• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    人类活动对木里冻土区水文环境影响的多元同位素示踪

    邢剑伟 李小倩 周爱国 庞守吉 李鑫 余迎祥

    邢剑伟, 李小倩, 周爱国, 庞守吉, 李鑫, 余迎祥, 2024. 人类活动对木里冻土区水文环境影响的多元同位素示踪. 地球科学, 49(5): 1891-1906. doi: 10.3799/dqkx.2021.253
    引用本文: 邢剑伟, 李小倩, 周爱国, 庞守吉, 李鑫, 余迎祥, 2024. 人类活动对木里冻土区水文环境影响的多元同位素示踪. 地球科学, 49(5): 1891-1906. doi: 10.3799/dqkx.2021.253
    Xing Jianwei, Li Xiaoqian, Zhou Aiguo, Pang Shouji, Li Xin, Yu Yingxiang, 2024. Multi-Isotope Tracing of the Impact of Human Activities on the Hydrological Environment in the Muli Permafrost Region. Earth Science, 49(5): 1891-1906. doi: 10.3799/dqkx.2021.253
    Citation: Xing Jianwei, Li Xiaoqian, Zhou Aiguo, Pang Shouji, Li Xin, Yu Yingxiang, 2024. Multi-Isotope Tracing of the Impact of Human Activities on the Hydrological Environment in the Muli Permafrost Region. Earth Science, 49(5): 1891-1906. doi: 10.3799/dqkx.2021.253

    人类活动对木里冻土区水文环境影响的多元同位素示踪

    doi: 10.3799/dqkx.2021.253
    基金项目: 

    中国地质调查局非常规油气地质重点实验室开放基金项目 DD2019137-YQ19JJ02

    陆域天然气水合物资源综合调查项目 DD20190102

    详细信息
      作者简介:

      邢剑伟(1996-),男,硕士研究生,主要从事同位素水文地质方面研究.ORCID:0000-0002-6219-7983. E-mail:xjw0116@cug.edu.cn

      通讯作者:

      李小倩, ORCID: 0000-0002-5153-3929. E-mail:lixiaoqian@cug.edu.cn

    • 中图分类号: P64

    Multi-Isotope Tracing of the Impact of Human Activities on the Hydrological Environment in the Muli Permafrost Region

    • 摘要: 为查明人类活动对木里冻土区水文环境造成的影响,选取高寒冻土区人类活动最为显著的木里煤田聚乎更矿区,以区内大通河支流水系河水为研究对象,基于水化学组成空间特征,利用氢、氧、碳、氮、硫、锶等多元同位素开展示踪研究.研究表明:(1)冻结层上水是河水的主要补给来源,煤矿开采、天然气水合物钻探等人类活动破坏原有冻土结构,增加了冻结层上水对河水的贡献比例;(2)河水中主要溶解性营养物质(SO42-、NO3-和DOC)浓度的增加源于人类活动的影响:硫氧同位素揭示了大规模的煤矿露天开采促进还原硫氧化,是导致冻结层上水和河水中SO42-升高的主要原因;氮氧同位素表明河水中高浓度的NO3-来源于散养式放牧的牲畜粪便;DOC主要来源于高寒草甸植物降解产生的土壤有机质,人类活动影响下增加了DOC和DIC的输出,增强了源区河水中的微生物活动;(3)除H2CO3风化碳酸盐岩外,受人类活动煤矿开采影响下硫酸参与的碳酸盐岩和硅酸盐岩岩石风化作用增强,进而影响着区域岩石风化的碳汇作用.研究成果为认识人类活动影响下高寒冻土区水文环境的演化提供研究思路,为高寒冻土区生态环境保护提供科学依据.

