• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    北秦岭官坡地区稀有金属伟晶岩锡石年代学、岩石地球化学特征及地质意义

    曾威 孙丰月 周红英 王佳营 李志丹 陈军强 毕君辉 崔玉荣

    曾威, 孙丰月, 周红英, 王佳营, 李志丹, 陈军强, 毕君辉, 崔玉荣, 2023. 北秦岭官坡地区稀有金属伟晶岩锡石年代学、岩石地球化学特征及地质意义. 地球科学, 48(8): 2851-2871. doi: 10.3799/dqkx.2021.233
    引用本文: 曾威, 孙丰月, 周红英, 王佳营, 李志丹, 陈军强, 毕君辉, 崔玉荣, 2023. 北秦岭官坡地区稀有金属伟晶岩锡石年代学、岩石地球化学特征及地质意义. 地球科学, 48(8): 2851-2871. doi: 10.3799/dqkx.2021.233
    Zeng Wei, Sun Fengyue, Zhou Hongying, Wang Jiaying, Li Zhidan, Chen Junqiang, Bi Junhui, Cui Yurong, 2023. Cassiterite U-Pb Age, Geochemistry and Their Geological Significances of Rare Metal Pegmatites in Guanpo Area, North Qinling, China. Earth Science, 48(8): 2851-2871. doi: 10.3799/dqkx.2021.233
    Citation: Zeng Wei, Sun Fengyue, Zhou Hongying, Wang Jiaying, Li Zhidan, Chen Junqiang, Bi Junhui, Cui Yurong, 2023. Cassiterite U-Pb Age, Geochemistry and Their Geological Significances of Rare Metal Pegmatites in Guanpo Area, North Qinling, China. Earth Science, 48(8): 2851-2871. doi: 10.3799/dqkx.2021.233

    北秦岭官坡地区稀有金属伟晶岩锡石年代学、岩石地球化学特征及地质意义

    doi: 10.3799/dqkx.2021.233
    基金项目: 

    中国地质调查项目 DD20160043-5

    中国地质调查项目 DD20230274

    河南省财政地质科研项目 豫国土资发[2018]98号-02、03

    河南省自然资源厅科技攻关项目 豫财招标采购-2020-165-3

    详细信息
      作者简介:

      曾威(1985-),男,正高级工程师,在读博士,主要从事区域成矿规律研究. ORCID:0000-0002-7734-8430. E-mail:314818431@qq.com

      通讯作者:

      孙丰月,E-mail:sunfeng0669@sina.com

    • 中图分类号: P611.1;P581

    Cassiterite U-Pb Age, Geochemistry and Their Geological Significances of Rare Metal Pegmatites in Guanpo Area, North Qinling, China

    • 摘要: 北秦岭官坡-丹凤地区是我国重要的伟晶岩型铀和稀有金属成矿区,目前官坡地区稀有金属伟晶岩的形成时代和成因机制尚不清楚.通过对该地区花岗伟晶岩开展锡石U-Pb年代学、锆石Hf同位素地球化学及全岩主微量元素地球化学研究,分析了伟晶岩成因并探讨秦岭造山带古生代造山作用的时限.锡石LA-MC-ICP-MS U-Pb测年首次确定官坡地区南阳山稀有金属伟晶岩的成岩成矿时代为420±2 Ma,形成于末志留世,表明此时北秦岭造山带处于造山作用晚期或造山后相对稳定的构造背景. 花岗伟晶岩锆石εHf(420 Ma)值为-7.0~-7.8,二阶段Hf模式年龄为2.45~2.52 Ga,表明其源区为古老的地壳物质. 花岗伟晶岩铝饱和指数大于1.10,具有极低的稀土总量(ΣREE=0.43×10-6~23.14×10-6),变化范围较大的LaN/YbN值(0.7~22.3)和δEu值(0.09~1.84). 岩石富集大离子亲石元素Rb、K和高场强元素Nb、Ta、P、Hf,亏损Ba、Nd、Zr、Ti,具有低的Nb/Ta比值(平均值2.66),稀土元素四分组效应明显,这些特征指示岩浆经历了高度结晶分异作用.同位素和岩石地球化学研究表明,官坡地区花岗金属伟晶岩与其南侧灰池子岩体和大毛沟岩体不具岩浆演化关系,稀有金属伟晶岩为过铝质花岗岩浆高程度结晶分异演化的产物.

       

    • 图  1  研究区区域地质图

      图中伟晶岩脉为示意性分布

      Fig.  1.  Regional geological map of the study area

      图  2  官坡地区南阳山矿区花岗伟晶岩分布图

      Fig.  2.  Distribution map of pegmatites in Nanyangshan deposit Guanpo area

      图  3  官坡地区南阳山矿区Ⅵ-Ⅵ’剖面图

      Fig.  3.  Section map of line Ⅵ-Ⅵ' in Nanyangshan deposit Guanpo area

      图  4  南阳山矿区稀有金属伟晶岩手标本和镜下照片

      a. 锂辉石钠长石微斜长石伟晶岩中锂辉石和黑色电气石;b. 锂辉石钠长石伟晶岩中锂辉石和深灰色石英;c. 锂辉石微斜长石伟晶岩中锂辉石和黑色电气石;d. 锂电气石钠长石伟晶岩中粉色电气石和锂云母;e. 钠长石微斜长石伟晶岩中黑色电气石和白云母;f. 铌锰矿和黄铁矿反射光照片;g. 锂辉石、锡石和锂云母正交镜下照片;h. 钠长石、角闪石、锡石正交镜下照片;i. 钠长石、电气石正交镜下照片;j. 微斜长石、钠长石、白云母、电气石正交镜下照片;k. 锂辉石、锂云母单偏光下照片;l. 锂辉石、钠长石、石英、锡石单偏光下照片;Tur. 电气石;Spd. 锂辉石;Qz. 石英;Lpd. 锂云母;Mus.白云母;Mcol. 铌锰矿;Py. 黄铁矿;Cst. 锡石;Ab. 钠长石;Hb. 角闪石;Alf. 微斜长石

