• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    后套平原浅层高氟地下水分布及成因

    陈占强 马腾 陈柳竹 武显仓 巨凡凡 刘文辉

    陈占强, 马腾, 陈柳竹, 武显仓, 巨凡凡, 刘文辉, 2023. 后套平原浅层高氟地下水分布及成因. 地球科学, 48(10): 3856-3865. doi: 10.3799/dqkx.2021.237
    引用本文: 陈占强, 马腾, 陈柳竹, 武显仓, 巨凡凡, 刘文辉, 2023. 后套平原浅层高氟地下水分布及成因. 地球科学, 48(10): 3856-3865. doi: 10.3799/dqkx.2021.237
    Chen Zhanqiang, Ma Teng, Chen Liuzhu, Wu Xiancang, Ju Fanfan, Liu Wenhui, 2023. Distribution and Formation of Shallow Groundwater with High Fluoride in Houtao Plain. Earth Science, 48(10): 3856-3865. doi: 10.3799/dqkx.2021.237
    Citation: Chen Zhanqiang, Ma Teng, Chen Liuzhu, Wu Xiancang, Ju Fanfan, Liu Wenhui, 2023. Distribution and Formation of Shallow Groundwater with High Fluoride in Houtao Plain. Earth Science, 48(10): 3856-3865. doi: 10.3799/dqkx.2021.237

    后套平原浅层高氟地下水分布及成因

    doi: 10.3799/dqkx.2021.237
    详细信息
      作者简介:

      陈占强(1996-),男,硕士研究生,主要从事地下水污染防治研究.ORCID:0000-0002-0026-0393.E-mail:chenzq2021@cug.edu.cn

      通讯作者:

      马腾,E-mail: mateng@cug.edu.cn

    • 中图分类号: P641.3

    Distribution and Formation of Shallow Groundwater with High Fluoride in Houtao Plain

    • 摘要: 为查明内蒙古后套平原浅层高氟地下水的分布和成因,通过相关性、Gibbs图、矿物饱和指数、离子强度和氯碱指数分析了后套平原64组浅层地下水水化学数据.结果表明:后套平原地下水样品中F-浓度超过我国生活饮用水标准限值(1.0 mg/L)的比例为53.1%;浅层高氟地下水主要分布在后套平原东部黄河泛滥冲积平原,多为高TDS、偏碱性的Cl-Na型水.后套平原浅层地下水中氟主要来源于山区围岩、平原区含水介质中萤石等含氟矿物的溶解.浅层高氟地下水在地形地貌、气候以及人为灌溉活动的制约下,主要受到蒸发浓缩作用的控制,并影响矿物沉淀-溶解作用,为含水介质中F-的释放创造了条件.阳离子交替吸附作用在较高离子强度条件下对高氟地下水的形成影响较小.

       

    • 图  1  研究区水文地质简图及剖面图(邓娅敏,2008)

      Fig.  1.  Hydrogeological sketch and section of the study area (Deng, 2008)

      图  2  研究区浅层地下水采样点位置图及F-浓度分布

      Fig.  2.  Location and F- concentrations of shallow groundwater samples in the study area

      图  3  后套平原浅层地下水Piper三线图

      Fig.  3.  Piper trigram of shallow groundwater in the Houtao plain

      图  4  浅层地下水中F-与萤石饱和指数关系(a)和白云石与方解石饱和指数关系(b)

      Fig.  4.  Relationship of fluorite saturation index and F- concentration (a), and saturation index relationship of dolomite and calcite (b) in shallow groundwater

      图  5  浅层地下水中F-与Ca2+、Mg2+的相关关系

      Fig.  5.  Concentration correlation of F- and Ca2+, Mg2+ in shallow groundwater

      图  6  研究区浅层地下水Gibbs图

      Fig.  6.  Gibbs diagram of shallow groundwater in the study area

      图  7  F-浓度与地下水离子强度关系

      Fig.  7.  Relationship of F- concentration and ionic strength of shallow groundwater

      图  8  河套平原浅层地下水氯碱指数与F-关系

      Fig.  8.  Relationship of chlor-alkali index and F- in shallow groundwater

      表  1  研究区地下水水化学指标统计表

      Table  1.   Statistical results of groundwater chemical parameters in the study area

