• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    适用于中深层-深层页岩气的高压吸附模型

    任文希 周玉 郭建春 王天宇

    任文希, 周玉, 郭建春, 王天宇, 2022. 适用于中深层-深层页岩气的高压吸附模型. 地球科学, 47(5): 1865-1875. doi: 10.3799/dqkx.2022.014
    引用本文: 任文希, 周玉, 郭建春, 王天宇, 2022. 适用于中深层-深层页岩气的高压吸附模型. 地球科学, 47(5): 1865-1875. doi: 10.3799/dqkx.2022.014
    Ren Wenxi, Zhou Yu, Guo Jianchun, Wang Tianyu, 2022. High-Pressure Adsorption Model for Middle-Deep and Deep Shale Gas. Earth Science, 47(5): 1865-1875. doi: 10.3799/dqkx.2022.014
    Citation: Ren Wenxi, Zhou Yu, Guo Jianchun, Wang Tianyu, 2022. High-Pressure Adsorption Model for Middle-Deep and Deep Shale Gas. Earth Science, 47(5): 1865-1875. doi: 10.3799/dqkx.2022.014

    适用于中深层-深层页岩气的高压吸附模型

    doi: 10.3799/dqkx.2022.014
    基金项目: 

    国家自然科学基金青年基金资助项目 52004239

    油气资源与探测国家重点实验室开放课题基金项目 PRP/open-2003

    详细信息
      作者简介:

      任文希(1990—),男,副研究员,博士,主要从事非常规储层岩石物理化学实验和理论研究.ORCID:0000-0002-8904-5744. E-mail:renwx@swpu.edu.cn

    • 中图分类号: P618

    High-Pressure Adsorption Model for Middle-Deep and Deep Shale Gas

    • 摘要: 我国目前开发的中深层-深层页岩气藏储层压力高.低压下的吸附实验和理论难以满足勘探开发的需要.针对这一问题,对Uniform Langmuir模型进行了修正,发展了一个适用于中深层-深层页岩气的高压吸附模型,即修正的Uniform Langmuir(Unilan)模型.然后,利用文献发表的高压吸附实验数据对修正的Unilan模型进行了验证,并与其他高压吸附模型进行了对比,发现:相对于其他高压吸附模型,修正的Unilan模型具有拟合参数少和精度高的优点.最后,基于拟合得到的Unilan模型参数,结合页岩样品矿物组成,开展了模型参数分析,发现:有机质和黏土矿物对页岩气吸附均有贡献;吸附达到饱和时的吸附相体积大于微孔体积且小于总孔体积;吸附熵变主要与吸附态甲烷分子-页岩的相互作用强度有关.

       

    • 图  1  高压吸附模型拟合结果

      吸附实验数据来自Chen et al.(2019). a. 修正的Unilan和DL模型;b. OK和SDA模型

      Fig.  1.  Model fitting results

      图  2  高压吸附模型拟合结果

      吸附实验数据来自Zuo et al.(2020). a.修正的Unilan和DL模型;b. OK和SDA模型

      Fig.  2.  Model fitting results

      图  3  Vmax、微孔体积和总孔体积三者的比较

      微孔体积和总孔体积来自Li et al.(2017)

      Fig.  3.  Comparison between the micropore volumes and the maximum adsorbed volumes and total pore volumes of these samples

      图  4  绝对吸附量预测结果

      Fig.  4.  Predicted absolute adsorption isotherms at different temperatures

      图  5  Pearson相关系数矩阵

      Fig.  5.  Pearson correlation matrix of various variables

      图  6  n0与TOC的关系

      Fig.  6.  Relationship between n0 and TOC

      图  7  n0与黏土矿物含量的关系

      Fig.  7.  Relationship between n0 and clay content

      图  8  n0T与黏土矿物含量的关系

      Fig.  8.  Relationship between n0T and clay content

      图  9  Vmaxn0的关系

      Fig.  9.  Relationship between Vmax and n0

      图  10  -△SEave的关系

      Fig.  10.  Relationship between -△S and Eave

      表  1  模型验证所用的高压吸附实验数据

      Table  1.   High-pressure adsorption experimental data used for model validation

      样品编号 实验温度范围(K) 实验压力范围(MPa) 样品产地 数据来源
      X2 313.75~368.75 0.69~52.74 龙马溪组 Chen et al. (2019)
      FC-47 312.95~393.15 0.24~35.00 Lower Cambrian shale Li et al. (2017)
      FC-66
      FC-72
      X3 313.75~368.75 0.30~53.75 龙马溪组 Xiong et al. (2016)
      1 348.75~368.75 0.50~52.20 龙马溪组 Zuo et al. (2020)
      2
      W1 313 0.50~51 龙马溪组 Shen et al. (2021)
      W2
      W3
      L1
      L2
      L3
      下载: 导出CSV

      表  2  修正的Unilan模型参数

      Table  2.   Fitted parameters of the modified Unilan model

      样本 n0 (mol/kg) Vmax (cm3/g) Emax (kJ/mol) Emin (kJ/mol) -△S (J/mol/K)
      X2 0.35 0.013 26.41 9.84 100.13
      FC-47 0.16 0.008 30.74 10.00 94.29
      FC-66 0.28 0.012 32.30 11.95 101.40
      FC-72 0.35 0.015 32.50 12.91 100.36
      X3 0.18 0.008 28.39 7.98 98.49
      1 0.18 0.007 21.51 12.73 92.40
      2 0.31 0.010 35.02 11.14 114.76
      W1 0.11 0.006 23.90 18.16 98.53
      W2 0.20 0.009 25.84 17.61 98.15
      W3 0.20 0.010 20.14 11.13 78.31
      L1 0.20 0.009 28.32 20.00 105.32
      L2 0.10 0.004 10.00 8.20 59.56
      L3 0.15 0.006 10.57 3.08 49.00
      下载: 导出CSV

