1.36 Li et al.(2015)
      太湖东部湖区
      太湖北部湖区
      中国 31°10′12″N, 120°24′E
      31°25′N,
      120°13′E
      2 400 2011-12-15~2012-06-30
      2010-07~
      2012-08
      8.5
      3.5
      数月 - 1.0 Xiao et al.(2013)
      洱海 中国 25°46′N,
      100°10′E
      256.5 2012全年 2.5 月/年 - 1.2~1.75/1.36 Liu et al.(2015)
      小型养殖鱼塘 中国 31°58′7″N, 118°15′10″E 0.0077 2017-06~
      2020-05
      1.8 月/年 1.9~3.4/2.5 1.25~2.1/1.6 本文
      下载: 导出CSV

      表  2  文献中全球内陆水体Priestley-Taylor模型α系数的研究结果

      Table  2.   Results of the α coefficients in the Priestley-Taylor model over global inland water bodies in literature

      大洲 水体 国家/地区 经纬度 面积(km2 观测时期 尺度 α 文献
      湖泊/水库/湿地 - - - - 1.08~1.34/1.26 Priestley and Taylor(1972)
      Lake Léman 瑞士 46°26′N, 6°33′E 580 - < 日 约为0.7~2.5 Assouline et al.(2016)
      Lake Kinneret 以色列 32°50′N, 35°35′E 166 -
      The Eshkol reservoirs 以色列 32°46′N, 35°14′E - -
      The Tilopozo wetland 智利 23°47′S, 68°14′W 6 -
      北美洲 浅水湖 加拿大 57°45′N, 88°45′W 0.1 1972-07 小时/日 1.26 Stewart and Rouse(1976)
      Lake Flevo 荷兰 52°23′9″N, 5°24′46″E 467.6 1967-07~1967-09 日/月 1.26/1.15~1.42 De Bruin and Keijman(1979)
      1967-04~1967-10 1.2~1.5
      Ross Barnett Reservoir 美国 32°26′N, 90°2′W - 2007-08-25~2007-09-30 小时 1.00~1.32(H > 0; E > 0)1.24~2.04(H < 0; E > 0) Guo et al.(2015)
      南美洲 Lake Serra Azul水库 巴西 - 8.8 1993-01~1995-06 1.16(整体月尺度)1~1.5(1993.09,H < 0,α=2.3) Dos Reis and Dias(1998)
      亚洲 青海湖 中国 36°32′~37°15′N, 99°36′~100°47′E 4 432.32 2013-05-11~2015-05-10 1.16~1.62 Li et al.(2016)
      太湖 中国 30°5′40″~31°32′58″N,
      119°52′32″~120°36′10″E
      2 400 2010-07~2017-12 季节 1.36(春)1.23(夏)1.30(秋)1.60(冬) Xiao et al.(2020)
      1.39
      2010—2018
      1.25~1.28(各站点日平均状况)
      1.26~1.27(各站点月平均状况)
      Han et al.(2021)
      31°25′11″N, 120°12′50″E 2010-06-14~2012-08-31 1.14~1.94 Wang et al.(2014)
      小型养殖鱼塘 中国 31°58′7″N, 118°15′10″E 0.007 7 2017-06~2020-05 1.14~1.78 本文
      季节 1.34(春)1.18(夏)1.28(秋)1.56(冬)
      1.31
      下载: 导出CSV
    • Assouline, S., Li, D., Tyler, S., et al., 2016. On the Variability of the Priestley-Taylor Coefficient over Water Bodies. Water Resources Research, 52(1): 150-163. https://doi.org/10.1002/2015wr017504
      Baldocchi, D., Falge, E., Gu, L. H., et al., 2001. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 82(11): 2415-2434. https://doi.org/10.1175/1520-0477(2001)0822415:fantts>2.3.co;2 doi: 10.1175/1520-0477(2001)0822415:fantts>2.3.co;2
      Blanken, P. D., Rouse, W. R., Schertzer, W. M., 2003. Enhancement of Evaporation from a Large Northern Lake by the Entrainment of Warm, Dry Air. Journal of Hydrometeorology, 4(4): 680-693. doi: 10.1175/1525-7541(2003)004<0680:EOEFAL>2.0.CO;2
      Cao, L., Shen, J. M., Nie, Z. L., et al., 2021. Stable Isotopic Characteristics of Precipitation and Moisture Recycling in Badain Jaran Desert. Earth Science, 46(8): 2973-2983(in Chinese with English abstract).
      Chen, J. W., Ge, J. W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092(in Chinese with English abstract).
      De Bruin, H. A. R., Keijman, J. Q., 1979. The Priestley-Taylor Evaporation Model Applied to a Large, Shallow Lake in the Netherlands. Journal of Applied Meteorology, 18(7): 898-903. https://doi.org/10.1175/1520-0450(1979)0180898: tptema>2.0.co;2 doi: 10.1175/1520-0450(1979)0180898:tptema>2.0.co;2
      Deng, B., Liu, S. D., Xiao, W., et al., 2013. Evaluation of the CLM4 Lake Model at a Large and Shallow Freshwater Lake. Journal of Hydrometeorology, 14(2): 636-649. https://doi.org/10.1175/jhm-d-12-067.1
      Dos Reis, R. J., Dias, N. L., 1998. Multi-Season Lake Evaporation: Energy-Budget Estimates and CRLE Model Assessment with Limited Meteorological Observations. Journal of Hydrology, 208(3-4): 135-147. doi: 10.1016/S0022-1694(98)00160-7
      Franz, D., Mammarella, I., Boike, J., et al., 2018. Lake-Atmosphere Heat Flux Dynamics of a Thermokarst Lake in Arctic Siberia. Journal of Geophysical Research: Atmospheres, 123(10): 5222-5239. https://doi.org/10.1029/2017jd027751
