• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鄂尔多斯盆地西南部下白垩统洛河组灰色砂岩的两种成因及其含铀性

    朱强 司庆红 李建国 苗培森 文思博 李光耀 张博

    朱强, 司庆红, 李建国, 苗培森, 文思博, 李光耀, 张博, 2023. 鄂尔多斯盆地西南部下白垩统洛河组灰色砂岩的两种成因及其含铀性. 地球科学, 48(11): 3995-4016. doi: 10.3799/dqkx.2022.012
    引用本文: 朱强, 司庆红, 李建国, 苗培森, 文思博, 李光耀, 张博, 2023. 鄂尔多斯盆地西南部下白垩统洛河组灰色砂岩的两种成因及其含铀性. 地球科学, 48(11): 3995-4016. doi: 10.3799/dqkx.2022.012
    Zhu Qiang, Si Qinghong, Li Jianguo, Miao Peisen, Wen Sibo, Li Guangyao, Zhang Bo, 2023. Two Geneses of Gray Sandstone and Their Uranium⁃Bearing Analysis of Lower Cretaceous Luohe Formation in Southwestern Ordos Basin. Earth Science, 48(11): 3995-4016. doi: 10.3799/dqkx.2022.012
    Citation: Zhu Qiang, Si Qinghong, Li Jianguo, Miao Peisen, Wen Sibo, Li Guangyao, Zhang Bo, 2023. Two Geneses of Gray Sandstone and Their Uranium⁃Bearing Analysis of Lower Cretaceous Luohe Formation in Southwestern Ordos Basin. Earth Science, 48(11): 3995-4016. doi: 10.3799/dqkx.2022.012

    鄂尔多斯盆地西南部下白垩统洛河组灰色砂岩的两种成因及其含铀性

    doi: 10.3799/dqkx.2022.012
    基金项目: 

    国家重点研发计划项目 2018YFC0604200

    中国地质调查局地质调查项目 DD20190119

    中国地质调查局地质调查项目 DD20221678⁃1

    国际地球科学计划项目 IGCP675

    国家自然科学基金项目 92162212

    国家重点基础研究发展计划项目 2015CB453000

    详细信息
      作者简介:

      朱强(1987-),男,高级工程师,硕士,从事砂岩型铀矿成矿作用与成矿机理研究. ORCID:0000-0002-2164-2753. E-mail:zhuq1987@163.com

      通讯作者:

      司庆红, E-mail: 394360201@qq.com

    • 中图分类号: P611;P619

    Two Geneses of Gray Sandstone and Their Uranium⁃Bearing Analysis of Lower Cretaceous Luohe Formation in Southwestern Ordos Basin

    • 摘要: 为了查明鄂尔多斯盆地西南部下白垩统洛河组灰色砂岩的成因,深化铀矿富集规律,定位砂岩型铀矿体产出部位,利用岩矿鉴定、XRD和元素地球化学分析等方法,对洛河组砂岩进行精细研究.结果显示研究区灰色砂岩有两种不同的成因:(1)洛河组下部砂岩具有典型的风成沉积特征,碎屑颗粒分选性和磨圆度较好,石英含量较高,粘土矿物总量较低,孔隙度大,具备较好的流体运移通道,经受后期还原流体的改造程度较高,为主要的富铀砂体;(2)洛河组上部砂岩为辫状河河道、河道边缘和泛滥盆地沉积,碎屑颗粒分选性和磨圆度中等‒较差,石英含量较低,粘土矿物总量较高,孔隙度低,经受还原改造程度较弱或基本未被改造.两种成因灰色砂岩元素地球化学特征总体一致,部分元素有所差异,在U含量富集部位,主量元素中CaO、P2O5和MnO含量升高,Fe2O3/FeO降低,风成灰色砂岩中δEu既有正异常又有负异常,δCe以负异常为主,河流沉积灰色砂岩中δEu和δCe均为负异常.研究得出,洛河组河流沉积砂岩以还原环境为主,为原生沉积砂岩,风成沉积砂岩则可能经受了由氧化向还原环境的转变,为蚀变改造砂岩.铀矿多产出于风成沉积的灰色砂岩中,U含量的增高伴随有P、Ca和ΣREE的相对富集,风成沉积灰色砂岩的生成以及铀矿的富集与烃类流体的蚀变作用紧密相关.

       

    • 图  1  鄂尔多斯盆地早白垩世宜君期‒洛河期盆地构造、岩相古地理简图(a)及研究区钻孔分布示意(b)

      Fig.  1.  The tectonic zoning and the lithofacies paleogeography for Yijun-Luohe Formation in the Early Cretaceous of the Ordos basin (a) and the borehole distribution diagram in the study area (b)

      图  2  Z17号钻孔综合柱状图

      Fig.  2.  Comprehensive diagram of borehole Z17

      图  3  Z13号钻孔综合柱状图

      Fig.  3.  Comprehensive diagram of borehole Z13

      图  4  洛河组典型露头和岩心照片

      a.露头区洛河组砂岩的大型高角度楔状交错层理(风成沉积砂岩);b.露头区洛河组砂岩的板状交错层理(风成沉积砂岩);c.露头区洛河组砂岩的波状交错层理,夹石膏薄层(河流沉积砂岩);d.钻孔岩心中发育交错层理(风成沉积砂岩);e.灰色砂岩中砂砾岩(河流沉积砂岩);f.灰色细砂岩与褐色、灰色泥岩互层(河流沉积砂岩);g.灰色泥岩中夹薄石膏层(沙漠湖沉积);h.黄铁矿沿斜层理发育(风成沉积砂岩);i:还原性流体沿裂隙贯入氧化砂岩,形成褪色蚀变(风成沉积砂岩)

      Fig.  4.  The typical photos of outcrops and core photographs in the Luohe Formation

      图  5  鄂尔多斯盆地西南部洛河组NW-SE向岩性特征联井剖面

      Fig.  5.  The NW-SE well section of lithologic characteristics in the Luohe Formation, southwestern Ordos basin

