• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    天然水中硫代钨酸盐的分析方法

    赵倩 郭清海 郭伟

    赵倩, 郭清海, 郭伟, 2023. 天然水中硫代钨酸盐的分析方法. 地球科学, 48(1): 376-384. doi: 10.3799/dqkx.2022.010
    引用本文: 赵倩, 郭清海, 郭伟, 2023. 天然水中硫代钨酸盐的分析方法. 地球科学, 48(1): 376-384. doi: 10.3799/dqkx.2022.010
    Zhao Qian, Guo Qinghai, Guo Wei, 2023. An Analysis Method of Thiotungstates in Natural Water. Earth Science, 48(1): 376-384. doi: 10.3799/dqkx.2022.010
    Citation: Zhao Qian, Guo Qinghai, Guo Wei, 2023. An Analysis Method of Thiotungstates in Natural Water. Earth Science, 48(1): 376-384. doi: 10.3799/dqkx.2022.010

    天然水中硫代钨酸盐的分析方法

    doi: 10.3799/dqkx.2022.010
    基金项目: 

    国家自然科学基金项目 41772370

    详细信息
      作者简介:

      赵倩(1993-),女,博士研究生,主要从事地热环境中钨的环境地球化学研究. ORCID:0000-0001-6325-0048. Email:1909034746@qq.com

      通讯作者:

      郭清海,E-mail: qhguo2006@gmail.com

    • 中图分类号: O658

    An Analysis Method of Thiotungstates in Natural Water

    • 摘要: 天然水中硫代钨酸盐的分析对钨的环境地球化学研究具有重要意义. 建立了利用反相离子对色谱‒电感耦合等离子质谱同时测定天然水中钨酸盐(WO42‒)和4种硫代钨酸盐(WO3S2‒、WO2S22‒、WOS32‒、WS42‒)的方法,并采用电喷雾‒高分辨质谱对这5种钨化合物进行鉴定. 采集富硫化物地热水样品经干冰速冻并在-20 ℃冷冻保存运输至实验室后,在厌氧环境下解冻后,利用优化的色谱及质谱条件在30 min内完成5种钨化合物的分离和测定. 以钨酸盐作为其他钨化合物的标准建立工作曲线,在0.001~20 mg/L浓度范围内具有良好线性关系(相关系数R2 > 0.999),WO42‒、WO3S2‒、WO2S22‒、WOS32‒、WS42‒检出限分别为0.82、0.34、0.22、0.79和0.62 µg/L. 本方法具有灵敏度高、重现性好等优点,为天然水中硫代钨酸盐的检测和研究提供了一种有效途径.

       

    • 图  1  负离子模式下钨酸盐‒硫化物混合溶液质谱图

      Fig.  1.  Mass spectrum of a tungstate-sulfide mixed solution obtained using a high-resolution electrospray ionization mass spectrometer (ESI-HRMS) in negative mode

      图  2  实验室配制钨相关溶液的RP-IPC-ICP-MS图

      a、b. 100 µM Na2WO4与4 mM Na2S混合溶液,盐酸调pH=5,其中定量环分别为500 µL(图a)、200 µL(图b);c. 100 µM Na2WO4溶液,定量环=200 µL;d. 100 µM(NH42WS4溶液,定量环=200 µL. “0”代表钨酸盐,“1~4”代表一至四硫代钨酸盐

      Fig.  2.  RP-IPC-ICP-MS chromatograms of the tungsten-bearing solutions prepared in the laboratory

      图  3  硫代钨形态测试标准曲线

      a. 测试实验室配制溶液时钨标液浓度梯度为1、5、10、20 mg/L,定量环=200 µL;b. 测试天然水样品时钨标液浓度梯度为1、5、10、20、50、100、300 µg/L,定量环=500 µL

      Fig.  3.  Calibration curves for quantitative analysis of thiotungstates

      图  4  天然水样品硫代钨酸盐的RP-IPC-ICP-MS图

      Fig.  4.  RP-IPC-ICP-MS chromatograms of thiotungstates in natural water samples

      图  5  天然水样LL10解冻后置于空气中硫代钨形态随时间变化的RP-IPC-ICP-MS图

      Fig.  5.  RP-IPC-ICP-MS chromatograms reflecting the thiotungstates speciation change with time in a natural water sample (LL10) which was stored at room temperature and under oxic condition after thawing

      表  1  反相色谱法常用溶剂的强度因子

      Table  1.   Intensity factors of common solvents used in reversed-phase chromatography

      试剂 甲醇 乙腈 乙醇 异丙醇
      溶剂强度因子 0.0 3.0 3.2 3.6 4.2
      下载: 导出CSV

      表  2  RP⁃IPC⁃ICP⁃MS联用法测试实验室配制硫代钨溶液色谱峰结果

      Table  2.   Analytical RP-IPC-ICP-MS results of the thiotungstates solutions prepared in the laboratory

