• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大同盆地地下水中有机质对碘迁移转化的影响

    赵仕琳 刘文静 孙丹阳 李俊霞

    赵仕琳, 刘文静, 孙丹阳, 李俊霞, 2023. 大同盆地地下水中有机质对碘迁移转化的影响. 地球科学, 48(12): 4699-4710. doi: 10.3799/dqkx.2022.009
    引用本文: 赵仕琳, 刘文静, 孙丹阳, 李俊霞, 2023. 大同盆地地下水中有机质对碘迁移转化的影响. 地球科学, 48(12): 4699-4710. doi: 10.3799/dqkx.2022.009
    Zhao Shilin, Liu Wenjing, Sun Danyang, Li Junxia, 2023. Effect of Organic Matter on Iodine Mobilization in Groundwater of Datong Basin. Earth Science, 48(12): 4699-4710. doi: 10.3799/dqkx.2022.009
    Citation: Zhao Shilin, Liu Wenjing, Sun Danyang, Li Junxia, 2023. Effect of Organic Matter on Iodine Mobilization in Groundwater of Datong Basin. Earth Science, 48(12): 4699-4710. doi: 10.3799/dqkx.2022.009

    大同盆地地下水中有机质对碘迁移转化的影响

    doi: 10.3799/dqkx.2022.009
    基金项目: 

    国家自然科学基金项目 42177067

    国家自然科学基金项目 41502230

    详细信息
      作者简介:

      赵仕琳(1998-),女,硕士研究生,主要研究方向为地下水污染与防治. ORCID:0000-0002-4171-4929. E-mail:1010941033@qq.com

      通讯作者:

      李俊霞,副教授,硕士生导师,主要从事地下水污染与防治方面研究. ORCID: 0000-0001-5191-3166. E-mail: jxli@cug.edu.cn

    • 中图分类号: P641.12

    Effect of Organic Matter on Iodine Mobilization in Groundwater of Datong Basin

    • 摘要: 地下水系统中有机质对碘迁移转化起着至关重要的作用,为深入分析地下水溶解性有机质(dissolved organic matter,DOM)对地下水碘迁移转化的影响,研究选取我国大同盆地浅、中层高碘地下水为研究对象,运用傅里叶变换离子回旋共振质谱(FT-ICR-MS)对地下水DOM分子结构进行分析表征.结果表明,地下水总碘浓度变化范围为1.97~926.10 μg/L,碘离子是地下水中碘的主要赋存形态;总碘浓度与DOM呈一定正相关关系(r=0.84),与可生物降解有机质含量呈负相关关系(r=-0.71).研究区高碘地下水中有机质生物降解程度较高;高低碘地下水DOM分子组成差异表明,在降解过程中,微生物优先利用CHO、CHON1、CHON2类小分子可生物降解化合物,促使与之结合的碘迁移释放进入地下水;还原环境下地下水中碘主要来源于铁(氢)氧化物的还原性溶解和有机质的降解,且伴随有碘的形态转化,而氧化环境下地下水中碘可能与有机质的分子转化有关.

       

    • 图  1  研究区及采样点分布图

      Fig.  1.  Location of the study area and sampling sites

      图  2  大同盆地地下水样piper三线图

      Fig.  2.  Piper diagram of groundwater samples from Datong Basin

      图  3  地下水碘形态三元图(a)和Eh对无机碘分布的影响(b)

      Fig.  3.  Ternary diagram of iodine species in groundwater (a) and effect of redox conditions on the species of inorganic iodine (b)

      图  4  不同类别DOM数目及百分比图

      Fig.  4.  Number and percentage of different types of DOM

      图  5  地下水中碘浓度与DOC浓度关系图

      Fig.  5.  Variation of iodine concentration with DOC of groundwater

      图  6  地下水碘浓度与可生物降解DOM分子数(a)和HCO3-浓度(b)的关系图以及低、高碘地下水中不同元素组成的可生物降解DOM分子数箱型图(c)