      图  6  洛河组风成沉积灰色砂岩与河流沉积灰色砂岩矿物成分和粘土矿物含量示意

      a.洛河组风成沉积灰色砂岩与河流沉积灰色砂岩中矿物成分对比;b.洛河组风成沉积灰色砂岩与河流沉积灰色砂岩中粘土矿物含量对比

      Fig.  6.  The mineral composition and clay mineral content of the gray sandstone formed in the aeolian and fluvial depositional environment of the Luohe Formation

      图  7  洛河组不同成因灰色砂岩微观岩石学特征

      a.碎屑颗粒磨圆好,长石发生蚀变,表面生成粘土(蚀变灰色砂岩);b.黑云母发生水解析出的铁质充填在解理缝中,使云母颗粒被浸染为红褐色(蚀变灰色砂岩);c.亮晶方解石充填在碎屑颗粒孔隙间(蚀变灰色砂岩);d.他形黄铁矿发育在碎屑颗粒间(蚀变灰色砂岩);e.含矿砂岩附近较大量胶状黄铁矿充填在碎屑颗粒间(蚀变灰色砂岩);f.河流成因的灰色砂岩附近泥质含量急增,碎屑颗粒粒径降低(原生灰色砂岩);g.灰色砂岩孔隙内充填钙质胶结物,长石未发生蚀变(原生灰色砂岩);h.灰色砂岩孔隙内充填钙质胶结物、泥质胶结物,长石未发生蚀变(原生灰色砂岩);i.黑云母无黄铁矿浸染现象,未遭受明显蚀变(原生灰色砂岩)

      Fig.  7.  Micro petrological characteristics of gray sandstones of different origins in the Luohe Formation

      图  8  Z17号钻孔洛河组中典型蚀变矿物和烃类流体含量垂向变化规律

      Fig.  8.  Vertical variations of typical altered mineral contents and hydrocarbon fluid contents in Luohe Formation of borehole Z17

      图  9  Z17号钻孔洛河组灰色砂岩中主量元素垂向规律

      Fig.  9.  Vertical variations of major elements in gray sandstone of Luohe Formation in borehole Z17

      图  10  洛河组砂岩微量元素球粒陨石标准化蛛网图(a)和稀土元素球粒陨石标准化配分模式(b)

      a.标准化数据根据Sun and McDonough (1989);b.据Boynton(1984)

      Fig.  10.  Chondrite-normalized trace element patterns (a) and chondrite-normalized REE diagrams (b) of sandstone in Luohe Formation

      图  11  洛河组灰色砂岩样品粒度概率累积曲线

      Fig.  11.  Probability cumulative curves of grain size of gray sandstone from Luohe Formation

      图  12  洛河组砂岩U含量与ΣREE、δCe、Eu相关性

      Fig.  12.  Correlation between U and ΣREE, δCe, Eu in the sandstone of Luohe Formation

      图  13  鄂尔多斯盆地西南部洛河组铀矿体空间定位示意

      Fig.  13.  Schematic diagrams of spatial positioning for uranium ore bodies in Luohe Formation, southwestern Ordos basin

      表  1  洛河组灰色砂岩中X衍射全岩分析结果

      Table  1.   Quantitative analysis of mineral components of gray sandstone in Luohe Formation by X-ray diffraction

      岩石分类 样品编号 深度(m) 岩性 石英(%) 长石(%) 方解石(%) 白云石(%) 粘土矿物(%)
      蚀变砂岩(风成沉积) Z17-n1 1 174 灰绿色细砂岩 74.8 13.2 5.8 0 6.2
      Z17-n2 1 158.7 灰色细砂岩 72.3 16.8 0 0 10.9
      Z17-n3 1 155.4 灰绿色细砂岩 73.3 14.9 3.1 0 8.7
      Z17-n4 1 138.6 灰色细砂岩 72.8 14.1 3.3 0 9.8
      Z17-n5 1 137.6 灰色细砂岩 67.9 19.2 4.8 0 8.1
      Z17-n6 1 182 灰色细砂岩 63.2 16.6 8.2 0 12
      Z17-n7 1 186.4 灰色细砂岩 64 18.3 12.1 0 5.6
      Z17-n8 1 146.7 灰色细砂岩 60.2 19.4 11.4 0 9
      Z17-n9 1 141.8 灰色细砂岩 68.4 19 6.7 0 5.9
      Z17-n14 1 199 灰色中砂岩 70.9 12.6 0 5.5 11
      Z13-n2 1 072 灰色钙质细砂岩 53.1 28 9.7 0 9.2
      Z13-n3 1 084 灰色钙质细砂岩 67.5 13.5 9.3 0 9.7
      Z13-n4 1 064.5 灰色钙质细砂岩 49 22 20.7 0 8.3
      Z13-n5 1 036 灰色钙质细砂岩 64.7 8.8 18.4 0 8.1
      Z13-n6 1 049.3 灰绿色中砂岩 79.6 9.7 0 0 10.7
      Z13-n7 1 090.47 灰绿色细砂岩 65.5 26.6 5.1 0 2.8
      平均值 66.70 17.04 7.41 0.34 8.50
      原生砂岩(河流沉积) Z13-n8 1 009.5 灰色细砂岩 40.4 12.3 0 5.8 41.5
      Z17-n10 930 灰色细砂岩 52.7 20.1 3.6 11.2 12.4
      Z17-n11 892 灰色细砂岩 32.5 14.9 0 17.4 35.2
      Z13-n10 800 灰色粉砂岩 31.7 11.8 0 11.4 45.1
      平均值 39.33 14.78 0.90 11.45 33.55
      下载: 导出CSV

      表  2  洛河组灰色砂岩中X衍射粘土矿物定量分析结果

      Table  2.   Quantitative analysis of clay mineral components of gray sandstone in Luohe Formation by X-ray diffraction