      Friedrich, K., Grossman, R. L., Huntington, J., et al., 2018. Reservoir Evaporation in the Western United States: Current Science, Challenges, and Future Needs. Bulletin of the American Meteorological Society, 99(1): 167-187. https://doi.org/10.1175/bams-d-15-00224.1
      Garratt, J. R., 1992. The Atmospheric Boundary Layer. Cambridge University Press, Cambridge.
      Gibson, J. J., Birks, S. J., Yi, Y., 2016. Stable Isotope Mass Balance of Lakes: A Contemporary Perspective. Quaternary Science Reviews, 131: 316-328. https://doi.org/10.1016/j.quascirev.2015.04.013
      Guo, X. F., Liu, H. P., Yang, K., 2015. On the Application of the Priestley-Taylor Relation on Sub-Daily Time Scales. Boundary-Layer Meteorology, 156(3): 489-499. https://doi.org/10.1007/s10546-015-0031-y
      Guo, Y. H., Zhang, Y. S., Ma, N., et al., 2019. Long-Term Changes in Evaporation over Siling Co Lake on the Tibetan Plateau and Its Impact on Recent Rapid Lake Expansion. Atmospheric Research, 216: 141-150. https://doi.org/10.1016/j.atmosres.2018.10.006
      Han, S. J., Tian, F. Q., Wang, W., et al., 2021. Sigmoid Generalized Complementary Equation for Evaporation over Wet Surfaces: A Nonlinear Modification of the Priestley-Taylor Equation. Water Resources Research, 57(9): e2020WR028737. https://doi.org/10.1029/2020wr028737
      Heikinheimo, M., Kangas, M., Tourula, T., et al., 1999. Momentum and Heat Fluxes over Lakes Tämnaren and RÅKSJÖ Determined by the Bulk-Aerodynamic and Eddy-Correlation Methods. Agricultural and Forest Meteorology, 98/99: 521-534. https://doi.org/10.1016/S0168-1923(99)00121-5
      Lee, X. H., Liu, S. D., Xiao, W., et al., 2014. The Taihu Eddy Flux Network: An Observational Program on Energy, Water, and Greenhouse Gas Fluxes of a Large Freshwater Lake. Bulletin of the American Meteorological Society, 95(10): 1583-1594. https://doi.org/10.1175/bams-d-13-00136.1
      Li, X. Y., Ma, Y. J., Huang, Y. M., et al., 2016. Evaporation and Surface Energy Budget over the Largest High-Altitude Saline Lake on the Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 121(18): 10470-10485. https://doi.org/10.1002/2016jd025027
      Li, Z. G., Lyu, S. H., Zhao, L., et al., 2015. Turbulent Transfer Coefficient and Roughness Length in a High-Altitude Lake, Tibetan Plateau. Theoretical and Applied Climatology, 124(3/4): 723-735. https://doi.org/10.1007/s00704-015-1440-z
      Lim, W. H., Roderick, M. L., Hobbins, M. T., et al., 2013. The Energy Balance of a US Class a Evaporation Pan. Agricultural and Forest Meteorology, 182/183: 314-331. https://doi.org/10.1016/j.agrformet.2013.07.001
      Liu, H. P., Zhang, Y., Liu, S. H., et al., 2009. Eddy Covariance Measurements of Surface Energy Budget and Evaporation in a Cool Season over Southern Open Water in Mississippi. Journal of Geophysical Research: Atmospheres, 114(D4): D04110. https://doi.org/10.1029/2008jd010891
      Liu, H. Z., Feng, J. W., Sun, J. H., et al., 2015. Eddy Covariance Measurements of Water Vapor and CO2 Fluxes above the Erhai Lake. Science China Earth Sciences, 58(3): 317-328. https://doi.org/10.1007/s11430-014-4828-1
      Mammarella, I., Nordbo, A., Rannik, Ü., et al., 2015. Carbon Dioxide and Energy Fluxes over a Small Boreal Lake in Southern Finland. Journal of Geophysical Research: Biogeosciences, 120(7): 1296-1314. https://doi.org/10.1002/2014jg002873
      McGloin, R., McGowan, H., McJannet, D., et al., 2014. Quantification of Surface Energy Fluxes from a Small Water Body Using Scintillometry and Eddy Covariance. Water Resources Research, 50(1): 494-513. https://doi.org/10.1002/2013wr013899
      Moukomla, S., Blanken, P. D., 2017. The Estimation of the North American Great Lakes Turbulent Fluxes Using Satellite Remote Sensing and MERRA Reanalysis Data. Remote Sensing, 9(2): 141-154. https://doi.org/10.3390/rs9020141