      Fig.  4.  Hand speciments and microscope images of rare metal pegmatites in Nanyangshan deposit

      图  5  南阳山矿区伟晶岩锡石背散射图像

      Fig.  5.  Back-scattered electron(BSE) images of cassiterites from Nanyangshan deposit

      图  6  锡石成因判别图解(底图据Tindle and Breaks,1998

      Fig.  6.  Genesis covariation of cassiterite(base map after Tindle and Breaks, 1998)

      图  7  南阳山矿区伟晶岩锡石U-Pb测年谐和图(a)和加权平均年龄(b)

      Fig.  7.  U-Pb Tera-Wasserburg concordia plot(a) and average age(b) of cassiterite from Nanyangshan raremetal pegmatites

      图  8  花岗伟晶岩锆石U-Pb谐和图(a和b)、背散射图像(c)和阴极发光图像(d)

      Fig.  8.  U-Pb concordia diagrams(a and b), BSE images (c)and cathodoluminescence images(d)of zircons from Nanyangshan pegmatites

      图  9  官坡地区花岗伟晶岩主量元素地球化学图解

      TAS图解,底图据Middlemost(1994),5区为花岗闪长岩,6区为花岗岩,7区为硅英岩,11区为二长花岗岩;b. 底图据Yang(2007),A区代表非造山带的熔浆,B区代表造山带和岛弧的熔浆,C区代表A和B的衍生物;c. 为A/NK-A/CNK图解,底图据Maniar and Piccoli(1989);d. 为硅钾图,底图据Peccerillo et al.,(1976)

      Fig.  9.  Major element diagram of granitic pegmatites in Guanpo area

      图  10  花岗伟晶岩微量元素蛛网图

      a. 含矿伟晶岩;b. 为不含矿伟晶岩;原始地幔数据据McDonough and Sun(1995)

      Fig.  10.  Primitive mantle-normalized spidergrams of granitic pegmatites

      图  11  花岗伟晶岩、含榴二长花岗岩和秦岭岩群副片麻岩稀土元素球粒陨石标准化图

      球粒陨石数据据Sun and McDonough(1989),含榴二长花岗岩数据黄龙庙岩体据赵如意等(2012),骡子坪岩体据张良等(2021),秦岭岩群副片麻岩数据据河南省地质调查院,2002.内乡县幅区域地质调查报告

      Fig.  11.  Chondrite-normalized REE distribution patterns of granitic pegmatites, garnet bearing monzogranite and paragneiss of Qinling Group

      图  12  花岗伟晶岩Rb-Ba-Sr图解(a)和Rb-SiO2散点图(b)

      a. 底图据Blouseily and Sokkary(1975);AGG. 钠长石化和云英岩化花岗岩;DG. 分异的花岗岩;NG. 正常花岗岩;AG. 异常花岗岩;GD. 花岗闪长岩;QD. 石英闪长岩;D. 闪长岩;GAD. 与W、Mo、Sn有关矿化花岗岩

      Fig.  12.  Rb-Ba-Sr diagram (a), and Rb-SiO2scatter diagram (b) of granitic pegmatite

      图  13  官坡地区伟晶岩主量元素哈克图解

      Fig.  13.  Harker diagrams of the major elements of granitic pegmatites in Guanpo area

      表  1  南阳山矿区部分锂矿化伟晶岩脉特征表

      Table  1.   Characteristics of some lithium mineralized pegmatites in Nanyangshan deposit

      矿脉编号 规模(m) 产状 平均品位(%) 主要矿物
      长度 平均厚度 延伸 倾向 倾角 Li2O 工业 脉石
      ρ401 36 1.19 11° 54°~40° 1.24 锂辉石、绿柱石、铌钽铁矿等 微斜长石、钠长石、石英、白云母等
      ρ363 75 4.55 40 290° 73° 1.55 锂云母、锂辉石、绿柱石、铌锰矿等 钠长石、石英、白云母高岭石、红电气石等
      ρ312 243 5.30 210 22°~35° 14°~40° 1.31 锂辉石、锂云母、铌锰矿、钽锰矿等 钠长石、微斜长石、石英、白云母、电气石等
      ρ501 27 5.10 38.6 287° 65° 1.35 锂辉石、锂云母、绿柱石、铌锰矿等 钠长石、石英、白云母高岭石、红电气石等
      ρ366 123 2.54 115 170°~203° 32°~69° 1.23 锂辉石、锂白云母、锰钽矿等 钠长石、微斜长石、石英、白云母等
      ρ506 262 3.84 172 35° 79° 1.24 锂辉石、锂白云母、锰钽矿等 钠长石、微斜长石、石英、白云母等
      下载: 导出CSV

      表  2  南阳山矿区伟晶岩中锡石电子探针成分数据

      Table  2.   Chemical composition data of the cassiterite from pegmatites in Nanyangshan deposi(analyzed by EPMA)