      统计量 F pH Eh SO42- HCO3- Cl Ca2+ Mg2+ K+ Na+ TDS
      全部水样
      (N=64)
      最大值 5.17 8.50 174.7 2 816.0 1 075.0 6 359.0 761.2 823.2 1 047.0 5 716.0 14 561.0
      最小值 0.27 7.01 -171.5 19.7 206.4 31.5 19.1 15.0 2.3 41.5 459.5
      均值 1.47 7.83 -59.8 439.4 571.6 851.2 141.5 97.18 25.26 629.7 2 760.3
      中值 1.05 7.84 -83.6 281.3 532.5 275.5 86.6 59.5 6.3 289.1 1 524.7
      标准差 1.1 0.3 91.6 449.4 201.0 1 349.4 150.7 122.6 128.9 898.6 2 822.3
      变异系数 0.748 0.038 -1.532 1.023 0.352 1.585 1.065 1.262 5.103 1.427 1.022
      低氟(N=30) 最大值 0.99 8.50 174.7 585.2 664.3 403.7 231.1 85.0 37.4 420.2 2 293.6
      最小值 0.27 7.53 -171.5 19.7 269.9 54.04 23.91 27.36 2.3 51.92 641.8
      均值 0.68 7.88 -78.9 245.4 479.9 195.9 97.1 48.4 6.65 198.9 1 274.2
      中值 0.70 7.84 -103.1 225.8 461.5 181.0 96.6 46.8 4.5 184.3 1 223.5
      标准差 0.2 0.2 85.4 144.4 100.8 92.7 48.1 16.2 6.7 95.4 403.8
      变异系数 0.279 0.027 -1.082 0.588 0.210 0.473 0.495 0.335 1.008 0.480 0.317
      中氟(N=19) 最大值 1.90 8.34 110.0 1 131.0 1 051.0 1 276.0 421.1 300.5 45.6 1 154.0 4 295.1
      最小值 1.03 7.28 -157.5 27.7 307.6 65.5 19.06 21.4 4.7 171.9 657.7
      均值 1.38 7.88 -50.19 451.9 682.3 583.4 102.9 87.0 9.17 526.0 2 445.8
      中值 1.34 7.92 -85.5 567.5 683.6 608.4 73.9 95.4 7.2 524.3 2 404.3
      标准差 0.3 0.3 92.6 309.5 201.0 375.4 101.9 48.7 8.7 275.2 1 046.1
      变异系数 0.203 0.038 -1.845 0.685 0.295 0.643 0.990 0.560 0.949 0.523 0.428
      高氟(N=15) 最大值 5.17 8.23 123.5 2 816.0 1 075.0 6 359.0 761.2 823.2 1 047.0 3 028.0 14 561.0
      最小值 2.17 7.01 -157.2 40.02 206.4 31.5 29.1 15.0 4.7 41.5 459.5
      均值 3.16 7.63 -33.76 811.5 614.67 2 501.1 279.26 207.67 82.87 1 622.8 6 131.0
      中值 2.98 7.57 -59.8 910.8 577.5 2 238.0 290.4 145.8 12.4 1 620.0 5 499.4
      标准差 0.9 0.4 94.1 696.3 258.3 1 975.3 233.1 208.6 257.8 1 400.1 4 045.7
      变异系数 0.285 0.047 -2.787 0.858 0.420 0.790 0.835 1.004 3.111 0.863 0.660
      注:除pH、变异系数为无量纲、Eh的单位为mV,其余指标为mg/L;N指样品数.
      下载: 导出CSV
    • Ali, S., Thakur, S. K., Sarkar, A., et al., 2016. Worldwide Contamination of Water by Fluoride. Environmental Chemistry Letters, 14(3): 291-315. https://doi.org/10.1007/s10311-016-0563-5
      Deng, Y. M., 2008. Study on Geochemical Processes of High Arsenic Groundwater System in Western Hetao Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Feng, C. E., Gao, C. R., Wang, J. T., et al., 2015. Distribution and Causes of High-Iron and High-Fluoride Shallow Groundwater in the Hetao Plain of Inner Mongolia. Acta Geoscientia Sinica, 36(1): 67-76 (in Chinese with English abstract).
      Fu, L. Z., 2016. Remote Sensing Monitoring of Land Salinization in Houtao Plain of Inner Mongolia and Its Causes (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Gao, C. R., Liu, W. B., Feng, C. E., et al., 2014. Research on the Formation Mechanism of High Arsenic Groundwater in Arid and Semi-Arid Regions: A Case Study of Hetao Plain in Inner Mongolia, China. Earth Science Frontiers, 21(4): 13-29 (in Chinese with English abstract).
      Hao, Q. Y., Xu, X. T., Zhang, X. B., et al., 2020. Hydrochemical Characteristics and Genesis of High-Fluorine Shallow Groundwater in Yanggu Area of the Northwestern Shandong, China. Journal of Earth Sciences and Environment, 42(5): 668-677 (in Chinese with English abstract).