       

    • 图  1  研究区概况与样品点分布

      a.地理位置;b.木里煤田聚乎更矿区与天然气水合物钻探孔分布;c.地质简图与样品点分布;d. 地形高程

      Fig.  1.  Overview of the study area and distribution of sample points

      图  2  冻结层上水和河水的Piper三线图

      Fig.  2.  Piper diagram of water samples

      图  3  HCO3-/Na+和Ca2+/Na+摩尔比值关系

      Fig.  3.  Mole ratio diagram between HCO3-/Na+ and Ca2+/Na+

      图  4  研究区各水体的δD-δ18O组成关系

      Fig.  4.  δD-δ18O composition of water bodies in the study area

      图  5  冻结层上水离子含量对比

      Fig.  5.  Comparison of ions content between the supra-permafrost water samples

      图  6  冻结层上水与补给源的氢氧同位素组成关系(a) 与补给来源的贡献比例(b)

      Fig.  6.  Hydrogen and oxygen isotopic composition of the supra-permafrost water and recharge source (a) and contribution ratio of recharge source (b)

      图  7  河水与补给来源的溶解Si与δ18O关系(a) 与河道径流分割结果(b)

      Fig.  7.  Relationship diagram of dissolved Si and δ18O between river water and recharge sources (a) and segmentation results of stream runoff (b)

      图  8  δ34S-SO4与δ18O-SO4关系(a)和δ34S与1/SO42-关系(b)

      Fig.  8.  Plots of δ34S-SO4 versus δ18O-SO4 (a) and δ34S-SO4 versus 1/SO42- (b)

      图  9  δ15N-NO3与δ18O-NO3关系(a)和δ15N-NO3与NO3-关系(b)

      Fig.  9.  Plots of δ15N-NO3 versus δ18O-NO3 (a) and δ15N-NO3 versus NO3- (b)

      图  10  DIC与DOC关系(a)和δ13CDIC13CDOC与DOC关系(b)

      Fig.  10.  Relationships between DIC versus DOC (a) and δ13CDIC13CDOC versus DOC (b)

      图  11  不同离子和同位素之间的相关性

      a.(Ca2++Mg2+)/(HCO3-)关系;b.(Ca2++Mg2+)/(HCO3-+SO42-)关系;c. δ13CDIC与DIC关系;d. 87Sr/86Sr与δ13CDIC关系

      Fig.  11.  Plots of the correlations among different ions and isotopes

      表  1  研究区冻结层上水和河水的理化与同位素组成统计分析

      Table  1.   Statistical table of physical, chemical and isotopic composition of groundwater and surface water samples