      钨形态 化学式a 保留时间(s) 结果
      0 钨酸盐 HnWO42‒n 620 单峰(200 µL)/驼峰(500 µL)
      1 一硫代钨酸盐 HnWO3S2‒n 790 单峰
      2 二硫代钨酸盐 HnWO2S22‒n 1 045 单峰
      3 三硫代钨酸盐 HnWOS32‒n 1 335 单峰
      4 四硫代钨酸盐 HnWS42‒n 1 545 单峰
      注:a.实际水溶液中受pH值的影响存在多种质子化形式(n=0~2), 为方便文中均写为脱质子形式即n=0.
      下载: 导出CSV

      表  3  实验室配制溶液硫代钨测试结果

      Table  3.   Quantitative analysis of thiotungstates in the solutions prepared in the laboratory

      表  4  热泉样品的硫代钨和相关水化学指标分析结果

      Table  4.   Analysis results of thiotungstates and relevant hydrogeochemical parameters in representative hot spring samples

      泉名 地热区 T
      (℃)
      pH Eh
      (mV)
      硫化物
      (mg/L)
      WO42‒
      (µg/L)
      WO3S2‒
      (µg/L)
      WO2S22‒
      (µg/L)
      WOS32‒
      (µg/L)
      WS42‒
      (µg/L)
      钨形态之和
      (µg/L)
      总钨
      (µg/L)
      回收率
      (%)
      WGQ 热海 41 5.52 -41 1.4 2.4
      (RSD=
      4.46%)
      0
      (RSD=
      2.57%)
      0
      (RSD=
      0.81%)
      0
      (RSD=
      1.22%)
      0
      (RSD=
      4.41%)
      2.4 2.2 109.09
      LL10 邦腊掌 91 8.36 -306 8.0 15.0
      (RSD=
      4.20%)
      7.7
      (RSD=
      2.35)
      13.2
      (RSD=
      2.13%)
      175.7
      (RSD=
      3.54%)
      62.5
      (RSD=
      3.79%)
      274.2 267.8 102.35
      下载: 导出CSV

      表  5  天然水样LL10解冻后置于空气中硫代钨形态相对含量结果

      Table  5.   Change of relative contents of various thiotungstates in a natural water sample (LL10) which was stored at room temperature and under oxic condition after thawing

