• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湘东南永兴地区上地壳电性结构及其地质意义

    李佳奇 彭荣华 胡祥云 赵军

    李佳奇, 彭荣华, 胡祥云, 赵军, 2023. 湘东南永兴地区上地壳电性结构及其地质意义. 地球科学, 48(10): 3932-3945. doi: 10.3799/dqkx.2021.231
    引用本文: 李佳奇, 彭荣华, 胡祥云, 赵军, 2023. 湘东南永兴地区上地壳电性结构及其地质意义. 地球科学, 48(10): 3932-3945. doi: 10.3799/dqkx.2021.231
    Li Jiaqi, Peng Ronghua, Hu Xiangyun, Zhao Jun, 2023. Electrical Structure of Upper Crust in Yongxing Region, Southeast Hunan Province. Earth Science, 48(10): 3932-3945. doi: 10.3799/dqkx.2021.231
    Citation: Li Jiaqi, Peng Ronghua, Hu Xiangyun, Zhao Jun, 2023. Electrical Structure of Upper Crust in Yongxing Region, Southeast Hunan Province. Earth Science, 48(10): 3932-3945. doi: 10.3799/dqkx.2021.231

    湘东南永兴地区上地壳电性结构及其地质意义

    doi: 10.3799/dqkx.2021.231
    基金项目: 

    中国地质调查局项目 DD20190811

    国家自然科学基金项目 42074088

    详细信息
      作者简介:

      李佳奇(1995-),男,硕士,从事工程物探相关工作.ORCID:0000-0001-9097-6645. E-mail: jqli_cici@126.com

      通讯作者:

      彭荣华,男, E-mail: pengrh@cug.edu.cn

    • 中图分类号: P319

    Electrical Structure of Upper Crust in Yongxing Region, Southeast Hunan Province

    • 摘要: 为了解湘东南永兴地区上地壳地质构造特征及圈定潜在的找矿靶区,对郴州永兴地区的5条大地电磁剖面数据进行了分析与处理,并应用非线性共轭梯度法进行二维反演,获得了该地区上地壳电性结构.结果显示该地区电性分布不均匀,横向上出现高低阻相间分布,纵向无明显电性分层特征.结合湘东南区域地质资料,详细分析了研究区电性结构的地质构造含义.研究表明茶郴断裂带为深大断裂带,控制着研究区内的地质构造及成矿流体上涌通道.根据南岭成矿带铅锌金属矿的成矿规律,结合区域电性结构特征,对研究区内两处铅锌矿体成矿机理与电性结构之间的关系进行了分析讨论.研究结果对认识湘东南永兴地区上地壳的结构特征及寻找潜在矿体具有很好的参考.

       

    • 图  1  研究区大地构造位置及大地电磁剖面布置

      a.华南构造简图,改自文献舒良树(2012);b.研究区地质构造及大地电磁布设简图

      Fig.  1.  Tectonic location and profile layout of the MT survey in the study area

      图  2  Bahr二维偏离度拟断面

      a. L1线;b. L2线;c. L3线;d. L4线;e. L5线

      Fig.  2.  Pseudosection of Bahr skewness

      图  3  5条剖面在6个频点的相位张量椭圆图

      Fig.  3.  Phase tensor ellipse diagrams of five profiles at six frequency points

      a. f=1 000 Hz;b. f=100 Hz;c. f=10 Hz;d. f=1 Hz;e. f=0.1 Hz;f. f=0.01 Hz

      图  4  5条剖面电性主轴分析玫瑰图

      a. L1线;b. L2线;c. L3线;d. L4线;e.L5线

      Fig.  4.  Rose diagrams of the orientation of geoelectric strike

      图  5  5条剖面每个测点的TE和TM模式的穿透深度

      图a~e分别为剖面L1~L5的趋肤深度

      Fig.  5.  Penetration depth of TE and TM modes at each measurement point of the five profiles

      图  6  模型粗糙度、拟合误差随正则化因子变化的曲线

      a. L1线;b. L2线;c. L3线;d. L4线;e. L5线

      Fig.  6.  L⁃curve of RMS values and roughness corresponding to different tau values

      图  7  L1剖面视电阻率及相位拟断面对比

      Fig.  7.  Comparison of apparent resistivity and phase pseudo-section of L1 profile