      理化指标样品类型指标 pH T(℃) EC(μs/cm) TDS K+ Na+ Ca2+ Mg2+ HCO3- SO42- Cl- NO3-
      (mg/L)
      冻结层上水 最大值 8.61 5.8 711.0 527.5 2.5 160.8 98.4 38.0 468.9 87.1 7.9 45.6
      最小值 7.15 0.1 253.7 166.8 0.3 3.4 40.3 6.4 142.8 0.9 0.2 0
      平均值 7.96 2.3 437.2 303.1 1.7 34.4 65.8 17.5 274.6 30.6 3.4 9.7
      标准偏差 0.44 1.7 144.5 116.4 0.8 45.3 16.8 8.5 96.6 26.3 2.6 13.2
      多索河和小多索河 最大值 9.08 10.5 1 016.0 571.8 6.8 143.8 94.3 46.2 359.9 179.2 9.4 71.8
      最小值 7.81 2.1 263.3 171.8 0.4 4.2 51.1 6.7 136.0 15.4 1.2 1.0
      平均值 8.40 7.1 556.5 349.9 2.2 35.6 72.8 20.4 223.5 79.3 3.5 18.2
      标准偏差 0.26 2.2 190.8 114.6 1.4 30.7 11.8 9.0 59.7 40.4 2.0 21.1
      大通河源区干支流 最大值 8.47 11.4 809.0 461.4 2.7 60.2 83.8 27.1 261.6 109.9 10.6 33.5
      最小值 8.19 7.2 421.5 223.4 1.0 6.5 61.6 11.3 190.2 28.7 3.3 0.7
      平均值 8.32 10.1 562.7 311.1 2.0 25.2 74.6 19.7 226.9 53.9 7.1 9.5
      标准偏差 0.10 1.4 128.9 77.2 0.5 17.7 7.3 5.2 28.7 25.9 2.2 11.9
      理化指标样品类型 Sr2+ Si DIC DOC δD δ18O-H2O d-excess δ13CDIC δ13CDOC δ15N-NO3 δ34S-SO4 87Sr/86Sr
      (mg/L) (‰ vs. VSMOW) (‰ vs. VPDB) (‰ vs. Air N2) (‰ vs. VCDT)
      冻结层上水 最大值 0.56 3.25 75.07 3.77 ‒43.2 ‒7.20 19.90 ‒3.2 ‒25.7 5.63 9.10 0.714 26
      最小值 0.20 1.57 22.32 2.01 ‒51.1 ‒8.58 13.84 ‒10.6 ‒27.0 ‒3.44 6.10 0.711 24
      平均值 0.38 2.20 42.06 2.96 ‒47.4 ‒8.06 17.11 ‒6.9 ‒26.3 1.50 7.56 0.712 17
      标准偏差 0.13 0.55 15.35 0.64 3.0 0.50 1.96 2.2 0.4 3.09 1.12 0.000 9
      多索河和小多索河 最大值 1.02 2.08 57.23 6.36 ‒26.8 ‒6.29 25.18 ‒4.4 ‒26.0 5.71 13.70 0.713 69
      最小值 0.21 0.90 23.54 1.95 ‒49.7 ‒8.87 15.05 ‒8.8 ‒27.3 2.32 1.40 0.711 57
      平均值 0.49 1.72 37.22 3.29 ‒42.6 ‒7.81 19.91 ‒6.6 ‒26.8 3.76 6.17 0.712 43
      标准偏差 0.17 0.26 8.74 0.81 4.0 0.57 2.79 1.5 0.3 0.92 3.92 0.000 65
      大通河源区干支流 最大值 0.61 2.18 43.85 5.36 ‒32.6 ‒6.11 20.06 ‒6.1 ‒27.1 3.59 / 0.715 22
      最小值 0.31 1.60 33.31 4.00 ‒40.5 ‒7.07 14.89 ‒6.4 ‒27.2 2.34 / 0.711 83
      平均值 0.42 1.83 38.50 4.76 ‒36.4 ‒6.70 17.17 ‒6.2 ‒27.2 3.13 / 0.713 32
      标准偏差 0.10 0.20 4.05 0.50 2.4 0.32 1.76 0.2 0.05 0.57 / 0.001
      下载: 导出CSV
    • Berner, R. A., 2003. The Long-Term Carbon Cycle, Fossil Fuels and Atmospheric Composition. Nature, 426(6964): 323-326. https://doi.org/10.1038/nature02131
      Berner, R. A., Lasaga, A. C., Garrels, R. M., 1983. The Carbonate-Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years. American Journal of Science, 283(7): 641-683. https://doi.org/10.2475/ajs.283.7.641
      Cai, Q. F., 2020. Analysis and Evaluation of the Influence of Coal Mining on Shallow Groundwater System (Dissertation). North China University of Water Resources and Electric Power, Zhengzhou (in Chinese with English abstract).
      Chang, J., Ye, R. Z., Wang, G. X., 2018. Review: Progress in Permafrost Hydrogeology in China. Hydrogeology Journal, 26(5): 1387-1399. https://doi.org/10.1007/s10040-018-1802-6
      Chen, J. J., Guo, J., Xu, S. S., et al., 2020. Preliminary Study on DOC and DIC Mass Concentrations and Isotopic Compositions of Water in Miyun Reservoir Basin in Beijing in Summer. Environmental Science, 41(11): 4905-4913 (in Chinese with English abstract).
      Du, M. Y., Kawashima, S., Yonemura, S., et al., 2004. Mutual Influence between Human Activities and Climate Change in the Tibetan Plateau during Recent Years. Global and Planetary Change, 41(3/4): 241-249. https://doi.org/10.1016/j.gloplacha.2004.01.010