      岩石分类 序号 样品编号 深度(m) 岩性 粘土占比(%) S(%) I/S(%) It(%) Kao(%) C(%)
      灰色钙质砂岩(风成沉积) 1 Z13-n2 1 072 灰色钙质细砂岩 9.20 0.00 79.00 8.00 7.00 6.00
      2 Z13-n3 1 084 灰色钙质细砂岩 9.70 0.00 82.00 13.00 2.00 3.00
      3 Z13-n4 1 064.5 灰色钙质细砂岩 8.30 0.00 53.00 23.00 24.00 0.00
      4 Z13-n5 1 036 灰色钙质细砂岩 8.10 0.00 55.00 5.00 4.00 3.00
      平均值 8.83 0.00 67.25 12.25 9.25 3.00
      灰色砂岩(风成沉积) 5 Z17-n1 1 174 灰绿色细砂岩 6.20 0.00 45.00 13.00 42.00 0.00
      6 Z17-n2 1 158.7 灰色细砂岩 10.90 0.00 30.00 17.00 41.00 12.00
      7 Z17-n3 1 155.4 灰绿色细砂岩 8.70 0.00 42.00 14.00 34.00 10.00
      8 Z17-n4 1 138.6 灰色细砂岩 9.80 0.00 35.00 22.00 36.00 7.00
      9 Z17-n5 1 137.6 灰色细砂岩 8.10 0.00 36.00 31.00 33.00 0.00
      10 Z17-n6 1 182 灰色细砂岩 12.00 0.00 45.00 21.00 28.00 6.00
      11 Z17-n7 1 186.4 灰色细砂岩 5.60 0.00 75.00 13.00 8.00 4.00
      12 Z17-n8 1 146.7 灰色细砂岩 9.00 0.00 29.00 32.00 30.00 9.00
      13 Z17-n9 1 141.8 灰色细砂岩 5.90 0.00 38.00 18.00 32.00 12.00
      14 Z13-n6 1 049.3 灰绿色中砂岩 10.70 0.00 53.00 27.00 20.00 0.00
      15 Z13-n7 1 090.47 灰绿色细砂岩 2.80 0.00 32.00 18.00 50.00 0.00
      平均值 8.15 0.00 41.82 20.55 32.18 5.45
      灰色砂岩(河流沉积) 16 Z17-n10 930 灰色细砂岩 12.40 0.00 62.00 31.00 0.00 7.00
      17 Z13-n8 1 009.5 灰色钙质细砂岩 41.50 0.00 72.00 22.00 4.00 2.00
      18 Z13-n9 606 灰色细砂岩 26.80 0.00 57.00 38.00 2.00 3.00
      19 Z17-n11 892 灰色细砂岩 35.20 0.00 50.00 41.00 0.00 9.00
      20 Z13-n10 800 灰色粉砂岩 45.10 0.00 69.00 28.00 0.00 3.00
      平均值 32.20 0.00 62.00 32.00 1.20 4.80
      泥岩 21 Z13-n11 797.3 灰色泥岩 78.40 0.00 54.00 38.00 3.00 5.00
      22 Z13-n12 1 003 灰色泥岩 51.60 0.00 59.00 22.00 11.00 8.00
      23 Z17-n12 1 038.5 红色泥岩 55.20 0.00 51.00 40.00 2.00 7.00
      24 Z17-n13 978.9 红色泥岩 67.10 0.00 64.00 26.00 5.00 5.00
      平均值 63.08 0.00 57.00 31.50 5.25 6.25
      注:S.蒙皂石;I/S.伊蒙混层;It.伊利石;Kao.高岭石;C.绿泥石.
      下载: 导出CSV

      表  3  Z17号钻孔洛河组灰色砂岩中主量元素含量统计表

      Table  3.   Statistics of major element contents in gray sandstone of Luohe Formation in borehole Z17

      类型 样品编号 岩性 深度(m) SiO2(%) Al2O3(%) Fe2O3(%) FeO(%) Fe2O3/FeO CaO(%) MgO(%) K2O(%) Na2O(%) TiO2(%) P2O5(%) MnO(%) U(10-6) Th(10-6) Th/U
      风成沉积砂岩(围岩) Z17-p4 灰绿色细砂岩 1 174 84.53 4.71 0.42 0.44 0.95 3.24 0.46 1.88 1.03 0.13 0.031 0.028 1.81 4.68 2.59
      Z17-p5 灰色细砂岩 1 158.7 84.49 6.4 0.52 0.37 1.41 1.72 0.44 2.36 1.47 0.16 0.038 0.009 4.79 2.77 0.58
      Z17-p6 灰绿色细砂岩 1 155.4 82.72 6.58 0.7 0.42 1.67 2.37 0.47 2.36 1.56 0.19 0.036 0.015 3.88 3.41 0.88
      Z17-p10 灰色细砂岩 1 137.6 83.56 5.86 0.57 0.25 2.28 2.68 0.42 2.3 1.33 0.13 0.16 0.022 12.8 10.5 0.82
      平均值 83.83 5.89 0.55 0.37 1.58 2.50 0.45 2.23 1.35 0.15 0.07 0.02 5.82 5.34 1.22
      风成沉积砂岩(含矿) Z17-p1 灰色中砂岩 1 199 82.23 4.87 0.26 0.55 0.47 3.19 1.34 1.97 1.04 0.12 0.18 0.028 21.9 3.3 0.15
      Z17-p3 灰色细砂岩 1 182 71.24 5.92 0.25 0.62 0.40 9.53 0.45 2.15 1.44 0.19 0.26 0.046 27.4 22.2 0.81
      Z17-p2 灰色细砂岩 1 186.4 75.09 5.11 0.29 0.39 0.74 8.25 0.39 1.99 1.21 0.14 0.35 0.025 37.2 3.93 0.11
      Z17-p7 灰色细砂岩 1 146.7 82.97 6.53 0.34 0.59 0.58 2.44 0.42 2.35 1.52 0.17 0.051 0.016 241 4.65 0.02
      Z17-p8 灰色细砂岩 1 141.8 81.03 5.93 0.29 0.61 0.48 4.06 0.42 2.22 1.4 0.15 0.16 0.027 1110 14.3 0.01
      平均值 78.51 5.67 0.29 0.55 0.53 5.49 0.60 2.14 1.32 0.15 0.20 0.03 287.50 9.68 0.22
      河流沉积砂岩 Z17-p16 灰色钙质细砂岩 1 002.2 69.86 4.1 0.24 0.36 0.67 10.35 1.84 1.64 0.92 0.14 0.13 0.024 7 7.26 1.04
      Z17-p22 灰色细砂岩 930 68.98 8.58 1.65 0.88 1.88 5.7 1.8 2.82 2.09 0.45 0.12 0.055 1.64 7.91 4.82
      Z17-p25 灰色细砂岩 890 77.21 7.89 0.72 0.61 1.18 4.02 0.69 2.38 2.09 0.26 0.059 0.033 1.59 4.77 3.00
      平均值 72.02 6.86 0.87 0.62 1.24 6.69 1.44 2.28 1.70 0.28 0.10 0.04 3.41 6.65 2.95
      下载: 导出CSV