      样品号 NYSSN1 NYSSN2 NYSSN4 NYSSN5 NYSSN8 NYSSN9 NYSSN11 NYSSN12
      MgO 0.06 0.08 0.09 0.07 0.08 0.12 0.08 0.10
      Al2O3 0.02 0.01 0.04 0.02 0.01 BDL 0.03 0.01
      Ta2O5 1.64 1.79 1.69 0.36 0.13 0.20 0.31 0.27
      WO3 0.11 0.03 0.09 BDL BDL 0.11 0.01 BDL
      ZrO2 0.06 0.08 0.08 0.05 BDL 0.01 0.07 0.05
      Nb2O5 0.55 0.48 0.70 0.14 0.05 0.06 0.13 0.09
      SnO2 96.81 95.86 96.11 99.28 99.38 98.26 97.37 98.16
      Sc2O3 BDL 0.02 BDL BDL 0.00 BDL BDL 0.02
      TiO2 0.07 0.21 0.02 0.01 BDL 0.01 BDL 0.05
      Cr2O3 0.04 BDL 0.01 0.01 0.02 0.02 BDL BDL
      MnO BDL 0.02 0.04 BDL BDL 0.02 0.01 BDL
      FeO 0.41 0.45 0.63 0.16 0.07 0.07 0.10 0.08
      TOTAL 99.77 99.03 99.51 100.09 99.74 98.88 98.12 98.83
      Mg 0.004 0.006 0.007 0.005 0.006 0.009 0.006 0.007
      Al 0.001 0.001 0.002 0.001 0.000 BDL 0.002 0.000
      Ta 0.022 0.024 0.023 0.005 0.002 0.003 0.004 0.004
      W 0.001 0.000 0.001 BDL BDL 0.001 0.000 BDL
      Zr 0.002 0.002 0.002 0.001 BDL 0.000 0.002 0.001
      Nb 0.012 0.011 0.016 0.003 0.001 0.001 0.003 0.002
      Sn 1.927 1.908 1.913 1.976 1.978 1.956 1.938 1.954
      Ti 0.002 0.008 0.001 0.000 BDL 0.001 BDL 0.002
      Cr 0.001 BDL 0.000 0.000 0.001 0.001 BDL BDL
      Mn BDL 0.001 0.002 BDL BDL 0.001 0.000 BDL
      Fe 0.017 0.019 0.026 0.007 0.003 0.003 0.004 0.003
      Nb+Ta 0.035 0.035 0.039 0.008 0.003 0.004 0.007 0.006
      Mn+Fe 0.017 0.019 0.028 0.007 0.003 0.004 0.005 0.003
      样品号 NYSSN13 NYSSN14 NYSSN17 NYSSN16 NYSSN18 NYSSN19 NYSSN20 NYSSN23
      MgO 0.10 0.09 0.10 0.13 0.07 0.10 0.08 0.39
      Al2O3 0.01 BDL 0.01 BDL BDL BDL 0.02 0.02
      Ta2O5 1.59 0.60 0.13 0.35 0.23 1.35 1.96 0.47
      WO3 BDL BDL BDL 0.02 BDL 0.03 0.15 0.09
      ZrO2 0.06 BDL 0.03 BDL 0.04 0.06 0.08 0.05
      Nb2O5 0.16 0.20 BDL BDL 0.09 0.10 0.60 0.15
      SnO2 97.08 98.66 99.56 98.18 98.48 97.61 95.60 97.49
      Sc2O3 BDL BDL 0.03 BDL BDL BDL BDL 0.01
      TiO2 BDL 0.03 BDL BDL 0.05 0.01 0.09 0.07
      Cr2O3 BDL BDL BDL 0.02 BDL BDL 0.01 0.01
      MnO 0.01 0.01 BDL 0.01 BDL 0.02 BDL BDL
      FeO 0.30 0.17 0.06 0.07 0.06 0.27 0.60 0.12
      TOTAL 99.30 99.74 99.92 98.79 99.02 99.55 99.18 98.86
      Mg 0.007 0.007 0.007 0.010 0.005 0.007 0.006 0.029
      Al 0.001 BDL 0.000 BDL BDL BDL 0.001 0.001
      Ta 0.022 0.008 0.002 0.005 0.003 0.018 0.027 0.006
      W BDL BDL BDL 0.000 BDL 0.000 0.002 0.001
      Zr 0.001 BDL 0.001 BDL 0.001 0.001 0.002 0.001
      Nb 0.004 0.005 BDL BDL 0.002 0.002 0.014 0.003
      Sn 1.933 1.964 1.982 1.954 1.960 1.943 1.903 1.941
      Ti BDL 0.001 BDL BDL 0.002 0.000 0.003 0.002
      Cr BDL BDL BDL 0.001 0.000 BDL 0.000 0.000
      Mn 0.000 0.000 BDL 0.000 BDL 0.001 BDL BDL
      Fe 0.013 0.007 0.002 0.003 0.002 0.011 0.025 0.005
      Nb+Ta 0.025 0.013 0.002 0.005 0.005 0.021 0.040 0.010
      Mn+Fe 0.013 0.007 0.002 0.004 0.002 0.012 0.025 0.005
      注:阳离子数按照氧原子数为4来计算.
      下载: 导出CSV

      表  3  南阳山花岗伟晶岩锡石LA-MC-ICP-MS U-Pb分析结果

      Table  3.   LA-MC-ICP-MS U-Pb isotope data of cassiteritefrom Nanyangshan pegmatites