      Fig.  6.  Variation of iodine concentration with the number of biodegradable DOM molecules (a) and HCO3- (b) of groundwater and box diagram of the number of biodegradable DOM molecules of different elemental compositions in low and high iodine groundwater (c)

      图  7  总碘、不同形态碘浓度与地下水中DOM分子峰强度的相关性图

      Fig.  7.  Correlation between the concentration of total iodine, different forms of iodine and DOM molecule peak intensity in groundwater

      表  1  FT-ICR-MS数据处理

      Table  1.   Data processing of FT-ICR-MS

      参数 计算公式 意义 参考文献
      双键当量(DBE) $ \frac{1+\left(2\mathrm{C}-\mathrm{H}+\mathrm{N}\right)}{2} $ 化合物分子中双键数和环状脂肪族化合物数的和,用来表征DON分子的不饱和度. Qiao et al. (2020)
      芳香性指数(AImod) $ \frac{1+\mathrm{C}-0.5\mathrm{O}-\mathrm{S}-0.5\mathrm{H}}{\mathrm{C}-0.5\mathrm{O}-\mathrm{S}-\mathrm{N}-\mathrm{P}} $ 反映分子中可能存在的所有的C=C,C-O和C=O键,AImod > 0.5和AImod≥0.67分别代表芳香性结构和缩合芳香性结构. Xu et al. (2019)
      标准氧化态(NOSC) $ 4-\frac{4\mathrm{C}+\mathrm{H}-3\mathrm{N}-2\mathrm{O}+5\mathrm{P}-2\mathrm{S}}{\mathrm{C}} $ 反映化合物的潜在能量,具有高NOSC值的有机分子在热力学上更有利于降解,并且形成易被微生物利用的基质. Pracht et al. (2018)
      注:式中C、H、N、O、S、P分别代表分子中C、H、N、O、S、P原子的数目.
      下载: 导出CSV

      表  2  研究区地下水化学组分

      Table  2.   Chemical composition of groundwater samples from study area

      参数 最小值 最大值 中位值 均值
      pH 7.76 9.29 8.26 8.24
      Eh(mV) -187.0 259.0 83.9 48.9
      TDS(mg/L) 241.6 3 865 871.2 1124
      K+(mg/L) 0.6 23.2 2.1 3.5
      Na+(mg/L) 9.8 1 216 271.8 285.0
      Ca2+(mg/L) 5.4 98.6 44.0 44.2
      Mg2+(mg/L) 13.7 183.2 30.5 50.2
      SO42-(mg/L) 0.9 1 469 148.9 280.4
      HCO3-(mg/L) 180.4 1 424 373.6 508.4
      Cl-(mg/L) 7.0 1 045 148.8 207.0
      Br-(μg/L) 19.8 3 473 298.7 584.6
      Fe(mg/L) < 0.02 2.83 0.06 0.33
      Fe2+(mg/L) < 0.02 0.67 0.03 0.08
      I(μg/L) 1.87 926.1 95.8 166.7
      I-(μg/L) < 0.01 887.2 60.1 146.5
      IO3-(μg/L) < 0.01 169.4 5.4 24.0
      DOC(mg/L) 1.93 31.08 4.2 6.5
      下载: 导出CSV