      表  4  Z17号钻孔洛河组灰色砂岩中微量元素含量统计表

      Table  4.   Statistics of trace element content in gray sandstone of Luohe Formation in borehole Z17

      类型 样品编号 Rb(10-6) K(10-2) Ba(10-6) Th(10-6) U(10-6) Nb(10-6) La(10-6) Ce(10-6) Sr(10-6) Nd(10-6) P(10-2) Zr(10-6) Hf(10-6) Sm(10-6) Ti(10-2) Y(10-6) Yb(10-6) Lu(10-6) Ta(10-6)
      风成沉积砂岩(围岩) Z17-p4 60.1 1.88 475 4.68 1.81 2.14 10.8 20.2 139 8.94 0.03 66 2.08 1.56 0.13 4.85 0.54 0.09 0.21
      Z17-p5 72.6 2.36 502 2.77 4.79 3 7.25 13.3 144 5.77 0.04 73.2 2.22 1.04 0.16 4.62 0.57 0.091 0.27
      Z17-p6 75.2 2.36 550 3.41 3.88 3.65 13.2 23.1 164 9.02 0.04 127 3.5 1.46 0.19 5.26 0.62 0.1 0.32
      Z17-p10 74.7 2.3 480 10.5 12.8 2.37 13.7 29.7 202 15.9 0.16 57.9 1.78 2.97 0.13 9.68 0.91 0.13 0.21
      风成沉积砂岩(含矿) Z17-p1 63.6 1.97 527 3.3 21.9 2.09 9.49 17.7 199 8.07 0.18 55.6 1.65 1.46 0.12 6.06 0.87 0.15 0.19
      Z17-p2 64.6 1.99 482 3.93 37.2 2.53 12.3 23.3 355 10 0.35 63.3 1.91 1.74 0.14 7.62 1.17 0.18 0.22
      Z17-p3 70.6 2.15 497 22.2 27.4 3.19 13 24.5 423 11.4 0.26 84.6 2.48 2.31 0.19 16.9 1.95 0.29 0.29
      Z17-p7 74.1 2.35 538 4.65 241 3.3 15.1 27.3 134 10.8 0.05 85.7 2.54 1.82 0.17 6 0.66 0.1 0.29
      Z17-p8 72 2.22 572 14.3 1110 2.64 21.1 43.5 217 18.3 0.16 61.1 1.86 3.62 0.15 15.4 1.15 0.15 0.24
      河流沉积砂岩 Z17-p16 54.8 1.64 366 7.26 7 2.26 11.2 21.8 228 10.6 0.13 83.9 2.34 1.88 0.14 9.96 0.86 0.13 0.2
      Z17-p22 90.4 2.82 516 7.91 1.64 7.79 27.1 50.9 227 23.1 0.12 241 6.77 4.22 0.45 17.7 1.91 0.3 0.66
      Z17-p25 79.6 2.38 445 4.77 1.59 4.48 16.7 31 213 14 0.06 97.1 2.91 2.53 0.26 10.9 1.21 0.19 0.38
      下载: 导出CSV

      表  5  Z17号钻孔洛河组灰色砂岩中稀土元素含量统计

      Table  5.   Statistics of rare earth element contents in gray sandstone of Luohe Formation in borehole Z17

      类型 样品编号 La(10-6) Ce(10-6) Pr(10-6) Nd(10-6) Sm(10-6) Eu(10-6) Gd(10-6) Tb(10-6) Dy(10-6) Ho(10-6) Er(10-6) Tm(10-6) Yb(10-6) Lu(10-6) Y(10-6) ΣREE LREE HREE δEu δCe
      风成沉积砂岩(围岩) Z17-p4 10.8 20.2 2.44 8.94 1.56 0.49 1.47 0.2 1.01 0.19 0.57 0.085 0.54 0.09 4.85 48.59 44.43 4.16 0.99 0.95
      Z17-p5 7.25 13.3 1.58 5.77 1.04 0.43 1.01 0.16 0.94 0.18 0.55 0.085 0.57 0.091 4.62 32.956 29.37 3.59 1.28 0.95
      Z17-p6 13.2 23.1 2.59 9.02 1.46 0.5 1.46 0.2 1.01 0.2 0.58 0.092 0.62 0.1 5.26 54.132 49.87 4.26 1.05 0.95
      Z17-p10 13.7 29.7 4.02 15.9 2.97 0.74 2.55 0.39 2.11 0.36 1.05 0.15 0.91 0.13 9.68 74.68 67.03 7.65 0.82 0.96
      风成沉积砂岩(含矿) Z17-p1 9.49 17.7 2.15 8.07 1.46 0.49 1.45 0.21 1.21 0.22 0.69 0.11 0.87 0.15 6.06 44.27 39.36 4.91 1.03 0.94
      Z17-p2 12.3 23.3 2.71 10 1.74 0.51 1.81 0.26 1.43 0.29 0.9 0.17 1.17 0.18 7.62 56.77 50.56 6.21 0.88 0.97
      Z17-p3 13 24.5 3 11.4 2.31 0.67 2.43 0.45 3.03 0.65 1.95 0.31 1.95 0.29 16.9 65.94 54.88 11.06 0.86 0.94
      Z17-p7 15.1 27.3 3.07 10.8 1.82 0.57 1.79 0.24 1.26 0.23 0.68 0.1 0.66 0.1 6 63.72 58.66 5.06 0.97 0.97
      Z17-p8 21.1 43.5 4.88 18.3 3.62 0.89 3.31 0.54 3.02 0.58 1.66 0.21 1.15 0.15 15.4 102.91 92.29 10.62 0.786 1.03
      河流沉积砂岩 Z17-p16 11.2 21.8 2.81 10.6 1.88 0.48 1.86 0.3 1.77 0.36 1 0.14 0.86 0.13 9.96 55.19 48.77 6.42 0.78 0.94
      Z17-p22 27.1 50.9 6.14 23.1 4.22 0.93 3.92 0.6 3.32 0.66 1.95 0.29 1.91 0.3 17.7 125.34 112.39 12.95 0.70 0.95
      Z17-p25 16.7 31 3.77 14 2.53 0.66 2.37 0.36 2.01 0.4 1.2 0.19 1.21 0.19 10.9 76.59 68.66 7.93 0.82 0.94
      下载: 导出CSV