      样品 测点号 同位素比值
      238U/206Pb ERR% 207Pb/206Pb ERR% 207Pb/235U ERR%
      NYS18 1 14.68 1.01 0.049 7 6.44 0.401 4 6.47
      2 14.92 1.16 0.051 2 12.34 0.421 4 11.91
      3 15.27 1.03 0.071 2 5.58 0.559 9 5.62
      4 14.70 0.99 0.063 4 4.12 0.515 0 4.20
      5 14.99 1.55 0.054 0 22.19 0.466 6 19.46
      6 14.77 1.01 0.043 5 7.65 0.354 0 7.60
      7 14.18 1.18 0.059 7 11.46 0.508 6 11.23
      8 14.59 1.05 0.058 4 7.52 0.475 9 7.51
      9 14.10 1.21 0.076 1 8.44 0.646 5 8.26
      10 15.00 1.21 0.040 0 18.21 0.329 6 16.99
      11 14.68 1.22 0.060 0 11.58 0.483 3 11.53
      12 14.68 1.76 0.087 0 15.24 0.774 5 12.37
      13 14.78 1.19 0.031 4 20.56 0.264 0 19.29
      14 14.85 1.01 0.055 2 6.49 0.444 6 6.51
      15 15.69 1.61 0.063 8 2.37 0.483 2 2.89
      16 14.66 0.97 0.049 5 4.55 0.403 1 4.63
      17 14.72 1.38 0.083 8 9.39 0.703 5 9.03
      18 13.40 1.00 0.090 1 3.30 0.803 5 3.41
      19 14.49 1.41 0.079 6 11.92 0.677 5 11.20
      20 14.82 1.00 0.069 5 4.93 0.560 1 5.02
      21 15.06 1.12 0.060 2 8.48 0.488 3 8.32
      22 14.94 1.00 0.066 1 4.31 0.528 0 4.36
      23 14.09 1.12 0.058 0 1.65 0.488 2 1.83
      24 13.72 1.10 0.061 3 2.79 0.532 3 2.92
      25 14.80 0.99 0.060 1 5.10 0.485 9 5.17
      26 14.84 0.96 0.049 5 5.13 0.397 3 5.17
      27 14.86 0.95 0.052 2 3.20 0.418 1 3.26
      28 14.73 1.08 0.060 8 8.22 0.497 7 8.17
      29 14.75 0.99 0.060 1 5.07 0.486 3 5.14
      30 15.06 1.26 0.032 8 21.11 0.271 3 19.94
      31 14.95 1.08 0.057 7 8.39 0.467 8 8.39
      32 13.92 1.03 0.075 5 4.58 0.648 8 4.78
      33 14.93 1.04 0.069 3 6.38 0.554 8 6.35
      34 14.88 0.94 0.059 7 1.95 0.476 9 2.05
      35 15.42 1.98 0.053 5 29.55 0.506 7 21.44
      36 13.16 1.49 0.070 1 17.41 0.654 7 15.59
      37 14.71 0.98 0.056 6 5.43 0.457 9 5.46
      38 14.45 0.97 0.081 3 3.06 0.669 8 3.15
      39 14.73 1.03 0.074 0 5.37 0.598 0 5.49
      40 15.87 1.09 0.063 1 7.05 0.478 2 7.08
      41 14.84 0.96 0.050 6 4.11 0.405 6 4.14
      42 14.79 0.98 0.054 8 4.99 0.443 4 5.08
      43 15.38 2.00 0.083 7 23.83 0.738 6 18.64
      44 13.74 1.34 0.075 2 11.05 0.657 3 10.86
      45 14.56 1.08 0.078 6 6.07 0.650 2 6.06
      46 15.28 1.65 0.092 9 14.40 0.753 6 13.72
      47 14.72 0.97 0.060 3 3.78 0.489 3 3.86
      48 14.80 1.01 0.051 1 6.17 0.415 1 6.19
      下载: 导出CSV

      表  4  花岗伟晶岩锆石LA-ICP-MS U-Pb分析结果

      Table  4.   LA-ICP-MS U-Pb isotopic data of zircons from Nanyangshan pegmatites

      样品 测点号 含量(×10-6 Th/U 同位素比值 年龄(Ma)
      Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      NYS18 10 4 1 365 0.002 7 0.054 5 0.000 6 0.468 6 0.006 5 0.062 2 0.000 5 391 26 390 5 389 3
      11 5 1 534 0.003 0 0.054 3 0.001 0 0.463 0 0.009 6 0.061 6 0.000 6 387 45 386 7 385 4
      22 7 1 670 0.004 3 0.054 5 0.001 8 0.481 9 0.011 4 0.064 0 0.001 0 391 71 399 8 400 6
      47 8 1 321 0.006 0 0.054 4 0.001 9 0.472 5 0.019 0 0.062 7 0.000 9 387 78 393 13 392 5
      50 4 1 440 0.003 1 0.054 8 0.000 6 0.494 8 0.008 0 0.065 4 0.000 9 406 19 408 5 408 5
      79 7 1 699 0.003 9 0.059 0 0.001 2 0.518 0 0.011 4 0.063 5 0.000 8 569 46 424 8 397 5
      下载: 导出CSV