      表  3  FT-ICR-MS分析数据

      Table  3.   Analysis data of FT-ICR-MS

      样品号 I
      (μg/L)
      DOC
      (mg/L)
      DOM分子总数 Eh
      (mV)
      H/Cwa O/Cwa DBEwa NOSCwa (AImod)wa
      低碘地下水
      (I<100μg/L)
      DT20-05 28.44 5.21 4 751 -105.3 1.31 0.37 9.89 -0.45 0.26
      DT20-07 15.92 3.34 5 217 -78.7 1.27 0.38 9.93 -0.45 0.28
      DT20-08 11.65 3.57 5 153 75.0 1.29 0.38 9.8 -0.5 0.26
      DT20-10 1.87 4.11 5 739 143.5 1.3 0.39 10.55 -0.36 0.22
      DT20-17 66.13 6.8 5 738 -92.1 1.22 0.38 10.02 -0.4 0.29
      DT20-18 11.1 4.22 4 067 109.5 1.29 0.37 10.4 -0.54 0.25
      DT20-19 27.1 2.67 4 138 138.9 1.28 0.35 10.69 -0.54 0.26
      高碘地下水
      (I > 100μg/L)
      DT20-06 160.52 9.34 5 633 -107.1 1.16 0.39 10.77 -0.27 0.34
      DT20-11 157.40 2.76 4 650 58.1 1.19 0.39 9.99 -0.4 0.29
      DT20-25 160.12 8.62 6 407 -99.7 1.18 0.46 11.34 -0.23 0.29
      DT20-12 519.64 9.5 5 655 -121.1 1.01 0.38 9.86 -0.38 0.27
      DT20-20 323.16 15.8 6 211 -79.3 1.16 0.40 10.35 -0.32 0.34
      DT20-27 321.08 6.97 6 209 -110.4 1.18 0.39 10.37 -0.31 0.33
      DT20-30 326.20 2.28 6 767 12.1 1.21 0.42 10.20 -0.18 0.28
      DT20-31 590.95 16.1 6 226 -160.0 1.19 0.47 10.76 -0.24 0.28
      注:H/Cwa、O/Cwa、DBEwa、NOSCwa、(AImod)wa均为水样中DOM分子的峰强度加权平均值,双键当量(DBE)、标准氧化态(NOSC)、芳香性指数(AImod)的计算方法见表 2.
      下载: 导出CSV
    • Andersen, S., Guan, H. X., Teng, W. P., et al., 2009. Speciation of Iodine in High Iodine Groundwater in China Associated with Goitre and Hypothyroidism. Biological Trace Element Research, 128(2): 95-103. https://doi.org/10.1007/s12011-008-8257-x
      Bhatia, M. P., Das, S. B., Longnecker, K., et al., 2010. Molecular Characterization of Dissolved Organic Matter Associated with the Greenland Ice Sheet. Geochimica et Cosmochimica Acta, 74(13): 3768-3784. https://doi.org/10.1016/j.gca.2010.03.035
      Cheng, D. W., Zhou, C. M., Zhang, Z. J., et al., 2022. Paleo-Environment Reconstruction of the Middle Permian Lucaogou Formation, Southeastern Junggar Basin, NW China: Implications for the Mechanism of Organic Matter Enrichment in Ancient Lake. Journal of Earth Science, 33(4): 963-976. https://doi.org/10.1007/s12583-020-1073-8
      Cheng, S. P., Li, C. Y., Yang, G. Z., et al., 2004. Distinction between Late Quaternary Fluvial Incision Induced by Faulting and by Climate: A Case Study of the Sanggan River. Seismology and Geology, 26(2): 169-188(in Chinese with English abstract).
      Choung, S., Um, W., Kim, M., et al., 2013. Uptake Mechanism for Iodine Species to Black Carbon. Environmental Science and Technology, 47(18): 10349-10355. https://doi.org/10.1021/es301570a
      Dai, J. L., Zhang, M., Hu, Q. H., et al., 2009. Adsorption and Desorption of Iodine by Various Chinese Soils: Ⅱ. Iodide and Iodate. Geoderma, 153(1-2): 130-135. https://doi.org/10.1016/j.geoderma.2009.07.020
      Dai, J. L., Zhang, M., Zhu, Y. G., 2004. Adsorption and Desorption of Iodine by Various Chinese Soils. Environment International, 30(4): 525-530. https://doi.org/10.1016/j.envint.2003.10.007
      D'Andrilli, J., Cooper, W. T., Foreman, C. M., et al., 2015. An Ultrahigh-Resolution Mass Spectrometry Index to Estimate Natural Organic Matter Lability. Rapid Communications in Mass Spectrometry: RCM, 29(24): 2385-2401. https://doi.org/10.1002/rcm.7400