      表  6  风成沉积与河流沉积灰色砂岩主要特征综合对比表

      Table  6.   Comprehensive comparison for the main characteristics of aeolian and fluvial gray sandstones

      灰色砂岩成因 河流沉积 风成沉积
      空间分布特征 原生灰色砂岩呈透镜状或舌状产出于红色、黄色砂岩内部,泥质含量明显升高 灰色蚀变砂岩与红色或黄色氧化砂岩水平接触部位呈较明显的穿层现象,垂向上氧化砂岩与灰色砂岩的接触边界受粒度和渗透性控制明显
      结构特征 大小 砾岩、砂砾岩、粗砂岩、中砂岩、细砂岩 中砂岩、细砂岩为主
      形状 次棱角状 次圆状
      分选 分选性中等 分选性好
      成分特征 石英平均含量为39.33%,粘土矿物平均含量为33.55% 石英平均含量为66.70%,粘土矿物平均含量为8.5%
      构造特征 水平层理、波状层理 大型楔状、板状交错层理
      粘土矿物特征 伊/蒙混层矿物含量高,绿泥石含量较低,高岭石含量极低 伊/蒙混层矿物含量较高,泥质胶结的灰色砂岩中高岭石含量较高,钙质胶结的灰色砂岩中高岭石和伊利石均较低
      主量元素特征 SiO2和P2O5含量较低,CaO、MgO和MnO含量较高 SiO2含量较高,随着U含量升高,CaO、P2O5和MnO含量明显升高,Fe2O3/FeO明显降低
      微量、稀土元素特征 Ce为负异常 Ce为负异常,δCe值随U含量增高而明显增大.Eu的亏损程度要明显小于河流沉积灰色砂岩
      粒度特征 粒度概率累积曲线斜率较低,显示粒径变化范围更大.河道边缘中的细砂岩以跳跃组分为主体,辫状河道中的砂砾岩概率累积曲线以滚动组分和跳跃组分为主体,悬浮组分较低 以跳跃组分为主体,伴随有少量悬浮组分
      蚀变现象 不明显 可见规模不等的沿裂隙切层或顺层发育的还原性流体蚀变现象,具有明显的对称蚀变分带,从中心向外围依次为绿灰色‒黄色/浅红色‒红色砂岩,并且见到较明显的油浸、油斑、油迹等现象,显微镜下荧光现象也比较常见
      岩石颜色成因 原生沉积色为主 后生蚀变色为主
      矿体形态 / 板状
      主要的富铀砂体
      下载: 导出CSV
    • Akhtar, S., Yang, X. Y., Pirajno, F., 2017. Sandstone Type Uranium Deposits in the Ordos Basin, Northwest China: A Case Study and an Overview. Journal of Asian Earth Sciences, 146: 367-382. https://doi.org/10.1016/j.jseaes.2017.05.028
      Boynton, W. V., 1984. Gosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
      Braun, J. J., Pagel, M., Herbilln, A., et al., 1993. Mobilization and Redistribution of REEs and Thorium in a Syenitic Lateritic Profile: A Mass Balance Study. Geochimica et Cosmochimica Acta, 57(18): 4419-4434. https://doi.org/10.1016/0016-7037(93)90492-F
      Chen, Y. L., Zhu, X. Y., Zhang, C. J., et al., 2007. A Preliminary Study on REE Transformation Regularities of the Interlayer Oxidation Zone in Sandstone-Type Uranium Deposit: In Case of the Ili and Turpan-Hami Basins. Geological Review, 53(4): 473-485 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2007.04.006
      Cheng, X. Y., Zhang, T. F., Cheng, Y. H., et al., 2021. Paleosedimentary Environment Evolution of Zhiluo Formation in Tarangaole Area, Northern Margin of the Ordos Basin-Evidence from Geochemical Characteristics. North China Geology, 44(2): 1-3 (in Chinese with English abstract).
      Feng, Z. B., Nie, F. J., Deng, J. Z., et al., 2017. Spatial-Temporal Collocation and Genetic Relationship among Uranium, Coal, and Hydrocarbons and Its Significance for Uranium Prospecting: A Case from the Mesozoic- Cenozoic Uraniferous Basins, North China. Russian Geology and Geophysics, 58(5): 611-623. https://doi.org/10.1016/j.rgg.2016.10.013
      Han, X. Z., Wu, Z. J., Lin, Z. X., et al., 2020. Constraints of Sedimentary Facies of the Targeting Layers on Sandstone-Type Uranium Mineralization in Major Uranium-Producing Basins in Northern China: A Brief Disscussion. Geotectonica et Metallogenia, 44(4): 697-709 (in Chinese with English abstract).
      Hou, J. L., 2017. Analysis of Sedimentary Environment and Its Paleoenvironmental Significance of Late Eocene Gypsum-Mudstone Cycles in the Xining Basin (Dissertation). Fujian Normal University, Fuzhou (in Chinese with English abstract).
      Huang, C. M., Wang, C. S., 2002. Geochemical Features of Rare Earth Elements in Process of Rock Weathering and Soil Formation. Chinese Rare Earths, 23(5): 46-49 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-0277.2002.05.013
      Jiao, Y. Q., Wu, L. Q., Rong, H., 2018. Model of Inner and Outer Reductive Media within Uranium Reservoir Sandstone of Sandstone-Type Uranium Deposits and Its Ore-Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits. Earth Science, 43(2): 459-474 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2022. Sedimentation, Diagenesis and Uranium Mineralization: Innovative Discoveries and Cognitive Challenges in Study of Sandstone-Type Uranium Deposits in China. Earth Science, 47(10): 3580-3602 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Yang, S. K., 2006. Sedimentology of Uranium Reservoir. Geological Publishing House, Beijing (in Chinese).