      He, L. L., He, S. Y., Chen, Z. Y., et al., 2020. Fluorine Pollution in the Environment and Human Fluoride Effect. Earth and Environment, 48(1): 87-95 (in Chinese with English abstract).
      He, X., 2010. Study on Arsenic Migration and Enrichment in Groundwater Affected by Agricultural Irrigation in Hetao Plain (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Li, B., Wang, Z. C., Liang, Z. W., et al., 2009. Groundwater Quality Evaluation Based on Ionic Strength and Ionic Activity. Journal of North University of China, 30(6): 594-598 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-3193.2009.06.019
      Li, B. Y., Ge, Q. S., Zheng, J. Y., 2003. Evolution of the Yellow River in the Houtao Plain of Inner Mongolia in the Past 2000 Years. Acta Geographica Sinica, 58(2): 239-246 (in Chinese with English abstract). doi: 10.3321/j.issn:0375-5444.2003.02.011
      Li, X. Q., Hou, X. W., Zhou, Z. C., et al., 2011. Geochemical Provenance and Spatial Distribution of Fluoride in Groundwater of Taiyuan Basin, China. Environmental Earth Sciences, 62(8): 1635-1642. https://doi.org/10.1007/s12665-010-0648-6
      Li, X. Y., Zhang, Y. L., Wang, L. J., et al., 2020. Study on Groundwater Environmental Background Values in Hetao Basin. Journal of Arid Land Resources and Environment, 34(3): 180-187(in Chinese with English abstract).
      Liu, L. L., 2018. Spatial Distribution of High Fluoride Groundwater and Its Cause Analysis. The Earth, (5): 78-79 (in Chinese with English abstract).
      Lü, L. P., 2012. Distribution Characteristics and Evolution Mechanism of Groundwater Fluorine in Cangzhou Area (Dissertation). Liaoning Technical University, Fuxin (in Chinese with English abstract).
      Meng, C. X., Zheng, X. L., Wang, C. J., 2019. Study on Distribution Characteristics and Formation Mechanism of High Fluorine Ground Water in Pingdu City. Periodical of Ocean University of China, 49(11): 111-119 (in Chinese with English abstract).
      Ibrahimi, M. K., Miyazaki, T., Nishimura, T., et al., 2014. Contribution of Shallow Groundwater Rapid Fluctuation to Soil Salinization under Arid and Semiarid Climate. Arabian Journal of Geosciences, 7(9): 3901-3911. https://doi.org/10.1007/s12517-013-1084-1
      Rashid, A. 2018. Fluoride Prevalence in Groundwater around a Fluorite Mining Area in the Flood Plain of the River Swat, Pakistan. Science of the Total Environment, 635: 203-215. https://doi.org/10.1016/j.scitotenv.2018.04.064
      Reddy, A. S., Reddy, D. V., 2016. Hydrogeochemical Processes of Fluoride Enrichment in Chimakurthy Pluton, Prakasam District, Andhra Pradesh, India. Environmental Earth Sciences, 75(8): 663. https://doi.org/10.1007/s12665-016-5478-8
      Wang, J. Z., Wu, J. L., Zeng, H. A., et al., 2013. Characteristics of Water Isotope and Hydrochemistry in Hetao Plain of Inner Mongolia. Journal of Earch Sciences and Environment, 35(4): 104-112 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-6561.2013.04.012
      Wang, P., Jin, M. G., Lu, D. C., 2020. Hydrogeochemistry Characteristics and Formation Mechanism of Shallow Groundwater in Yongcheng City, Henan Province. Earth Science, 45(6): 2232-2244 (in Chinese with English abstract).
      Wang, P., Yang, L. P., Lin, X. J., et al., 2018. Distribution Characteristics and Formation of High Mineralized Saline Groundwater in Hetao Plain, Inner Mongolia. Yangtze River, 49(1): 44-50 (in Chinese with English abstract).