      接触空气时间 WO42‒
      (%)
      WO3S2‒
      (%)
      WO2S22‒
      (%)
      WOS32‒
      (%)
      WS42‒
      (%)
      < 5 min 5 3 5 64 23
      2 h 8 5 6 57 23
      24 h 22 2 9 47 20
      2 d 36 2 10 34 18
      5 d 57 2 8 20 13
      下载: 导出CSV
    • Bidlingmeyer, B. A., Deming, S. N., Jr Price, W. P., et al., 1979. Retention Mechamism for Reversed⁃Phase Ion⁃Pair Liquid Chromatography. Journal of Chromatography A, 186: 419-434. https://doi.org/10.1016/S0021⁃9673(00)95264⁃6
      Couture, R. M., Rose, J., Kumar, N., et al., 2013. Sorption of Arsenite, Arsenate, and Thioarsenates to Iron Oxides and Iron Sulfides: A Kinetic and Spectroscopic Investigation. Environmental Science & Technology, 47(11): 5652-5659. https://doi.org/10.1021/es3049724
      Cui, M. M., Johannesson, K. H., 2017. Comparison of Tungstate and Tetrathiotungstate Adsorption onto Pyrite. Chemical Geology, 464: 57-68. https://doi.org/10.1016/j.chemgeo.2016.11.034
      Dai, M. N., Bao, Z. A., Chen, K. Y., et al., 2017. Simultaneous Measurement of Major, Trace Elements and Pb Isotopes in Silicate Glasses by Laser Ablation Quadrupole and Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Earth Science, 28(1): 92-102. https://doi.org/10.1007/s12583⁃017⁃0742⁃8
      Guo, Q. H., Li, Y. M., Luo, L., 2019. Tungsten from Typical Magmatic Hydrothermal Systems in China and Its Environmental Transport. Science of the Total Environment, 657: 1523-1534. https://doi.org/10.1016/j.scitotenv.2018.12.146
      Guo, Q. H., Yang, C., 2021. Tungsten Anomaly of the High⁃Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554 (in Chinese with English abstract).
      Kelly, A. D. R., Lemaire, M., Young, Y. K., et al., 2013. In Vivo Tungsten Exposure Alters B⁃Cell Development and Increases DNA Damage in Murine Bone Marrow. Toxicological Sciences, 131(2): 434-446. https://doi.org/10.1093/toxsci/kfs324
      Lee, M. K., Saunders, J. A., Wilkin, R. T., et al., 2006. Geochemical Modeling of Arsenic Speciation and Mobilization: Implications for Bioremediation. ACS Symposium Series, 915: 398-413. https://doi.org/10.1021/bk⁃2005⁃0915.ch029
      Li, H. F., 2010. Comparison of Several Calculation Methods of Detection Limit. Chinese Journal of Spectroscopy Laboratory, 27(6): 2465-2469 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-8138.2010.06.082
      Mamindy⁃Pajany, Y., Bataillard, P., Séby, F., et al., 2013. Arsenic in Marina Sediments from the Mediterranean Coast: Speciation in the Solid Phase and Occurrence of Thioarsenates. Soil and Sediment Contamination: An International Journal, 22(8): 984-1002. https://doi.org/10.1080/15320383.2013.770441
      Mohajerin, T. J., Helz, G. R., Johannesson, K. H., 2016. Tungsten⁃Molybdenum Fractionation in Estuarine Environments. Geochimica et Cosmochimica Acta, 177: 105-119. https://doi.org/10.1016/j.gca.2015.12.030
      Mohajerin, T. J., Helz, G. R., White, C. D., et al., 2014. Tungsten Speciation in Sulfidic Waters: Determination of Thiotungstate Formation Constants and Modeling Their Distribution in Natural Waters. Geochimica et Cosmochimica Acta, 144: 157-172. https://doi.org/10.1016/j.gca.2014.08.037
      Planer⁃Friedrich, B., Forberg, J., Lohmayer, R., et al., 2020. Relative Abundance of Thiolated Species of As, Mo, W, and Sb in Hot Springs of Yellowstone National Park and Iceland. Environmental Science & Technology, 54(7): 4295-4304. https://doi.org/10.1021/acs.est.0c00668
      Planer⁃Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. Environmental Science & Technology, 41(15): 5245-5251. https://doi.org/10.1021/es070273v
      Planer⁃Friedrich, B., Scheinost, A. C., 2011. Formation and Structural Characterization of Thioantimony Species and Their Natural Occurrence in Geothermal Waters. Environmental Science & Technology, 45(16): 6855-6863. https://doi.org/10.1021/es201003k
      Roedel, E. Q., Cafasso, D. E., Lee, K. W. M., et al., 2012. Pulmonary Toxicity after Exposure to Military⁃Relevant Heavy Metal Tungsten Alloy Particles. Toxicology and Applied Pharmacology, 259(1): 74-86. https://doi.org/10.1016/j.taap.2011.12.008
      Strigul, N., Galdun, C., Vaccari, L., et al., 2009. Influence of Speciation on Tungsten Toxicity. Desalination, 248(1-3): 869-879. https://doi.org/10.1016/j.desal.2009.01.016
      Weiss, J., Möckel, H. J., Müller, A., et al., 1988. Retention of Thio⁃ and Selenometalates in Mobile⁃Phase Ion Chromatography. Journal of Chromatography A, 439(1): 93-108. https://doi.org/10.1016/S0021⁃9673(01)81678⁃2
      Yan, K. T., Guo, Q. H., Luo, L., 2022. Methylation and Thiolation of Arsenic in Tengchong Hot Springs. Earth Science, 47(2): 622-632 (in Chinese with English abstract).
      Yang, N. F., Welch, K. A., Mohajerin, T. J., et al., 2015. Comparison of Arsenic and Molybdenum Geochemistry in Meromictic Lakes of the McMurdo Dry Valleys, Antarctica: Implications for Oxyanion⁃Forming Trace Element Behavior in Permanently Stratified Lakes. Chemical Geology, 404: 110-125. https://doi.org/10.1016/j.chemgeo.2015.03.029
      Zhuang, Y. Q., Guo, Q. H., Liu, M. L., et al., 2016. Geochemical Simulation of Thioarsenic Speciation in High⁃Temperature, Sulfide⁃Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan. Earth Science, 41(9): 1499-1510 (in Chinese with English abstract).
      郭清海, 杨晨, 2021. 西藏搭格架高温热泉中钨的水文地球化学异常. 地球科学, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287
      李海峰, 2010. 检出限几种常见计算方法的分析和比较. 光谱实验室, 27(6): 2465-2469. doi: 10.3969/j.issn.1004-8138.2010.06.082
      严克涛, 郭清海, 罗黎, 2022. 腾冲热泉中砷的甲基化和巯基化过程. 地球科学, 47(2): 622-632. doi: 10.3799/dqkx.2021.105
      庄亚芹, 郭清海, 刘明亮, 等, 2016. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例. 地球科学, 41(9): 1499-1510. doi: 10.3799/dqkx.2016.513
    • 加载中
    图(5) / 表(5)
    计量
    • 文章访问数:  718
    • HTML全文浏览量:  489
    • PDF下载量:  38
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-10-29
    • 刊出日期:  2023-01-25

    目录

      /

      返回文章
      返回