      Jin, R. S., Cheng, Y. H., Li, J. G., et al., 2017. Late Mesozoic Continental Basin "Red and Black Beds" Coupling Formation Constraints on the Sandstone Uranium Mineralization in Northern China. Geology in China, 44(2): 205-223 (in Chinese with English abstract).
      Jin, R. S., Liu, H. J., Li, X. G., 2022. Theoretical System of Sandstone-Type Uranium Deposits in Northern China. Journal of Earth Science, 33(2): 257-277. doi: 10.1007/s12583-021-1449-4
      Jin, R. S., Teng, X. M., 2022. Large Scale Sandstone-Type Uranium Mineralization in Northern China. North China Geology, 45(1): 42-57 (in Chinese with English abstract).
      Jin, R. S., Yu, R. G., Yang, J., et al., 2019. Paleo- Environmental Constraints on Uranium Mineralization in the Ordos Basin: Evidence from the Color Zoning of U-Bearing Rock Series. Ore Geology Reviews, 104: 175-189. https://doi.org/10.1016/j.oregeorev.2018.10.016
      Li, S. X., Chen, D. S., Cai, Y. Q., 2001. Discussion on Classification of Sandstone-Type Uranium Deposits. Uranium Geology, 17(5): 285-288, 297 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2001.05.005
      Li, Z. Y., Fang, X. H., Chen, A. P., et al., 2007. Genesis of Gray-Green Sandstone in the Target Layer of Sandstone-Type Uranium Deposits in Northern Ordos Basin. Science in China (Series D: Earth Sciences), 37(S1): 139-146 (in Chinese).
      Li, Z. Y., Fang, X. H., Xia, Y. L., et al., 2005. Metallogenetic Conditions and Exploration Criteria of the Dongsheng Sandstone Type Uranium Deposit in Inner Mongolia, China. Mineral Deposit Research: Meeting the Global Challenge. Springer Berlin Heidelberg, Berlin, 291-294. https://doi.org/10.1007/3-540-27946-6_76
      Liu, C. Y., Zhao, H. G., Gui, X. J., et al., 2006. Space-Time Coordinate of the Evolution and Reformation and Mineralization Response in Ordos Basin. Acta Geologica Sinica, 80(5): 617-638 (in Chinese with English abstract).
      Liu, Z. Y., Li, X. D., Zhao, X. Q., et al., 2017. Discussion on Metallogenic Mechanism and Mineral Characteristics of Ore-Bearing Sandstone from the Zaohuohao-Nalinggou Uranium Deposit in Ordos Basin. Northwestern Geology, 50(2): 191-206 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2017.02.020
      Luo, J. J., Wu, B. L., Li, Y. Q., et al., 2017. Element Geochemical Characteristics and Geological Significance of Nalinggou Uranium Deposit, Northeastern Ordos Basin. Uranium Geology, 33(2): 89-96 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2017.02.004
      Miao, P. S., Chen, Y., Cheng, Y. H., et al., 2020. New Deep Exploration Discoveries of Sandstone-Type Uranium Deposits in North China. Geotectonica et Metallogenia, 44(4): 563-575 (in Chinese with English abstract).
      Pan, J., Liu, Z. Q., Pu, R. H., et al., 2017. Fault Characteristics and Oil-Controlling Effects in Zhenyuan-Jingchuan District, Southwestern Ordos Basin. Oil Geophysical Prospecting, 52(2): 360-370, 196 (in Chinese with English abstract).
      Price, R. C., Gray, C. M., Wilson, R. E., et al., 1991. The Effects of Weathering on Rare-Earth Element, Y and Ba Abundances in Tertiary Basalts from Southeastern Australia. Chemical Geology, 93(3/4): 245-265. https://doi.org/10.1016/0009-2541(91)90117-A
      Qiao, D. W., Kuang, H. W., Liu, Y. Q., et al., 2020. Identification of Eolian Sandstone in Cretaceous Uraniferous Sandstone in Ordos Basin, China. Geotectonica et Metallogenia, 44(4): 648-666 (in Chinese with English abstract).
      Ren, Z. L., Yu, Q., Cui, J. P., et al., 2017. Thermal History and Its Controls on Oil and Gas of the Ordos Basin. Earth Science Frontiers, 24(3): 137-148 (in Chinese with English abstract).
      Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2019. Origin of the Carbonaceous Debris and Its Implication for Mineralization within the Qianjiadian Uranium Deposit, Southern Songliao Basin. Ore Geology Reviews, 107: 336-352. https://doi.org/10.1016/j.oregeorev.2019.02.036
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, C., Xiao, P., Wei, J. L., et al., 2021. Geological and Geochemical Characteristics of Uranium Mineralization in Anding Formation in Zhidan Area, Ordos Basin. North China Geology, 44(2): 4-13 (in Chinese with English abstract).