      Frey, K. E., McClelland, J. W., 2009. Impacts of Permafrost Degradation on Arctic River Biogeochemistry. Hydrological Processes, 23(1): 169-182. https://doi.org/10.1002/hyp.7196
      He, D. S., Zhang, P. H., Ming, C. D., et al., 2020. Sources of Soluble Organic Matter in Quaternary Sediments and Its Relationship with Natural Gas Hydrate in Muli Permafrost Area, South Qilian Basin. Geological Bulletin of China, 39(7): 1062-1071 (in Chinese with English abstract).
      He, F., Liu, R. P., Xu, Y. N., et al., 2018. Monitoring and Evaluation of Mine Geological Environment in Muli Coal Mine Area Based on Remote Sensing. Geological Bulletin of China, 37(12): 2251-2259 (in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2018.12.016
      Hong, Y. T., Zhang, H. B., Zhu, Y. X., et al., 1992. Sulfur Isotope Composition of Coal in China and Sulfur Isotope Fractionation during Coal Burning. Science in China (Series B, Chemistry, Life Sciences and Geosciences), (8): 868-873 (in Chinese).
      Hu, Y. L., 2019. Impacts of the Groundwater Flow Path on the Patterns of Dissolved Organic Carbon Export in the Cold Alpine Area (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Li, X. Q., Liu, Y. D., Zhou, A. G., et al., 2014. Sulfur and Oxygen Isotope Compositions of Dissolved Sulfate in the Yangtze River during High Water Period and Its Sulfate Source Tracing. Earth Science, 39(11): 1647-1654, 1692 (in Chinese with English abstract).
      Li, Y. F., 2016. The Analysis of the Stable Carbon and Nitrogen Isotopes in the Process of Soil-Grass-Livestock-Human Material Circulation on Qinghai-Tibet Plateau Alpine Pastoral Area (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      Liu, Y. G., 2013. Using Hydrochemical and Isotope Traces Analying to Delineate Hydrologic Process in Cold Alpine Watershed in Rainy Season (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Luo, L. H., Ma, W., Zhuang, Y. L., et al., 2018. The Impacts of Climate Change and Human Activities on Alpine Vegetation and Permafrost in the Qinghai-Tibet Engineering Corridor. Ecological Indicators, 93: 24-35. https://doi.org/10.1016/j.ecolind.2018.04.067
      Ma, K., 2019. Water Chemistry and Sulfur-Oxygen Isotopes Geochemistry Characteristics of Xijiang River (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Mao, N., Liu, G. M., Li, L. S., et al., 2021. Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556-567 (in Chinese with English abstract).
      Nian, Y., Ma, Y. S., Li, S. X., et al., 2019. Effects of Summer Grazing on Vegetation and Soil Stoichiometry of Alpine Marsh Meadow in the Upper Reaches of Datong River. Chinese Qinghai Journal of Animal and Veterinary Sciences, 49(1): 14-18, 6 (in Chinese with English abstract).
      Olefeldt, D., Persson, A., Turetsky, M. R., 2014. Influence of the Permafrost Boundary on Dissolved Organic Matter Characteristics in Rivers within the Boreal and Taiga Plains of Western Canada. Environmental Research Letters, 9(3): 035005. https://doi.org/10.1088/1748-9326/9/3/035005
      Olefeldt, D., Roulet, N. T., 2012. Effects of Permafrost and Hydrology on the Composition and Transport of Dissolved Organic Carbon in a Subarctic Peatland Complex. Journal of Geophysical Research: Biogeosciences, 117(G1): https://doi.org/10.1029/2011jg001819
      Pang, S. J., Su, X., He, H., et al., 2013. Geological Controlling Factors of Gas Hydrate Occurrence in Qilian Mountain Permafrost, China. Earth Science Frontiers, 20(1): 223-239 (in Chinese with English abstract).