      Dittmar, T., Koch, B., Hertkorn, N., et al., 2008. A Simple and Efficient Method for the Solid-Phase Extraction of Dissolved Organic Matter (SPE-DOM) from Seawater. Limnology and Oceanography: Methods, 6(6): 230-235. https://doi.org/10.4319/lom.2008.6.230
      Du, Y., Deng, Y. M., Liu, Z. H., et al., 2021. Novel Insights into Dissolved Organic Matter Processing Pathways in a Coastal Confined Aquifer System with the Highest Known Concentration of Geogenic Ammonium. Environmental Science & Technology, 55(21): 14676-14688. https://doi.org/10.1021/acs.est.1c05301
      Edward, K., 1963. A Mass Scale Based on CH2=14.000 0 for High Resolution Mass Spectrometry of Organic Compounds. Analytical Chemistry, 35(13): 2146-2154. doi: 10.1021/ac60206a048
      Gilfedder, B. S., Lai, S. C., Petri, M., et al., 2008. Iodine Speciation in Rain, Snow and Aerosols. Atmospheric Chemistry and Physics, 8(144): 6069-6084.
      Guo, H. M., Wang, Y. X., 2005. Geochemical Characteristics of Shallow Groundwater in Datong Basin, Northwestern China. Journal of Geochemical Exploration, 87(3): 109-120. https://doi.org/10.1016/j.gexplo.2005.08.002
      Henjum, S., Barikmo, I., Strand, T., et al., 2011. Iodine-Induced Goitre and High Prevalence of Anaemia among Saharawi Refugee Women. Public Health Nutrition, 15: 1512-1518. https://doi.org/10.1017/s1368980011002886
      Hu, Q. H., Zhao, P. H., Moran, J. E., et al., 2005. Sorption and Transport of Iodine Species in Sediments from the Savannah River and Hanford Sites. Journal of Contaminant Hydrology, 78(3): 185-205. https://doi.org/10.1016/j.jconhyd.2005.05.007
      Kodama, S., Takahashi, Y., Okumura, K., et al., 2006. Speciation of Iodine in Solid Environmental Samples by Iodine K-Edge XANES: Application to Soils and Ferromanganese Oxides. Science of the Total Environment, 363(1-3): 275-284. https://doi.org/10.1016/j.scitotenv.2006.01.004
      Li, D. E., Xu, C., Yeager, C. M., et al., 2019a. Molecular Interaction of Aqueous Iodine Species with Humic Acid Studied by I and C K-Edge X-Ray Absorption Spectroscopy. Environmental Science and Technology, 53(21): 12416-12424. https://doi.org/10.1021/acs.est.9b03682
      Li, X. M., Chen, Q. L., He, C., et al., 2019b. Organic Carbon Amendments Affect the Chemodiversity of Soil Dissolved Organic Matter and Its Associations with Soil Microbial Communities. Environmental Science & Technology, 53(1): 50-59. https://doi.org/10.1021/acs.est.8b04673
      Li, J. X., Wang, Y. T., Xue, X. B., et al., 2020. Mechanistic Insights into Iodine Enrichment in Groundwater during the Transformation of Iron Minerals in Aquifer Sediments. Science of the Total Environment, 745: 140922. https://doi.org/10.1016/j.scitotenv.2020.140922
      Li, J. X., Wang, Y. X., Guo, W., et al., 2014. Iodine Mobilization in Groundwater System at Datong Basin, China: Evidence from Hydrochemistry and Fluorescence Characteristics. Science of the Total Environment, 468-469: 738-745. https://doi.org/10.1016/j.scitotenv.2013.08.092
      Li, J. X., Wang, Y. X., Xie, X. J., et al., 2013. Hydrogeochemistry of High Iodine Groundwater: A Case Study at the Datong Basin, Northern China. Environmental Science: Processes & Impacts, 15(4): 848-859. https://doi.org/10.1039/c3em30841c