      表  5  花岗伟晶岩锆石Hf同位素组成

      Table  5.   Hf isotopic composition data of zirconsfrom Nanyangshan pegmatites

      样品 测点 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ 176Hf/177Hfi εHf(0) εHft TDM(Ma) TDM2(Ma)
      NYS18 10 0.000 054 0.000 001 0.000 002 0 0.282 303 0.000 007 0.282 303 -16.6 -7.4 1 306 2 475
      11 0.000 091 0.000 001 0.000 003 0 0.282 313 0.000 007 0.282 313 -16.2 -7.0 1 293 2 446
      22 0.000 042 0.000 001 0.000 001 0 0.282 290 0.000 007 0.282 290 -17.0 -7.8 1 324 2 516
      47 0.000 033 0.000 001 0.000 001 0 0.282 302 0.000 006 0.282 302 -16.6 -7.4 1 307 2 479
      50 0.000 095 0.000 001 0.000 003 0 0.282 296 0.000 007 0.282 296 -16.8 -7.6 1 316 2 499
      79 0.000 101 0.000 001 0.000 003 0 0.282 306 0.000 006 0.282 306 -16.5 -7.2 1 302 2 466
      注:计算过程所用参数:176Lu衰变常数为1.865×10-11a-1; (176Lu/177Hf)CHUR=0.033 2, (176Hf/177Hf)CHUR, 0=0.282 772;(176Lu/177Hf)DM, 0=0.038 4,(176Hf/177Hf)DM=0.283 25
      下载: 导出CSV
    • Blouseily, A. M., Sokkary, A. A., 1975. The Relation Between Rb, Ba and Sr in Granitic Rocks. Chemical Geology, 16(3): 207-219. https://doi.org/10.1016/0009-2541(75)90029-7
      Černý P., 1991. Fertile Granites of Precambrian Rare-Element Pegmatite Fields: is Geochemistry Controlled by Tectonic Setting or Source Lithologies? Precabrian Research, 51: 429-468. https://doi.org/10.1016/0301-9268(91)90111-M
      Chen J, Wang R. C., Zhou J. P., 1999. The Geochenistry of Tin. Nanjing University Press, Nanjing, 1-165(in Chinese).
      Chen, D. L., Ren, Y. F., Gong, X. K., et al., 2015. Identification and Its Geological Significance of Eclogite in Songshugou, the North Qinling. Acta Petrologica Sinica, 31(7): 1841-1854 (in Chinese with English abstract)
      Chen, Y. W., Hu, R. Z., Bi, X. W., et al., 2019. Genesis of the Guangshigou Pegmatite-Type Uranium Deposit in the North Qinling Orogenic Belt, China. Ore Geology Reviews, 115: 103165. https://doi.org/10.1016/j.oregeorev.2019.103165
      Cheng, H., Zhang, C., Vervoort, J. D., et al., 2011. Geochronology of the Transition of Eclogite to Amphibolite Facies Metamorphism in the North Qinling Orogen of Central China. Lithos, 125: 969-983. doi: 10.1016/j.lithos.2011.05.010
      Cheng H, Zhang, C., Vervoort J D, et al., 2012. Timing of Eclogite Facies Metamorphism in the North Qinling by U-Pb and Lu-Hf Geochronology. Lithos, 136-139: 46-59. doi: 10.1016/j.lithos.2011.06.003
      Cui, Y. R., Tu, J. R., Chen, F., et al., 2017. The Research Advances in LA-(MC)-ICP-MS U-Pb Dating of Cassiterite. Acta Geologica Sinica, 91(6): 1386-1399 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.06.016
      Diwu, C. R., Sun, Y., Liu, L., et al., 2010. The Disintegration of Kuanping Group in North Qinling Orogenic Belts and Neo-Proterozoic N-MORB. Acta Petrologica Sinica, 26(7): 2025-2038 (in Chinese with English abstract).
      Dong, Y. P., Zhang, G. W., Hauzenberger, C., et al., 2011a. Palaeozoic Tectonics and Evolutionary History of the Qinling Orogen: Evidence from Geochemistry and Geochronology of Ophiolite and Related Volcanic Rocks. Lithos, 122(1-2): 39-56. https://doi: 10.1016/j.lithos.2010.11.011
      Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011b. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi: 10.1016/j.jseaes.2011.03.002
      Fei, G. C., Yang, Z., Yang, J. Y., Luo, W., et al., 2020. New Precise Timing Constraint for the Dangba Granitic Pegmatite Type Rare-Metal Deposits, Markam, Sichuan Province: Evidence from Cassiterite LA-MC-ICP-MS U-Pb Dating. Acta Geologica Sinica, 94(3): 836-849(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.03.012
      Li, C. D., Zhao, L. G., Xu, Y. W., et al., 2018. Chronology of Metasedimentary Rocks from Kuanping Group Complex in North Qinling Belt and Its Geological Significance. Geology in China, 45(5): 992-1010. (in Chinese with English abstract).
      Li, J. K., Liu, X. F., Wang, D. H., 2014. The Metallogenetic Regularity of Lithium Deposit in China. Acta Geologica Sinica, 88(12): 2269-2283 (in Chinese with English abstract).
      Li, K. W., Fang, H. B., Guo, J. G., et al., 2019. Petrogeochemistry, Zircon U-Pb Dating and Geological Significance of Two-Mica Granites from Wuduoshan Granite in Nanzhao County, Eastern Qinling Mountains. Earth Science, 44(1): 123-134 (in Chinese with English abstract).
      Li, Z. D., Xie, Y., Li, J. J., et al., 2021. Characteristics and Metallogenic Regularity of Lithium Resources in North China. North China Geology, 44(3): 41-49(in Chinese with English abstract).
      Li, Z. Q., Ren, S. L., Dong, S. W., et al., 2021. Tectonic Evolution Time Limit of Subduction in Erlangping Back-Arc Basin, North Qinling. Chinese Journal of Geology, 56(3): 770-791(in Chinese with English abstract).
      Liu, L., Liao, X. Y., Wang, Y. W., et al., 2016. Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt in Central China: Insights on Continental Deep Subduction and Multiphase Exhumation. Earth-Science Reviews, 159: 58-81. https://doi.org/10.1016/j.earscirev.2016.05.005