      Wei, F. S., Chen, J. S., Wu, Y. Y., et al., 1991. Study on the Background Contents on 61 Elements of Soils in China. Environmental Science, 12(4): 12-19, 94 (in Chinese with English abstract).
      Zeng, H. B., Su, C. L., Xie, X. J., et al., 2021. Mechanism of Salinization of Shallow Groundwater in Western Hetao Irrigation Area. Earth Science, 46(6): 2267-2277 (in Chinese with English abstract).
      Zhang, J., Zhou, J. L., Nai, W. H., et al., 2020. Genetic Analysis of High Fluoride Groundwater in the Plain Area of Yeer Qiang River Basin. Arid Land Resources and Environment, 34(4): 100-106(in Chinese).
      Zhao, S. Z., Wang, X. K., Huang, Z. F., et al., 2007. Genetic Analysis of High Fluoride Water in Hetao Region of Inner Mongolia. Rock and Mineral Analysis, (4): 320-324 (in Chinese).
      曾邯斌, 苏春利, 谢先军, 等, 2021. 河套灌区西部浅层地下水咸化机制. 地球科学, 46(6): 2267-2277. doi: 10.3799/dqkx.2020.259
      邓娅敏, 2008. 河套盆地西部高砷地下水系统中的地球化学过程研究(博士学位论文). 武汉: 中国地质大学.
      冯翠娥, 高存荣, 王俊涛, 等, 2015. 内蒙古河套平原浅层高铁高氟地下水分布与成因. 地球学报, 36(1): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201501010.htm
      傅连珍, 2016. 内蒙古后套平原土地盐碱化遥感监测及成因研究(硕士学位论文). 北京: 中国地质大学.
      高存荣, 刘文波, 冯翠娥, 等, 2014. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例. 地学前缘, 21(4): 13-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404003.htm
      郝启勇, 徐晓天, 张心彬, 等, 2020. 鲁西北阳谷地区浅层高氟地下水化学特征及成因. 地球科学与环境学报, 42(5): 668-677. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm
      何令令, 何守阳, 陈琢玉, 等, 2020. 环境中氟污染与人体氟效应. 地球与环境, 48(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202001011.htm
      何薪, 2010. 河套平原农业灌溉影响下地下水中砷迁移富集规律研究(博士学位论文). 武汉: 中国地质大学.
      李彬, 王志春, 梁正伟, 等, 2009. 基于离子强度与活度的地下水质评价. 中北大学学报(自然科学版), 30(6): 594-598. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGG200906020.htm
      李炳元, 葛全胜, 郑景云, 2003. 近2000年来内蒙后套平原黄河河道演变. 地理学报, 58(2): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200302010.htm
      李晓媛, 张翼龙, 王丽娟, 等, 2020. 河套盆地地下水环境背景值研究. 干旱区资源与环境, 34(3): 180-187. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202003026.htm
      刘莉莉, 2018. 高氟地下水的空间分布规律及其成因分析. 地球, (5): 78-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DIQU201805025.htm
      吕丽萍, 2012. 沧州地区地下水氟的分布特征及其演变机制(博士学位论文). 阜新: 辽宁工程技术大学.
      孟春霞, 郑西来, 王成见, 2019. 平度市高氟地下水分布特征及形成机制研究. 中国海洋大学学报(自然科学版), 49(11): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201911013.htm
      汪敬忠, 吴敬禄, 曾海鳌, 等, 2013. 内蒙古河套平原水体同位素及水化学特征. 地球科学与环境学报, 35(4): 104-112. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201304017.htm
      王攀, 靳孟贵, 路东臣, 2020. 河南省永城市浅层地下水化学特征及形成机制. 地球科学, 45(6): 2232-2244. doi: 10.3799/dqkx.2019.280
      王平, 杨亮平, 林晓静, 等, 2018. 内蒙古河套平原高矿化咸水分布规律及成因分析. 人民长江, 49(1): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201801010.htm
      魏复盛, 陈静生, 吴燕玉, 等, 1991. 中国土壤环境背景值研究. 环境科学, 12(4): 12-19, 94. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ199104006.htm
      张杰, 周金龙, 乃尉华, 等, 2020. 叶尔羌河流域平原区高氟地下水成因分析. 干旱区资源与环境, 34(4): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202004017.htm
      赵锁志, 王喜宽, 黄增芳, 等, 2007. 内蒙古河套地区高氟水成因分析. 岩矿测试, (4): 320-324. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200704014.htm
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  453
    • HTML全文浏览量:  402
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-25
    • 网络出版日期:  2023-10-31
    • 刊出日期:  2023-10-25

    目录

      /

      返回文章
      返回