      Li, J. X., Wang, Y. X., Xie, X. J., et al., 2016. Effects of Water-Sediment Interaction and Irrigation Practices on Iodine Enrichment in Shallow Groundwater. Journal of Hydrology, 543: 293-304. https://doi.org/10.1016/j.jhydrol.2016.10.002
      McDonough, L. K., O'Carroll, D. M., Meredith, K., et al., 2020. Changes in Groundwater Dissolved Organic Matter Character in a Coastal Sand Aquifer Due to Rainfall Recharge. Water Research, 169: 115201. https://doi.org/10.1016/j.watres.2019.115201
      Mostovaya, A., Hawkes, J. A., Dittmar, T., et al., 2017. Molecular Determinants of Dissolved Organic Matter Reactivity in Lake Water. Frontiers in Earth Science, 5. https://doi.org/10.3389/feart.2017.00106
      Muramatsu, Y., Yoshida, S., 1999. Effects of Microorganisms on the Fate of Iodine in the Soil Environment. Geomicrobiology Journal, 16(1): 85-93. https://doi.org/10.1080/014904599270776
      Niu, X. Z., Harir, M., Schmitt-Kopplin, P., et al., 2018. Characterisation of Dissolved Organic Matter Using Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry: Type-Specific Unique Signatures and Implications for Reactivity. Science of the Total Environment, 644: 68-76. https://doi.org/10.1016/j.scitotenv.2018.06.351
      Ohno, T., Parr, T. B., Gruselle, M. C. I., et al., 2014. Molecular Composition and Biodegradability of Soil Organic Matter: A Case Study Comparing Two New England Forest Types. Environmental Science & Technology, 48(13): 7229-7236. https://doi.org/10.1021/es305570c
      Postma, D., Larsen, F., Thai, N. T., et al., 2012. Groundwater Arsenic Concentrations in Vietnam Controlled by Sediment Age. Nature Geoscience, 5(9): 656-661. https://doi.org/10.1038/ngeo1540
      Pracht, L. E., Tfaily, M. M., Ardissono, R. J., et al., 2018. Molecular Characterization of Organic Matter Mobilized from Bangladeshi Aquifer Sediment: Tracking Carbon Compositional Change during Microbial Utilization. Biogeosciences, 15(6): 1733-1747 doi: 10.5194/bg-15-1733-2018
      Qian, K., Li, J. X., Xie, X. J., et al., 2017. Organic and Inorganic Colloids Impacting Total Iodine Behavior in Groundwater from the Datong Basin, China. Science of the Total Environment, 601/602: 380-390. https://doi.org/10.1016/j.scitotenv.2017.05.127.
      Qiao, W., Guo, H. M., He, C., et al., 2020. Molecular Evidence of Arsenic Mobility Linked to Biodegradable Organic Matter. Environmental Science and Technology, 54(12): 7280-7290. https://doi.org/10.1021/acs.est.0c00737
      Roulier, M., Coppin, F., Bueno, M., et al., 2019. Iodine Budget in Forest Soils: Influence of Environmental Conditions and Soil Physicochemical Properties. Chemosphere, 224: 20-28. https://doi.org/10.1016/j.chemosphere.2019.02.060
      Secretariat, W. H. O., Andersson, M., de Benoist, B., et al., 2007. Prevention and Control of Iodine Deficiency in Pregnant and Lactating Women and in Children Less Than 2-Years-Old: Conclusions and Recommendations of the Technical Consultation. Public Health Nutrition, 10(12A): 1606-1611. https://doi.org/10.1017/s1368980007361004
      Smith, A. P., Bond-Lamberty, B., Benscoter, B. W., et al., 2017. Shifts in Pore Connectivity from Precipitation versus Groundwater Rewetting Increases Soil Carbon Loss after Drought. Nature Communications, 8: 1335. https://doi.org/10.1038/s31467-017-01320-x