      Liu, L., Liao, X. Y., Zhang, C. L., et al., 2013. Multi-Matemorphic Timings of HP-UHP Rocks in the North Qinling and Their Geological Implications. Acta Petrologica Sinica, 29(5): 1643-1656(in Chinese with English abstract).
      London, D., 2004. Granitic Pegmatites: an Assessment of Current Concepts and Directions for the Future. Lithos, 80(1-4): 281-303. https://doi.org/10.1016/j.lithos.2004.02.009
      Lu, X. X., Zhu, C. H., Gu, D. M., et al., 2010. The Main Geological and Metallogenic Characteristics of Granitic Pegmatite in Eastern Qinling Belt. Geological Review, 56(1): 21-30 (in Chinese with English abstract).
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      Martin, R. F., De Vito, C., 2005. The Patterns of Enrichment in Felsic Pegmatites Ultimately Depend on Tectonic Setting. The Canadian Mineralogist, 43(6): 2027-2048. https://doi.org/10.2113/ gscanmin.43.6.2027
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      McKechnie, C. L., Annesley, I. R., Ansdell, K. M., 2012. Medium- to Low-Pressure Politic Gneisses of Fraser Lakes Zone-B, Wollaston Domain, Northern Saskatchewan, Canada: Mineral Compositions, Metamorphic p-t-t Path, and Implications for the Genesis of Radioactive Abyssal Granitic Pegmatites. The Canadian Mineralogist, 50(6): 1669-1694. https://doi.org/10.3749/canmin.50.6.1669
      Melleton, J., Gloaguen, E., Frei, D., et al., 2012. How are the Emplacement of Rare-Element Pegmatites, Regional Metamorphism and Magmatism Interrelated in the Moldanubian Domain of the Variscan Bohemian Massif, Czech Republic? The Canadian Mineralogist, 50: 1751-1773. https://doi.org/10.3749/canmin.50.6.1751
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37 (3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Peccerillo, A., Taylor, S. R., 1976. Geocbemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 63-81. https://doi.org/10.1007/BF00384745
      Qin, Z. W., 2016. Early Paleozoic Magmatism in the North Qinling Orogenic Belt and Its Implications for Continental Crust Evolution(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Qin, Z. W., Wu, Y. B., Siebel, W., et al., 2015. Genesis of Adakitic Granitoids by Partial Melting of Thickened Lower Crust and Its Implications for Early Crustal Growth: A case Study from the Huichizi Pluton, Qinling Orogen, Central China. Lithos, 238: 1-12. https://doi.org/10.1016/j.lithos.2015.09.017
      Shi, Y., Yu, J. H., Santosh, M., 2013. Tectonic Evolution of the Qinling Orogenic Belt, Central China: New Evidence from Geochemical, Zircon U-Pb Geochronology and Hf Isotopes. Precambrian Research, 231: 19-60. https://doi.org/10.1016/j.precamres.2013.03.001
      Shi, Y., Yu, J. H., Xu, X. S., et al., 2009. Geochronology and Geochemistry of the Qinling Group in the Eastern Qinling Orogen. Acta Petrologica Sinica, 25(10): 2651-2670 (in Chinese with English abstract).
      Sun, S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, L., Santosh, M., Dong, Y. P., 2015. Tectonic Evolution of a Complex Orogenic System: Evidence from the Northern Qinling Belt, Central China. Journal of Asian Earth Sciences, 113: 544-559. https://doi.org/10.1016/j.jseaes.2015.03.033
      Tindle, A. G., Breaks, F. W., 1998. Oxide Minerals from the Separation Rapids Rare-Element Granitic Pegmatite Group, Northwestern Ontario. Canadian Mineralogist, 36(2): 609-635. https://www.researchgate.net/publication/279706098 https://www.researchgate.net/publication/279706098
      Tu, J. R., Cui, Y. R., Zhou, H. Y., et al., 2019. Review of U-Pb Dating Methods for Cassiterite. Geological Survey and Research, 42(4): 241-249(in Chinese with English abstract).
      Wan, J., Gao, L. B., Wang, L. X., 1992. Metallogenic Environmental Study and Prospect Assessment of the Granite-Pegmatite-Type Uranium Deposit in Shangxian-Danfeng Triangle Area, Shaanxi. Uranium Geology, 8(5): 257-263-270 (in Chinese with English abstract).
      Wang, D. H., Zou, T. R., Xu, Z. G., et al., 2004. Advance in the Study of Using Pegmatite Deposits as the Tracer of Orogenic Process. Advances in Earth Science, 19(4): 614-620(in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2004.04.019
      Wang, H., Wu, Y. B., Gao, S., et al., 2011. Eclogite Origin and Timings in the North Qinling Terrane, and Their Bearing on the Amalgamation of the South and North China Blocks. Journal of Metamorphic Geology, 29(9): 1019-1031. https://doi.org/10.1111/j.1525-1314.2011.00955.x
      Wang, H., Wu, Y. B., Gao, S., et al., 2016. Continental Growth Through Accreted Oceanic Arc: Zircon Hf-O Isotope Evidence for Granitoids from the Qinling Orogen. Geochimica et Cosmochimica Acta, 182: 109-130. https://doi.org/10.1016/j.gca.2016.03.016
      Wang, P. X., Zhu, L. K., Liu, L., et al., 2017. Geological and Geochemical Characteristics of Granitic Pegmatite in Guanpo, Henan Province. Geological Survey of China, 4(6): 40-49(in Chinese with English abstract).