      Tao, Z. P., Jiao, Y. Q., Wu, L. Q., et al., 2020. Architecture of a Sandstone Uranium Reservoir and the Spatial Distribution of Its Internal Carbonaceous Debris: A Case Study of the Zhiluo Formation, Eastern Ordos Basin, Northern China. Journal of Asian Earth Sciences, 191: 104219. doi: 10.1016/j.jseaes.2019.104219
      Wang, Z. G., Yu, X. Y., Zhao, Z. H., et al., 1989. Earth Chemistry of Rare Earth Elements. Science Press, Beijing (in Chinese).
      Xie, H. L., Jiao, Y. Q., Liu, Z. Y., et al., 2020. Occurrence and Enrichment Mechanism of Uranium Ore Minerals from Sandstone-Type Uranium Deposit, Northern Ordos Basin. Earth Science, 45(5): 1531-1543 (in Chinese with English abstract).
      Yu, R. A., Si, Q. H., Wang, S. B., et al., 2020a. Geochemical Characteristics and Detrital Zircon U-Pb Ages of the Zhiluo Formation in the Shicaocun Area of the Western Ordos Basin and Implication for Its Tectonic Setting and Provenance. Geotectonica et Metallogenia, 44(4): 754-771 (in Chinese with English abstract).
      Yu, R. A., Zhu, Q., Wen, S. B., et al., 2020b. Tectonic Setting and Provenance Analysis of Zhiluo Formation Sandstone of Tarangaole Area in the Ordos Basin. Earth Science, 45(3): 829-843 (in Chinese with English abstract).
      Yu, R. G., Wang, S. B., Zhu, Q., et al., 2021. Zircon U-Pb Ages and Provenance Characteristics of the Zhiluo Formation Sandstones and the Formation Background of the Uranium Deposit in Huangling Area, Ordos Basin, China. China Geology, 4(4): 600-615. https://doi.org/10.31035/cg2021006
      Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2019. In-Situ Analyses of Organic Matter Maturation Heterogeneity of Uranium-Bearing Carbonaceous Debris within Sandstones: A Case Study from the Ordos Basin in China. Ore Geology Reviews, 109: 117-129. https://doi.org/10.1016/j.oregeorev.2019.03.021
      Zhang, T. F., Miao, P. S., Cheng, X. Y., et al., 2020. Stratigraphic Characteristics of a Newly Discovered Uranium-Bearing Stratum in the Lower Cretaceous, Ordos Basin. Geotectonica et Metallogenia, 44(4): 633-647 (in Chinese with English abstract).
      Zhang, Y. Y., Ren, Z. L., He, F. Q., et al., 2020. Meso-Cenozoic Structural Characteristics and Their Reservoir Controls of Structural Transition Area in China Craton: A Case Study of Yanchang Formation in Zhenjing Area of Southwestern Ordos Basin. Acta Petrologica Sinica, 36(11): 3537-3549 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.11.18
      Zhao, H. L., Li, J. G., Miao, P. S., et al., 2020. Mineralogical Study of Pengyang Uranium Deposit and Its Significance of Regional Mineral Exploration in Southwestern Ordos Basin. Geotectonica et Metallogenia, 44(4): 607-618 (in Chinese with English abstract).
      Zhu, Q., Li, J. G., Miao, P. S., et al., 2019. Reservoir Characteristics of Luohe Formation and Metallogenic Geological Conditions of Deep Uranium in the Southwestern Margin of Ordos Basin, China. Journal of Earth Sciences and Environment, 41(6): 675-690 (in Chinese with English abstract).
      Zhu, Q., Li, J. G., Miao, P. S., et al., 2020. Characteristics of Clay Minerals in the Luohe Formation in Zhenyuan Area, Ordos Basin, and Its Uranium Prospecting Significance. Geotectonica et Metallogenia, 44(4): 619-632 (in Chinese with English abstract).
      Zhu, Q., Li, J. G., Wen, S. B., et al., 2021. Alteration, Uranium Occurrence State, and Enrichment Mechanism of the Cretaceous Luohe Formation, Southwestern Ordos Basin, Western China. Ore Geology Reviews, 139: 104486. https://doi.org/10.1016/j.oregeorev.2021.104486
      Zhu, Q., Yu, R. A., Feng, X. X., et al., 2019. Mineralogy, Geochemistry, and Fluid Action Process of Uranium Deposits in the Zhiluo Formation, Ordos Basin, China. Ore Geology Reviews, 111: 102984. https://doi.org/10.1016/j.oregeorev.2019.102984
      Zhu, Q., Yu, R. A., Li, G. Y., et al., 2021. Associated Mineral Assemblage of Sandstone-Type Uranium Deposit in the Northeastern Ordos Basin and Its Geological Significance. Geotectonica et Metallogenia, 45(2): 327-344 (in Chinese with English abstract).
      陈友良, 朱西养, 张成江, 等, 2007. 层间氧化带砂岩型铀矿稀土元素变化规律初探: 以伊犁和吐鲁番‒哈密盆地为例. 地质论评, 53(4): 473-485. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200704006.htm