      Pu, J. B., Yuan, D. X., Zhang, C., et al., 2012. Identifying the Sources of Solutes in Karst Groundwater in Chongqing, China: A Combined Sulfate and Strontium Isotope Approach. Acta Geologica Sinica-English Edition, 86(4): 980-992. https://doi.org/10.1111/j.1755-6724.2012.00722.x
      Qiu, D. S., Zhuang, D. F., Hu, Y. F., et al., 2004. Estimation of Carbon Sink Capacity Caused by Rock Weathering in China. Earth Science, 29(2): 177-182, 190 (in Chinese with English abstract).
      Spence, J., Telmer, K., 2005. The Role of Sulfur in Chemical Weathering and Atmospheric CO2 Fluxes: Evidence from Major Ions, δ13CDIC, and δ34SSO4 in Rivers of the Canadian Cordillera. Geochimica et Cosmochimica Acta, 69(23): 5441-5458. https://doi.org/10.1016/j.gca.2005.07.011
      Stock, B. C., Jackson, A. L., Ward, E. J., et al., 2018. Analyzing Mixing Systems Using a New Generation of Bayesian Tracer Mixing Models. PeerJ, 6: e5096. https://doi.org/10.7717/peerj.5096
      Tuttle, M. L. W., Breit, G. N., Cozzarelli, I. M., 2009. Processes Affecting δ34S and δ18O Values of Dissolved Sulfate in Alluvium along the Canadian River, Central Oklahoma, USA. Chemical Geology, 265(3-4): 455-467. https://doi.org/10.1016/j.chemgeo.2009.05.009
      van Stempvoort, D. R., Krouse, H. R., 1994. Controls of δ18O in Sulfate: Review of Experimental Data and Application to Specific Environments. Environmental Science, 133268872. https://doi.org/10.1021/BK-1994-0550.CH029
      Wang, H. F., 2017. Study on Evaluation of Hydrogeological Conditions and Water Resources of Qinghai Muli Region (Dissertation). Xi'an University of Science and Technology, Xi'an (in Chinese with English abstract).
      Wang, P. K., Zhu, Y. H., Lu, Z. Q., et al., 2011. Gas Hydrate in the Qilian Mountain Permafrost and Its Distribution Characteristics. Geological Bulletin of China, 30(12): 1839-1850 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2011.12.005
      Wang, P. K., Zhu, Y. H., Lu, Z. Q., et al., 2019. Research Progress of Gas Hydrates in the Qilian Mountain Permafrost, Qinghai, Northwest China: Review. Scientia Sinica (Physica, Mechanica & Astronomica), 49(3): 76-95 (in Chinese with English abstract).
      Wang, T., 2010. Gas Hydrate Resource Potential and Its Exploration and Development Prospect of the Muli Coalfield in the Northeast Tibetan Plateau. Energy Exploration & Exploitation, 28(3): 147-157. https://doi.org/10.1260/0144-5987.28.3.147
      Wang, X. Q., Chen, R. S., Liu, G. H., et al., 2019. Response of Low Flows under Climate Warming in High-Altitude Permafrost Regions in Western China. Hydrological Processes, 33(1): 66-75. https://doi.org/10.1002/hyp.13311
      Wang, Z. X., 2020. Study on the Evolution Mechanism of Regional Groundwater Circulation under the Condition of Plateau Permafrost Degradation (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Wang, Z. X., Li, X. Q., Hou, X. W., 2021. Hydrogeochemistry of River Water in the Upper Reaches of the Datong River Basin, China: Implications of Anthropogenic Inputs and Chemical Weathering. Acta Geologica Sinica-English Edition, 95(3): 962-975. https://doi.org/10.1111/1755-6724.14525
      Ye, R. Z., 2019. Effect of Active Layer Freeze-Thaw Process in Permafrost Region on Supra-Permafrost Groundwater Dynamic of the Qinghai-Tibet Plateau Heartland (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      Yue, H., 2011. Coal Resource Prediction Area Delimitation and Resource Potential Evaluation in Muri Coalfield, Qinghai Province. Coal Geology of China, 23(12): 11-14, 29.