      Wang, R. C., Fontan, F., Xu, S. J., et al, 1997. The Association of Columbite, Tantalite and Tapiolite in the Suzhou Granite, China. The Canadian Mineralogist. 35(3): 699-706.
      Wang, T., Wang, X. X., Tian, W., et al., 2009. North Qinling Paleozoic Granite Associations and Their Variation in Space and Time: Implications for Orogenic Processes in the Orogens of Central China. Sciencein China(Series D), 52(9): 1359-1384. https://doi.org/10.1007/s11430-009-0129-5
      Wang, Z. Q., Yan, Z., Wang, T., et al., 2009. New Advances in the Study on Ages of Metamorphic Strata in the Qinling Orogenic Belt. Acta Geoscientica Sinica, 30(5) : 561-570 (in Chinese with English abstract).
      Wu, Y. B., 2019. Paleozoic Magmatism in the Qinling Orogen and Its Geodynamic Significance. Earth Science, 44(12): 4173-4177(in Chinese with English abstract).
      Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4) : 1402-1428. https://doi.org/10.1016/j.gr.2012.09.007
      Xu, J. B., Fei, G. C., Qin, L. Y., et al., 2020. LA-MC-ICP-MS U-Pb Dating of Cassiterite from the Lijiagou Pegmatite-Type Rare-Metal Deposit in the Ke'eryin Orefield, Sichuan Province and Its Geological Implication. Geology and Exploration, 55(2): 0346-0358(in Chinese with English abstract).
      Yang, M., Liu, L., Wang, Y. W., et al. 2016. Geochronology of Detrital Zircons from Metaclastic of Erlangping Complex in the North Qinling Belt and Its Tectonic Implication. Acta Petrologica Sinica, 32(5): 1452-1466(in Chinese with English abstract).
      Yang, X. M., 2007. Using the Rittmann Serial Index to Define the Alkalinity of Igneous Rocks. Neues Jahrbuch für Mineralogie-Abhandlungen, 184 (1): 95-103. https://doi.org/10.1127/0077-7757/2007/0082
      Yang, Y., Wang, X. X., Ke, C. H., et al, . 2014. Zircon U-Pb Ages, Geochemistry and Evolution of Mangling Pluton in North Qinling Mountains. Mineral Deposits, 33(1): 14-36(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2014.01.002
      Yuan, F., Jiang, S. Y., Liu, J. J., et al., 2020. Origin and Evolution of Uraniferous Pegmatite: A case Study from the Xiaohuacha Granite-Pegmatite System and Related Country Rocks in the Shangdan Uranium Mineralization District of North Qinling Orogenic Belt, China. Lithos, 356-357: 105379. https://doi.org/10.1016/j.lithos.2020.105379
      Yuan, F., Liu, J. J., Carranza, E. J. M., et al., 2018. Zircon Trace Element and Isotopic (Sr, Nd, Hf, Pb) Effects of Assimilation-Fractional Crystallization of Pegmatite Magma: a Case Study of the Guangshigou Biotite Pegmatites from the North Qinling Orogen, Central China. Lithos, 302-303: 20-36. https://doi.org/10.1016/j.lithos.2017.12.022
      Yuan, F., Liu, J. J., Lü, G. X., et al., 2017. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Granites and Pegmatites from the Guangshigou Uranium Deposit in the Northern Qinling Orogen, China. Earth Science Frontiers, 24(6) : 25-45(in Chinese with English abstract).
      Yuan, F., Liu, J., Carranza, E. J. M., et al., 2018. The Guangshigou Uranium Deposit, Northern Qinling Orogen, China: A Product of Assimilation-Fractional Crystallization of Pegmatitic magma. Ore Geology Reviews, 99: 17-41. https://doi.org/10.1016/j.oregeorev.2018.05.010
      Zeng, W., Xu, Y. W., Sun, F. Y., 2019. Molybdenite Re-Os Geochronology and S, Pb Isotopic Characteristic ofBanchang Copper Polymetallic Deposit in Neixiang, Henan Province. Earth Science, 44(1): 109-122(in Chinese with English abstract).
      Zhang, C. L., Liu, L., Wang, T., et al., 2013. Granitic Magmatism Related to Early Paleozoic Continental Collision in the North Qinling Belt. Chin Sci Bull, 58. doi: 10.1007/s11434-013-6064-z
      Zhang, L., Hu, F. F., Wang, J. B., 2021. Geological and Geochemical Characteristics of Uranium-Bearing Pegmatite in the Danfeng Area, North Qinling. Geology and Exploration, 57(2): 370-379(in Chinese with English abstract).
      Zhao, J., Chen, D. L., Tan, Q. H., et al., 2012. Zircon LA-ICP-MS U-Pb Dating of Basic Volcanics from Erlangping Group of the North Qinling, Eastern Qinling Mountains and Its Geological Implications. Earth Science Frontiers, 19(4): 118-125(in Chinese with English abstract).
      Zhao, L. G., Li, C. D., Wu, Z. Y., et al., 2018. Detrital Zircon U-Pb Geochronology of the Qinling Group in Wuli-chuan-Zhaigen Area, West Henan. Geology in China, 45(4): 753-766(in Chinese with English abstract).
      Zhao, R. Y., Li, W. H., Jiang, C. Y., et al., 2013. Age and Geochemistry of Uranium Bearing Pegmatite in Danfeng Area, Shaanxi Province. Acta Mineralogica Sinica, 3(S2): 880-882 (in Chinese).
      Zhao, R. Y., Li, W. H., Jiang, C. Y., et al., 2014. The LA-ICP-MS Zircon U-Pb Dating, Petro-Geochemical Characteristics of Huanglongmiao Monzogranite in Danfeng Area in Eastern Qingling Mts. and Their Geological Significance. Geological Review, 60(5): 1123-1132 (in Chinese with English abstract).