      程先钰, 张天福, 程银行, 等, 2021. 鄂尔多斯盆地北缘塔然高勒地区直罗组古沉积环境演化: 来自地球化学特征的证据. 华北地质, 44(2): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102001.htm
      韩效忠, 吴兆剑, 林中湘, 等, 2020. 浅论中国北方主要产铀盆地含矿目标层沉积相对砂岩型铀矿的制约. 大地构造与成矿学, 44(4): 697-709. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004011.htm
      侯吉立, 2017. 西宁盆地晚始新世石膏‒泥岩旋回地层沉积环境分析及其古环境指示意义(硕士学位论文). 福州: 福建师范大学.
      黄成敏, 王成善, 2002. 风化成土过程中稀土元素地球化学特征. 稀土, 23(5): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ200205013.htm
      焦养泉, 吴立群, 荣辉, 2018. 砂岩型铀矿的双重还原介质模型及其联合控矿机理: 兼论大营和钱家店铀矿床. 地球科学, 43(2): 459-474. doi: 10.3799/dqkx.2017.512
      焦养泉, 吴立群, 荣辉, 等, 2021. 中国盆地铀资源概述. 地球科学, 46(8): 2675-2696. doi: 10.3799/dqkx.2020.304
      焦养泉, 吴立群, 荣辉, 等, 2022. 沉积、成岩与铀成矿: 中国砂岩型铀矿研究的创新发现与认知挑战. 地球科学, 47(10): 3580-3602. doi: 10.3799/dqkx.2022.284
      焦养泉, 吴立群, 杨生科, 2006. 铀储层沉积学: 砂岩型铀矿勘查与开发的基础. 北京: 地质出版社.
      金若时, 程银行, 李建国, 等, 2017. 中国北方晚中生代陆相盆地红‒黑岩系耦合产出对砂岩型铀矿成矿环境的制约. 中国地质, 44(2): 205-223. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702002.htm
      金若时, 滕雪明, 2022. 中国北方砂岩型铀矿大规模成矿作用. 华北地质, 45(1): 42-57. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202201003.htm
      李胜祥, 陈戴生, 蔡煜琦, 2001. 砂岩型铀矿床分类探讨. 铀矿地质, 17(5): 285-288, 297. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200105004.htm
      李子颖, 方锡珩, 陈安平, 等, 2007. 鄂尔多斯盆地北部砂岩型铀矿目标层灰绿色砂岩成因. 中国科学(D辑: 地球科学), 37(S1): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1015.htm
      刘池洋, 赵红格, 桂小军, 等, 2006. 鄂尔多斯盆地演化‒改造的时空坐标及其成藏(矿)响应. 地质学报, 80(5): 617-638. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200605003.htm
      刘正义, 李西得, 赵兴齐, 等, 2017. 鄂尔多斯盆地皂火壕‒纳岭沟地区铀矿含矿砂体矿物特征与成矿机理探讨. 西北地质, 50(2): 191-206. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201702021.htm
      罗晶晶, 吴柏林, 李艳青, 等, 2017. 鄂尔多斯盆地东北部纳岭沟铀矿床元素地球化学特征及其地质意义. 铀矿地质, 33(2): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201702004.htm
      苗培森, 陈印, 程银行, 等, 2020. 中国北方砂岩型铀矿深部探测新发现及其意义. 大地构造与成矿学, 44(4): 563-575. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004002.htm
      潘杰, 刘忠群, 蒲仁海, 等, 2017. 鄂尔多斯盆地镇原‒泾川地区断层特征及控油意义. 石油地球物理勘探, 52(2): 360-370. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201702021.htm
      乔大伟, 旷红伟, 柳永清, 等, 2020. 鄂尔多斯盆地风成含铀岩系的识别: 以XX井为例. 大地构造与成矿学, 44(4): 648-666. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004008.htm
      任战利, 于强, 崔军平, 等, 2017. 鄂尔多斯盆地热演化史及其对油气的控制作用. 地学前缘, 24(3): 137-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703016.htm
      汤超, 肖鹏, 魏佳林, 等, 2021. 鄂尔多斯盆地志丹地区安定组铀矿化地质地球化学特征. 华北地质, 44(2): 4-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102002.htm
      王中刚, 于学元, 赵振华, 等, 1989. 稀土元素地球化学. 北京: 科学出版社.
      谢惠丽, 焦养泉, 刘章月, 等, 2020. 鄂尔多斯盆地北部铀矿床铀矿物赋存状态及富集机理. 地球科学, 45(5): 1531-1543. doi: 10.3799/dqkx.2019.164
      俞礽安, 司庆红, 王善博, 等, 2020a. 鄂尔多斯盆地西缘石槽村地区直罗组砂岩地球化学特征和碎屑锆石U-Pb年代学特征: 对构造背景及物源的启示. 大地构造与成矿学, 44(4): 754-771. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004016.htm
      俞礽安, 朱强, 文思博, 等, 2020b. 鄂尔多斯盆地塔然高勒地区直罗组砂岩源区构造背景与物源分析. 地球科学, 45(3): 829-843. doi: 10.3799/dqkx.2020.001
      张天福, 苗培森, 程先钰, 等, 2020. 鄂尔多斯盆地早白垩世含铀岩系的新发现及其层序地层. 大地构造与成矿学, 44(4): 633-647. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004007.htm
      张园园, 任战利, 何发岐, 等, 2020. 克拉通盆地构造转折区中‒新生界构造特征及其控藏意义: 以鄂尔多斯盆地西南部镇泾地区延长组为例. 岩石学报, 36(11): 3537-3549. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202011018.htm
      赵华雷, 李建国, 苗培森, 等, 2020. 鄂尔多斯盆地西南缘彭阳铀矿区矿物学研究及其对区域成矿的指示. 大地构造与成矿学, 44(4): 607-618. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004005.htm
      朱强, 李建国, 苗培森, 等, 2019. 鄂尔多斯盆地西南部洛河组储层特征和深部铀成矿地质条件. 地球科学与环境学报, 41(6): 675-690. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201906006.htm
      朱强, 李建国, 苗培森, 等, 2020. 鄂尔多斯盆地镇原地区洛河组黏土矿物特征及找铀意义. 大地构造与成矿学, 44(4): 619-632. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004006.htm
      朱强, 俞礽安, 李光耀, 等, 2021. 鄂尔多斯盆地东北部砂岩型铀矿伴生矿物组合及其地质意义. 大地构造与成矿学, 45(2): 327-344. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202102006.htm
    • 加载中
    图(13) / 表(6)
    计量
    • 文章访问数:  387
    • HTML全文浏览量:  590
    • PDF下载量:  90
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-06-23
    • 网络出版日期:  2023-11-30
    • 刊出日期:  2023-11-25

    目录

      /

      返回文章
      返回