      Steinberg, S. M., Schmett, G. T., Kimble, G., et al., 2008. Immobilization of Fission Iodine by Reaction with Insoluble Natural Organic Matter. Journal of Radioanalytical and Nuclear Chemistry, 277(1): 175-183. https://doi.org/10.1007/s10967-008-0727-2
      Su, C. L., Wang, Y. X., 2008. A Study of Zonality of Hydrochemistry of Groundwater in Unconsolidated Sediments in Datong Basin. Hydrogeology & Engineering Geology, 35(1): 83-89(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2008.01.019
      Waite, T. J., Truesdale, V. W., 2003. Iodate Reduction by Isochrysis Galbana is Relatively Insensitive to De-Activation of Nitrate Reductase Activity: Are Phytoplankton Really Responsible for Iodate Reduction in Seawater? Marine Chemistry, 81(3-4), 137-148. https://doi.org/10.1016/s0304-4203(03)00013-6
      Wang, J. L, Jin, M. G., Jia, B. J., et al., 2022. Numerical Investigation of Residence Time Distribution for the Characterization of Groundwater Flow System in Three Dimensions. Journal of Earth Science, 33(6): 1583-1600. https://doi.org/10.1007/s12583-022-1623-3
      Wang, W., Dou, W. Y., He, C., et al., 2020. Characterization of Surface Water Dissolved Organic Matter by Stepwise Elution Solid Phase Extraction Followed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Chinese Journal of Analysis Laboratory, 39(5): 521-526(in Chinese with English abstract).
      Wang, Y. T., Li, J. X., Xue, X. B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320 (in Chinese with English abstract).
      Wu, F., Wang, Z. Q., Tong, X. J., et al., 2017. The Distribution Characteristics and Storage Environments of Rich Iodine in Shallow Groundwater of Typical Areas in China. Journal of Water Resources and Water Engineering, 28(2): 99-104(in Chinese with English abstract).
      Xu, L., Song, F. H., Qin, S., et al., 2019. Characterization of IHSS Nordic Lake Fulvic Acid by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Chinese Journal of Analysis Laboratory, 38(6): 637-642(in Chinese with English abstract).
      Xue, J. K., Deng, Y. M., Du, Y., et al., 2021. Molecular Characterization of Dissolved Organic Matter (DOM) in Shallow Aquifer along Middle Reach of Yangtze River and Its Implications for Iodine Enrichment. Earth Science, 46(11): 4140-4149(in Chinese with English abstract).
      Yamada, H., Hisamori, I., Yonebayashi, K., 2002. Identification of Organically Bound Iodine in Soil Humic Substances by Size Exclusion Chromatography / Inductively Coupled Plasma Mass Spectrometry (SEC/ICP-MS). Soil Science and Plant Nutrition, 48(3): 379-385. https://doi.org/10.1080/00380768.2002.10409215
      Yamada, H., Kiriyama, T., Onagawa, Y., et al., 1999. Speciation of Iodine in Soils. Soil Science and Plant Nutrition, 45(3): 563-568. https://doi.org/10.1080/00380768.1999.10415819
      Yamaguchi, N., Nakano, M., Takamatsu, R., et al., 2010. Inorganic Iodine Incorporation into Soil Organic Matter: Evidence from Iodine K-Edge X-Ray Absorption Near-Edge Structure. Journal of Environmental Radioactivity, 101(6): 451-457. https://doi.org/10.1016/j.jenvrad.2008.06.003