      图  8  L2剖面视电阻率及相位拟断面对比

      a. TE模式下实测数据、模型响应的视电阻率及相位拟断面图; b. TM模式下实测数据、模型响应的视电阻率及相位拟断面图

      Fig.  8.  Comparison of apparent resistivity and phase pseudo-section of L2 profile

      图  9  5条剖面中典型测点的视电阻率及相位曲线

      Fig.  9.  Comparison of observed and predicted MT data representative stations in five profiles

      图  10  5条剖面上单点的数据拟合误差

      Fig.  10.  RMS statistics for each measurement site of the MT profiles

      图  11  5条剖面反演结果等值线图

      Fig.  11.  Cross-section of electrical resistivity model for five MT profiles

      图  12  L4与L5剖面的二维电性结构及推断的地质结构

      a. L4剖面反演单点拟合差(RMS);b. L4剖面二维反演电性模型;c. L5剖面反演单点拟合差(RMS);d. L5剖面二维反演电性模型;e. L4剖面地质断面图;f. L5剖面地质断面图

      Fig.  12.  2⁃D electrical resistivity and interpreted geological model

      图  13  基于电性结构推断的研究区铅锌矿点成矿动力模型

      Fig.  13.  Metallogenic dynamic model of lead-zinc deposits in the study area based on electrical structure

      表  1  5条剖面的反演参数及数据拟合差统计

      Table  1.   Inversion parameters and data fitting error statistics for five profiles