      Zhong, L., Ma, Y. M., Xue, Y. K., et al., 2019. Climate Change Trends and Impacts on Vegetation Greening over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 124(14): 7540-7552. https://doi.org/10.1029/2019jd030481
      Zhu, Y. H., Zhang, Y. Q., Wen, H. J., 2011. An Overview of the Scientific Drilling Project of Gas Hydrate in Qilian Mountain Permafrost, Northwestern China. Geological Bulletin of China, 30(12): 1816-1822 (in Chinese with English abstract).
      Zou, S., Zhang, D., Li, X. Q., et al., 2021. Sources and Pollution Pathways of Deep Groundwater Sulfate Underneath the Piedmont Plain in the North Henan Province. Earth Science, 47(2): 700-716 (in Chinese with English abstract).
      蔡庆峰, 2020. 煤炭开采对浅层地下水系统的影响分析及评价(硕士学位论文). 郑州: 华北水利水电大学.
      陈吉吉, 郭婧, 徐蘇士, 等, 2020. 北京密云水库流域水体夏季DOC和DIC质量浓度及同位素组成初探. 环境科学, 41(11): 4905-4913. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202011016.htm
      何大双, 张鹏辉, 明承栋, 等, 2020. 南祁连盆地木里冻土区第四纪沉积物中可溶有机质的来源及其与天然气水合物的关系. 地质通报, 39(7): 1062-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202007013.htm
      何芳, 刘瑞平, 徐友宁, 等, 2018. 基于遥感的木里煤矿区矿山地质环境监测及评价. 地质通报, 37(12): 2251-2259. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201812016.htm
      洪业汤, 张鸿斌, 朱詠煊, 等, 1992. 中国煤的硫同位素组成特征及燃煤过程硫同位素分馏. 中国科学(B辑化学生命科学地学), 22(8): 868-873. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199208012.htm
      胡雅璐, 2019. 地下水水流路径对高寒山区溶解性有机碳输出的控制作用研究(博士学位论文). 武汉: 中国地质大学.
      李小倩, 刘运德, 周爱国, 等, 2014. 长江干流丰水期河水硫酸盐同位素组成特征及其来源解析. 地球科学, 39(11): 1647-1654, 1692. doi: 10.3799/dqkx.2014.147
      李银风, 2016. 青藏高原高寒牧区土‒草‒畜‒人物质循环过程中稳定碳、氮同位素的分析(硕士学位论文). 兰州: 兰州大学.
      刘彦广, 2013. 基于水化学和同位素的高寒山区雨季径流过程示踪(博士学位论文). 武汉: 中国地质大学.
      马阔, 2019. 西江河水水化学及硫酸根中硫氧稳定同位素地球化学特征研究(硕士学位论文). 北京: 中国地质大学.
      毛楠, 刘桂民, 李莉莎, 等, 2021. 祁连山多年冻土区甲烷通量与甲烷微生物群落组成的关系. 地球科学, 47(2): 556-567. doi: 10.3799/dqkx.2021.037
      年勇, 马玉寿, 李世雄, 等, 2019. 夏季放牧对大通河上游高寒沼泽草甸植被和土壤化学计量特征的影响. 青海畜牧兽医杂志, 49(1): 14-18, 6. https://www.cnki.com.cn/Article/CJFDTOTAL-QXSZ201901004.htm
      庞守吉, 苏新, 何浩, 等, 2013. 祁连山冻土区天然气水合物地质控制因素分析. 地学前缘, 20(1): 223-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201301021.htm
      邱冬生, 庄大方, 胡云锋, 等, 2004. 中国岩石风化作用所致的碳汇能力估算. 地球科学, 29(2): 177-182, 190. http://www.earth-science.net/article/id/1345
      王鸿飞, 2017. 青海木里地区水文地质条件与水资源评价研究(硕士学位论文). 西安: 西安科技大学.
      王平康, 祝有海, 卢振权, 等, 2011. 祁连山冻土区天然气水合物岩性和分布特征. 地质通报, 30(12): 1839-1850. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201112006.htm
      王平康, 祝有海, 卢振权, 等, 2019. 青海祁连山冻土区天然气水合物研究进展综述. 中国科学: 物理学力学天文学, 49(3): 76-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903005.htm
      王振兴, 2020. 高原冻土退化条件下区域地下水循环演化机制研究: 以大通河源区为例(博士学位论文). 北京: 中国地质科学院.
      叶仁政, 2019. 青藏高原腹地多年冻土区活动层冻融过程对冻结层上水动态变化的影响(硕士学位论文). 兰州: 兰州大学.
      祝有海, 张永勤, 文怀军, 2011. 祁连山冻土区天然气水合物科学钻探工程概况. 地质通报, 30(12): 1816-1822. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201112003.htm
      邹霜, 张东, 李小倩, 等, 2021. 豫北山前平原深层地下水硫酸盐来源与污染途径的同位素示踪. 地球科学, 47(2): 700-716. doi: 10.3799/dqkx.2021.043
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  451
    • HTML全文浏览量:  176
    • PDF下载量:  41
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-10-26
    • 网络出版日期:  2024-06-04
    • 刊出日期:  2024-05-25

    目录

      /

      返回文章
      返回