      Yang, H. X., Chen, J. L., Gao, J. X., et al., 2017. Characterization of Molecular Composition and Seasonal Variation of Natural Organic Matter in Source Water Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Chinese Journal of Ecology, 36(4): 1053-1059(in Chinese with English abstract).
      Yi, P., Chen, X. G., Wang, Z. X., et al., 2018. Iodine Isotopes (129I and 127I) in the Hydrosphere of Qinghai-Tibet Region and South China Sea. Journal of Environmental Radioactivity, 192: 86-94. https://doi.org/10.1016/j.jenvrad.2018.06.005
      Zeng, C. P., Wu, F. W., Dong, J., et al., 2017. Molecular Characterization of Dissolved Organic Matter in Underground Water by ESI FT-ICR MS. Journal of Instrumental Analysis, 36(5): 679-683(in Chinese with English abstract).
      Zhang, E. Y., Wang, Y. Y., Qian, Y., et al., 2013. Iodine in Groundwater of the North China Plain: Spatial Patterns and Hydrogeochemical Processes of Enrichment. Journal of Geochemical Exploration, 135: 40-53. https://doi.org/10.1016/j.gexplo.2012.11.016
      Zhang, E. Y., Zhang, F. C., Qian, Y., et al., 2010. The Distribution of High Iodine Groundwater in Typical Areas of China and Its Inspiration. Geology in China, 37(3): 797-802(in Chinese with English abstract).
      Zhou, H. L., Su, C. L., Li, J. X., et al., 2017. Characteristics of Rare Earth Elements in the Sediments of the Datong Basin and Its Indication to the Iodine Enrichment. Earth Science, 42(2): 298-306 (in Chinese with English abstract).
      Zhu, C. J., Li, J. X., Xie, X. J., 2021. Carbon and Sulfur Isotopic Features and Its Implications for Iodine Mobilization in Groundwater System at Datong Basin, Northern China. Earth Science, 46(12): 4480-4491 (in Chinese with English abstract).
      Zhu, X. C., Wang, Y. B., Dang, X. Y., et al., 2022. Spatiotemporal Distribution of Microbial Tetraether Lipids in a Lake and Its Inflowing River: Implications for the Identification of Flooding Events. Journal of Earth Science, 33(6): 1601-1613. https://doi.org/10.1007/s12583-021-1552-6
      程绍平, 李传友, 杨桂枝, 等, 2004. 区分晚第四纪断层作用驱动的和气候引起的流水下切: 以桑干河大同盆地河段为例. 地震地质, 26(2): 169-188.
      苏春利, 王焰新, 2008. 大同盆地孔隙地下水化学场的分带规律性研究. 水文地质工程地质, 35(1): 83-89.
      王威, 窦文渊, 何晨, 等, 2020. 多步洗脱固相萃取-傅立叶变换离子回旋共振质谱表征地表水可溶有机质. 分析试验室, 39(5): 521-526.
      王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. doi: 10.3799/dqkx.2019.261
      吴飞, 王曾祺, 童秀娟, 等, 2017. 我国典型地区浅层高碘地下水分布特征及其赋存环境. 水资源与水工程学报, 28(2): 99-104.
      徐磊, 宋凡浩, 秦帅, 等, 2019. 电喷雾离子源傅立叶变换离子回旋共振质谱分析IHSS Nordic湖富里酸的分子结构. 分析试验室, 38(6): 637-642.
      薛江凯, 邓娅敏, 杜尧, 等, 2021. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示. 地球科学, 46(11): 4140-4149. doi: 10.3799/dqkx.2020.398
      杨红霞, 陈俊良, 高津旭, 等, 2017. 利用傅立叶变换离子回旋共振质谱测定不同季节水源水中天然有机质分子结构. 生态学杂志, 36(4): 1053-1059.
      曾纯品, 武法伟, 董军, 等, 2017. 电喷雾电离源结合傅立叶变换离子回旋共振质谱分析地下水中可溶性有机质分子组成. 分析测试学报, 36(5): 679-683.
      张二勇, 张福存, 钱永, 等, 2010. 中国典型地区高碘地下水分布特征及启示. 中国地质, 37(3): 797-802.
      周海玲, 苏春利, 李俊霞, 等, 2017. 大同盆地沉积物REE分布特征及其对碘富集的指示. 地球科学, 42(2): 298-306. doi: 10.3799/dqkx.2017.022
      朱沉静, 李俊霞, 谢先军, 2021. 大同盆地地下水中碳硫同位素组成特征及其对碘迁移富集的指示. 地球科学, 46(12): 4480-4491. doi: 10.3799/dqkx.2021.090
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  265
    • HTML全文浏览量:  372
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-27
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回