      测线 反演模式 Tau值 误差限 迭代
      次数
      RMS
      视电
      阻率
      相位
      L1 TE+TM 7 15% 10% 200 2.74
      L2 TE+TM 7 15% 10% 200 2.42
      L3 TE+TM 7 15% 10% 200 2.23
      L4 TE+TM 5 15% 10% 200 2.46
      L5 TE+TM 5 15% 10% 200 2.21
      下载: 导出CSV
    • Bahr, K., 1991. Geological Noise in Magnetotelluric Data: A Classification of Distortion Types. Physics of the Earth and Planetary Interiors, 66(1-2): 24-38. https://doi.org/10.1016/0031-9201(91)90101-M
      Bai, D. Y., Huang, J. Z., Liu, Y. R., et al., 2005. Framework of Mesozoic Tectonic Evolution in Southeastern Hunan and the Hunan-Guangdong-Jiangxi Border Area. Geology in China, 32(4): 557-570(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2005.04.004
      Bai, D. Y., Ma, T. Q., Wang, X. H., et al., 2008. Progress in the Study of Mesozoic Tectono-Magmatism and Mineralization in the Central Segment of the Nanling Mountains—Summary of Major Achievements of the 1∶250 000 Geological Survey in Southeastern Hunan. Geology in China, 35(3): 436-455(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2008.03.008
      Caldwell, T. G., Bibby, H. M., Brown, C., 2004. The Magnetotelluric Phase Tensor. Geophysical Journal International, 158(2): 457-469. https://doi.org/10.1111/j.1365-246X.2004.02281.x
      Chave, A. D., Jones, A. G., MacKie, R., et al., 2012. The Magnetotelluric Method: Theory and Practice. Cambridge University Press, Cambridge.
      Chen, X. B., Cai, J. T., Wang, L. F., et al., 2014. Refined Techniques for Magnetotelluric Data Processing and Two-Dimensional Inversion(Ⅳ): Statistical Image Method Based on Multi-Site, Multi-Frequency Tensor Decomposition. Chinese Journal of Geophysics, 57(6): 1946-1957(in Chinese with English abstract).
      Chen, Y. C., Wang, D. H., Xu, Z. G., et al., 2014. Outline of Regional Metallogeny of Ore Deposits Associated with the Mesozoic Magmatism in South China. Geotectonica et Metallogenia, 38(2): 219-229(in Chinese with English abstract).
      Constable, S. C., Parker, R. L., Constable, C. G., 1987. Occam’s Inversion: A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data. Geophysics, 52(3): 289-300. https://doi.org/10.1190/1.1442303
      Cui, Z. Q., 2018. The Application of the High Precision Airborne Geophysical Survey to the Investigation of Important Metallogenic Belts. Geophysical and Geochemical Exploration, 42(1): 38-49(in Chinese with English abstract).
      Granite Task Force of Nanling Project, 1989. Geology of Nanling Granite and Its Genesis and Metallogenic Relationship. Geological Publishing House, Beijing (in Chinese).
      Groom, R. W., Bailey, R. C., 1989. Decomposition of Magnetotelluric Impedance Tensors in the Presence of Local Three-Dimensional Galvanic Distortion. Journal of Geophysical Research, 94(B2): 1913-1925. https://doi.org/10.1029/jb094ib02p01913
      Hu, X. Y., Bi, B. T., Liu, G. X., et al., 2017. The Lithospheric Electrical Structure of Ji’an-Fuzhou Profile in the East Part of South China. Chinese Journal of Geophysics, 60(7): 2756-2766 (in Chinese with English abstract).
      Jia, B. H., Huang, J. Z., Huang, G. F., et al., 2019. The Potential of Important Mineral Resources and Prospecting Direction in Hunan Province. China University of Geosciences Press, Wuhan (in Chinese).
      Ledo, J., 2005.2-D versus 3-D Magnetotelluric Data Interpretation. Surveys in Geophysics, 26(5): 511-543. https://doi.org/10.1007/s10712-005-1757-8
      Liu, B., Wu, Q. H., Li, H., et al., 2021. Yanshanian NE-Striking Fault Evolution and Its Implications on Mineralization in the Xitian W-Sn Polymetallic Ore Field, Hunan Province. Earth Science, 46(1): 43-58(in Chinese with English abstract).
      Liu, J. L., Zhao, B., Wang, W. Y., et al., 2019. A Study of the Distribution of Granite Detected by Gravity and Magnetic Data in Yinkeng Demonstration Area of Nanling Yudu-Ganxian Ore Concentration Area. Geophysical and Geochemical Exploration, 43(2): 223-233(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1749.2019.02.12
      Liu, J. X., Tong, X. Z., Guo, R. W., et al., 2012. Magnetotelluric Sounding Exploration: Data Processing, Inversion and Interpretation. Science Press, Beijing (in Chinese).
      Rao, J. R., Jin, X. Y., Zeng, C. F., 2006. Ore-Controlling Law and Prospecting Direction of Deep Structure-Magma (Rock) in the Northern Margin of the Middle Nanling Section. Land & Resources Herald, 3(3): 31-36 (in Chinese with English abstract).
      Rao, J. R., Wang, J. H., Cao, Y. Z., 1993. Deep Structure in Hunan Province. China Industrial Economics, (S1): 2-3, 1 (in Chinese with English abstract).