      Nicholson, S. E., Kim, J., Ba, M. B., et al., 1997. The Mean Surface Water Balance over Africa and Its Interannual Variability. Journal of Climate, 10(12): 2981-3002. https://doi.org/10.1175/1520-0442(1997)0102981: tmswbo>2.0.co;2 doi: 10.1175/1520-0442(1997)0102981:tmswbo>2.0.co;2
      Nordbo, A., Launiainen, S., Mammarella, I., et al., 2011. Long-Term Energy Flux Measurements and Energy Balance over a Small Boreal Lake Using Eddy Covariance Technique. Journal of Geophysical Research: Atmospheres, 116(D2): D02119. https://doi.org/10.1029/2010jd014542
      Potter, B. L., 2011. Climatic Controls on the Summertime Energy Balance of a Thermokarst Lake in Northern Alaska: Short‐Term, Seasonal, and Interannual Variability (Dissertation). University of Nebraska-Lincoln, Nebraska.
      Priestley, C. H. B., Taylor, R. J., 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2): 81-92. https://doi.org/10.1175/1520-0493(1972)1000081: otaosh>2.3.co;2 doi: 10.1175/1520-0493(1972)1000081:otaosh>2.3.co;2
      Stewart, R. B., Rouse, W. R., 1976. A Simple Method for Determining the Evaporation from Shallow Lakes and Ponds. Water Resources Research, 12(4): 623-628. https://doi.org/10.1029/wr012i004p00623
      Strub, P. T., Powell, T. M., 1987. The Exchange Coefficients for Latent and Sensible Heat Flux over Lakes: Dependence upon Atmospheric Stability. Boundary-Layer Meteorology, 40(4): 349-362. https://doi.org/10.1007/bf00116102
      Verpoorter, C., Kutser, T., Seekell, D. A., et al., 2014. A Global Inventory of Lakes Based on High-Resolution Satellite Imagery. Geophysical Research Letters, 41(18): 6396-6402. https://doi.org/10.1002/2014gl060641
      Wang, W., Lee, X. H., Xiao, W., et al., 2018. Global Lake Evaporation Accelerated by Changes in Surface Energy Allocation in a Warmer Climate. Nature Geoscience, 11(6): 410-414. https://doi.org/10.1038/s41561-018-0114-8
      Wang, W., Xiao, W., Cao, C., et al., 2014. Temporal and Spatial Variations in Radiation and Energy Balance across a Large Freshwater Lake in China. Journal of Hydrology, 511: 811-824. https://doi.org/10.1016/j.jhydrol.2014.02.012
      Wei, Z. W., Miyano, A., Sugita, M., 2016. Drag and Bulk Transfer Coefficients over Water Surfaces in Light Winds. Boundary-Layer Meteorology, 160(2): 319-346. https://doi.org/10.1007/s10546-016-0147-8
      Xiao, W., Lee, X. H., Hu, Y. B., et al., 2017. An Experimental Investigation of Kinetic Fractionation of Open-Water Evaporation over a Large Lake. Journal of Geophysical Research: Atmospheres, 122(21): 11651-11663. https://doi.org/10.1002/2017jd026774
      Xiao, W., Liu, S. D., Wang, W., et al., 2013. Transfer Coefficients of Momentum, Heat and Water Vapour in the Atmospheric Surface Layer of a Large Freshwater Lake. Boundary-Layer Meteorology, 148(3): 479-494. https://doi.org/10.1007/s10546-013-9827-9
      Xiao, W., Zhang, Z., Wang, W., et al., 2020. Radiation Controls the Interannual Variability of Evaporation of a Subtropical Lake. Journal of Geophysical Research: Atmospheres, 125(8): e2019JD031264. https://doi.org/10.1029/2019jd031264
      Zhang, Z., Zhang, M., Cao, C., et al., 2020. A Dataset of Microclimate and Radiation and Energy Fluxes from the Lake Taihu Eddy Flux Network. Earth System Science Data, 12(4): 2635-2645. https://doi.org/10.5194/essd-12-2635-2020
      Zhao, J. Y., Zhang, M., Xiao, W., et al., 2019. An Evaluation of the Flux-Gradient and the Eddy Covariance Method to Measure CH4, CO2, and H2O Fluxes from Small Ponds. Agricultural and Forest Meteorology, 275: 255-264. https://doi.org/10.1016/j.agrformet.2019.05.032
      曹乐, 申建梅, 聂振龙, 等, 2021. 巴丹吉林沙漠降水稳定同位素特征与水汽再循环. 地球科学, 46(8): 2973-2983. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202108022.htm
      谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003031.htm
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  276
    • HTML全文浏览量:  429
    • PDF下载量:  28
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-04
    • 网络出版日期:  2023-10-31
    • 刊出日期:  2023-10-25

    目录

      /

      返回文章
      返回