      Zhao, Z. H., Masuda, A., Shabani MB., 1992. Tetrad Effects of Rare-Earth Elements in Rare-Metal granites. Geochimica, 3: 221-233 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1992.03.003
      Zhou, Q. F., Qin, K. Z., Tang, D. M., 2019. Mineralogical Characteristics and Significance of Beryl from the Rare-Element Pegmatites in the Lushi County, East Qinling, China. Acta Petrologica Sinica, 35 (7): 1999-2012. doi: 10.18654/1000-0569/2019.07.04
      曾威, 许雅雯, 孙丰月, 等, 2019. 河南内乡县板厂铜多金属矿辉钼矿Re-Os年代学及硫、铅同位素地球化学特征. 地球科学, 44(1): 109-122. doi: 10.3799/dqkx.2018.294
      陈丹玲, 任云飞, 宫相宽, 等, 2015. 北秦岭松树沟榴辉岩的确定及其地质意义. 岩石学报, 31(7): 1841-1854 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201507003.htm
      陈骏, 王汝成, 周建平, 1999. 锡的地球化学. 南京: 南京大学出版社, 1-165
      崔玉荣, 涂家润, 陈枫, 等, 2017. LA-(MC)-ICP-MS锡石U-Pb定年研究进展. 地质学报, 91(6): 1386-1399. doi: 10.3969/j.issn.0001-5717.2017.06.016
      第五春荣, 孙勇, 刘良, 等, 2010. 北秦岭宽坪岩群的解体及新元古代N-MORB. 岩石学报, 26(7) : 2025-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007007.htm
      费光春, 杨峥, 杨继忆, 等, 2020. 四川马尔康党坝花岗伟晶岩型稀有金属矿床成矿时代的限定: 来自LA-MC-ICP-MS锡石U-Pb定年的证据. 地质学报, 94(3): 836-849. doi: 10.3969/j.issn.0001-5717.2020.03.012
      李承东, 赵利刚, 许雅雯, 等, 2018. 北秦岭宽坪岩群变质沉积岩年代学及地质意义. 中国地质, 45(5): 992-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201805009.htm
      李建康, 刘喜方, 王登红, 2014. 中国锂矿成矿规律概要. 地质学报, 88(12): 2269-2283. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202304020.htm
      李开文, 方怀宾, 郭君功, 等, 2019. 东秦岭南召县五朵山岩体二云母花岗岩地球化学、锆石U-Pb年代学及地质意义. 地球科学, 44(1): 123-134. doi: 10.3799/dqkx.2018.306
      李振强, 任升莲, 董树文, 等, 2021. 北秦岭二郎坪弧后盆地俯冲消减的构造演化时限. 地质科学, 56(3): 770-791. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202103007.htm
      李志丹, 谢瑜, 李俊建, 等, 2021. 华北地区锂资源特征及成矿规律概要. 华北地质, 44(3): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202103005.htm
      刘良, 廖小莹, 张成立, 等, 2013. 北秦岭高压-超高压岩石的多期变质时代及其地质意义. 岩石学报, 29(5): 1634-1656 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201305015.htm
      卢欣祥, 祝朝辉, 谷德敏, 等, 2010. 东秦岭花岗伟晶岩的基本地质矿化特征. 地质论评, 56(1): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201001006.htm
      秦拯纬, 2016. 北秦岭造山带早古生代岩浆作用及其大陆地壳演化意义(博士学位论文). 武汉: 中国地质大学.
      时毓, 于津海, 徐夕生, 等, 2009. 秦岭造山带东段秦岭岩群的年代学和地球化学研究. 岩石学报, 25(10): 2651-2670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910029.htm
      涂家润, 崔玉荣, 周红英, 等, 2019. 锡石U-Pb定年方法评述. 地质调查与研究, 42(4): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904002.htm
      万吉, 高立宝, 王莲香, 1992. 商丹三角地区花岗伟晶岩型铀矿成矿环境研究及远景评价. 铀矿地质, 8(5): 257-263-270. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ199205000.htm
      王登红, 邹天人, 徐志刚, 等, 2004. 伟晶岩矿床示踪造山过程的研究进展. 地球科学进展, 19(4): 614-620. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200404019.htm
      王盘喜, 朱黎宽, 刘璐, 等, 2017. 河南官坡花岗伟晶岩地质与地球化学特征. 中国地质调查, 4(6): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201706006.htm
      王宗起, 闫臻, 王涛, 等, 2009. 秦岭造山带主要疑难地层时代研究的新进展. 地球学报, 30(5) : 561-570. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200905001.htm
      吴元保, 2019. 秦岭造山带古生代岩浆作用及地球动力学意义. 地球科学, 44(12): 4173-4177. doi: 10.3799/dqkx.2019.266
      许家斌, 费光春, 覃立业, 等, 2020. 四川可尔因矿田李家沟伟晶岩型稀有金属矿床锡石LA-MC-ICP-MS U-Pb定年及地质意义. 地质与勘探, 56(2): 346-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202203011.htm
      杨敏, 刘良, 王亚伟, 等, 2016. 北秦岭二郎坪杂岩变沉积岩碎屑锆石年代学及其构造地质意义. 岩石学报, 32(5): 1452-1466. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201605014.htm
      杨阳, 王晓霞, 柯昌辉, 等, 2014. 北秦岭蟒岭岩体的锆石U-Pb年龄、地球化学及其演化. 矿床地质, 33(1): 14-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201401002.htm
      袁峰, 刘家军, 吕古贤, 等, 2017. 北秦岭光石沟铀矿区花岗岩、伟晶岩锆石U-Pb年代学、地球化学及成因意义. 地学前缘, 24(6): 25-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706003.htm
      张良, 胡菲菲, 王江波, 等, 2021. 北秦岭丹凤地区含铀伟晶岩地质地球化学特征. 地质与勘探, 57(2): 370-379. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202102012.htm
      赵姣, 陈丹玲, 谭清海, 等, 2012. 北秦岭东段二郎坪群火山岩锆石的LA-ICP-MS U-Pb定年及其地质意义. 地学前缘, 19(4): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201705014.htm
      赵利刚, 李承东, 武志宇, 等, 2018. 豫西五里川-寨根一带秦岭岩群碎屑锆石U-Pb年龄研究. 中国地质, 45(4): 753-766 https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201804009.htm
      赵如意, 李卫红, 姜常义, 等, 2012. 东秦岭丹凤地区黄龙庙二长花岗岩LA-ICP-MS锆石U-Pb年龄、岩石地球化学特征及其地质意义. 地质论评, 60(5): 1123-1132. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201405019.htm
      赵如意, 李卫红, 姜常义, 等, 2013. 陕西丹凤地区含铀花岗伟晶岩年龄及其构造意义. 矿物学报, 3(S2): 880-882. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2013S2489.htm
      赵振华, 增田彰正, 夏巴尼, 1992. 稀有金属花岗岩的稀土元素四分组效应. 地球化学, 3: 221-233. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199203002.htm
      周起凤, 秦克章, 唐冬梅, 等, 2019. 东秦岭卢氏稀有金属伟晶岩的绿柱石矿物学特征及其指示意义. 岩石学报. 35(7): 1999-2012. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201907004.htm
    • dqkxzx-48-8-2851-附表.docx
    • 加载中
    图(13) / 表(5)
    计量
    • 文章访问数:  536
    • HTML全文浏览量:  555
    • PDF下载量:  119
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-10-11
    • 刊出日期:  2023-08-25

    目录

      /

      返回文章
      返回