      Rodi, W., Mackie, R. L., 2001. Nonlinear Conjugate Gradients Algorithm for 2-D Magnetotelluric Inversion. Geophysics, 66(1): 174-187. https://doi.org/10.1190/1.1444893
      Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.07.003
      Siripunvaraporn, W., Egbert, G., 2000. An Efficient Data-Subspace Inversion Method for 2-D Magnetotelluric Data. Geophysics, 65(3): 791-803. https://doi.org/10.1190/1.1444778
      Smith, J. T., Booker, J. R., 1991. Rapid Inversion of Two- and Three-Dimensional Magnetotelluric Data. Journal of Geophysical Research: Solid Earth, 96(B3): 3905-3922. https://doi.org/10.1029/90jb02416
      Song, C. J., Qin, X. L., Tan, X. N., et al., 2007. A Preliminary Study of Gravity Anomalies in Chengbu Area, Hunan Province. Geophysical and Geochemical Exploration, 31(5): 414-419+434 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8918.2007.05.007
      Swift, C. M., 1967. A Magnetotelluric Investigation of an Electrical Conductivity Anomaly in the South-Western United States (Dissertation). Massachusetts Institute of Technology, Cambridge.
      Tian, S. B., Cai, J. C., Hu, X. Y., et al., 2014. Deep Conductivity Structure in Middle-East Junggar Basin Using MT. Earth Science, 39(5): 620-628 (in Chinese with English abstract).
      Tian, W., Li, X. B., Wang, B. Z., 2019. The Application of Magnetotelluric Sounding to Shale Gas Exploration in Southeast Hunan Depression. Geophysical and Geochemical Exploration, 43(2): 281-289 (in Chinese with English abstract).
      Xu, X. B., Liang, C. H., Chen, J. J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150 (in Chinese with English abstract).
      Zhai, Y. S., Yao, S. Z., Cai, K. Q., 2011. Mineral Deposit Science. Geological Publishing House, Beijing (in Chinese).
      Zhang, M. J., Li, Y. X., Hu, P. Q., et al., 2009. Recycled Crustal Volatiles in the Subcontinental Lithospheric Mantle beneath Eastern China. Acta Geologica Sinica, 83(3): 311-323 (in Chinese with English abstract).
      柏道远, 黄建中, 刘耀荣, 等, 2005. 湘东南及湘粤赣边区中生代地质构造发展框架的厘定. 中国地质, 32(4): 557-570. doi: 10.3969/j.issn.1000-3657.2005.04.004
      柏道远, 马铁球, 王先辉, 等, 2008. 南岭中段中生代构造-岩浆活动与成矿作用研究进展. 中国地质, 35(3): 436-455. doi: 10.3969/j.issn.1000-3657.2008.03.008
      陈小斌, 蔡军涛, 王立凤, 等, 2014. 大地电磁资料精细处理和二维反演解释技术研究(四): 阻抗张量分解的多测点-多频点统计成像分析. 地球物理学报, 57(6): 1946-1957. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201904016.htm
      陈毓川, 王登红, 徐志刚, 等, 2014. 华南区域成矿和中生代岩浆成矿规律概要. 大地构造与成矿学, 38(2): 219-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402002.htm
      崔志强, 2018. 高精度航空物探在重要成矿带资源调查中的应用. 物探与化探, 42(1): 38-49. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201801006.htm
      胡祥云, 毕奔腾, 刘国兴, 等, 2017. 华南东部吉安—福州剖面岩石圈电性结构研究. 地球物理学报, 60(7): 2756-2766. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201707021.htm
      贾宝华, 黄建中, 黄革非, 等, 2019. 湖南省重要矿产资源潜力及找矿方向. 武汉: 中国地质大学出版社.
      刘飚, 吴堑虹, 李欢, 等, 2021. 湖南锡田钨锡多金属矿田燕山期NE向断层演化历史及其成矿意义. 地球科学, 46(1): 43-58. doi: 10.3799/dqkx.2019.263
      刘金兰, 赵斌, 王万银, 等, 2019. 南岭于都—赣县矿集区银坑示范区重磁资料探测花岗岩分布研究. 物探与化探, 43(2): 223-233. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201902001.htm
      柳建新, 童孝忠, 郭荣文, 等, 2012. 大地电磁测深法勘探: 资料处理、反演与解释. 北京: 科学出版社.
      南岭项目花岗岩专题组, 1989. 南岭花岗岩地质及其成因和成矿关系. 北京: 地质出版社.
      饶家荣, 金小燕, 曾春芳, 2006. 南岭中段北缘深部构造-岩浆(岩)控矿规律及找矿方向. 国土资源导刊, 3(3): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-GTDK200603011.htm
      饶家荣, 王纪恒, 曹一中, 1993. 湖南深部构造. 湖南地质, (S1): 2-3, 1. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDZ901.004.htm
      舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm
      宋才见, 覃贤禄, 谭湘宁, 等, 2007. 湖南城步地区重力异常的初步研究. 物探与化探, 31(5): 414-419+434. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200705006.htm
      田少兵, 蔡建超, 胡祥云, 等, 2014. 准噶尔中东部地区深部电性结构电磁探测. 地球科学, 39(5): 620-628. doi: 10.3799/dqkx.2014.059
      田巍, 李旭兵, 王保忠, 2019. 大地电磁测深在湘东南坳陷页岩气勘探中的应用. 物探与化探, 43(2): 281-289. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201902007.htm
      徐先兵, 梁承华, 陈家驹, 等, 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学, 46(4): 1133-1150. doi: 10.3799/dqkx.2020.151
      翟裕生, 姚书振, 蔡克勤, 2011. 矿床学. 北京: 地质出版社.
      张铭杰, 李延鑫, 胡沛青, 等, 2009. 中国东部陆下岩石圈地幔中的再循环地壳流体组分. 地质学报, 83(3): 311-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903000.htm
    • 加载中
    图(13) / 表(1)
    计量
    • 文章访问数:  340
    • HTML全文浏览量:  466
    • PDF下载量:  39
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-18
    • 网络出版日期:  2023-10-31
    • 刊出日期:  2023-10-25

    目录

      /

      返回文章
      返回