      表  3  模型误差

      Table  3.   Relative error between model results and experimental data

      样品 平均相对误差(%)
      修正的Unilan OK DL SDA
      X2 4.24 10.31 2.79 8.00
      FC-47 5.40 11.62 3.07 7.71
      FC-66 3.90 10.38 2.44 7.40
      FC-72 3.82 10.11 2.54 7.56
      X3 7.84 10.59 3.93 5.84
      1 3.16 4.72 3.34 4.71
      2 3.54 8.59 2.29 3.68
      W1 2.88 3.29 4.20 2.84
      W2 2.10 3.00 1.85 1.74
      W3 2.38 3.21 2.19 2.09
      L1 2.29 3.07 1.84 1.70
      L2 3.08 3.20 3.40 2.94
      L3 2.17 2.91 2.02 1.91
      平均值 3.60 6.54 2.76 4.47
      下载: 导出CSV

      表  4  OK模型参数

      Table  4.   Fitted parameters of the OK model

      样本 n0 (mol/kg) -εs/k (K) ρmax (mol/m3)
      X2 0.11 755.93 2.64×10-2
      FC-47 0.05 1237.54 2.37×10-2
      FC-66 0.09 1189.77 2.64×10-2
      FC-72 0.12 1209.05 2.64×10-2
      X3 0.05 900.09 2.30×10-2
      1 0.07 679.87 2.64×10-2
      2 0.10 774.66 2.64×10-2
      W1 0.10 774.66 2.64×10-2
      W2 0.09 957.96 2.23×10-2
      W3 0.09 970.36 2.09×10-2
      L1 0.09 972.37 2.17×10-2
      L2 0.05 835.59 2.19×10-2
      L3 0.07 999.20 2.29×10-2
      下载: 导出CSV

      表  5  DL模型参数

      Table  5.   Fitted parameters of the DL model

      样本 n0 (mol/kg) α’ A1 (MPa-1) E1 (kJ/mol) A2 (MPa-1) E2 (kJ/mol) Vmax (cm3/g)
      X2 0.32 0.26 2.55×10-5 19.74 1.63×10-3 15.98 0.013
      FC-47 0.29 0.29 8.54×10-7 26.44 5.45×10-4 21.13 0.016
      FC-66 0.30 0.39 7.01×10-6 23.64 8.38×10-4 20.14 0.014
      FC-72 0.36 0.44 5.36×10-6 25.13 1.01×10-3 19.80 0.016
      X3 0.15 0.12 1.64×10-4 17.03 5.54×10-1 7.43 0.007
      1 0.19 0.23 1.05×10-4 16.68 2.83×10-3 12.47 0.008
      2 0.20 0.09 9.99×10-5 20.02 2.02×10-4 30.06 0.007
      W1 0.13 0.23 3.07×10-4 15.52 2.95×10-3 14.44 0.007
      W2 0.21 0.06 3.99×10-4 16.92 12.95×10-3 25.21 0.010
      W3 0.20 0.09 4.04×10-4 16.90 5.77×10-3 18.12 0.010
      L1 0.20 0.09 4.00×10-4 16.90 5.86×10-3 18.20 0.010
      L2 0.11 0.29 3.63×10-4 15.22 2.63×10-3 13.71 0.005
      L3 0.15 0.12 3.96×10-4 16.88 4.69×10-3 17.05 0.007
      下载: 导出CSV

      表  6  SDA模型参数

      Table  6.   Fitted parameters of the SDA model

      样本 W0 (cm3/g) α (1/K) E (kJ/mol) t
      X2 0.012 5.47×10-4 5.73 1.00
      FC-47 0.010 2.11×10-3 7.78 1.04
      FC-66 0.016 1.78×10-3 7.11 1.00
      FC-72 0.022 1.72×10-3 7.34 1.00
      X3 0.007 1.38×10-3 6.33 1.00
      1 0.005 2.42×10-4 6.94 1.46
      2 0.009 1.49×10-4 7.16 1.18
      W1 0.005 1.72×10-3 8.23 1.96
      W2 0.009 9.63×10-4 9.41 1.99
      W3 0.009 1.27×10-3 9.55 1.99
      L1 0.009 1.09×10-3 9.54 1.99
      L2 0.004 9.87×10-4 8.50 2.00
      L3 0.006 8.59×10-4 9.70 1.99
      下载: 导出CSV
    • Chen, G.H., Lu, S.F., Liu, K.Y., et al., 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790 (in Chinese with English abstract).
      Chen, L., Zuo, L., Jiang, Z. X., et al., 2019. Mechanisms of Shale Gas Adsorption: Evidence from Thermodynamics and Kinetics Study of Methane Adsorption on Shale. Chemical Engineering Journal, 361(C): 559-570. https://doi.org/10.1016/j.cej.2018.11.185
      Do, D., Do, H., 2003. Adsorption of Supercritical Fluids in Non-Porous and Porous Carbons: Analysis of Adsorbed Phase Volume and Density. Carbon, 41(9): 1777-1791. https://doi.org/10.1016/S0008-6223(03)00152-0
      Dubinin, M. M., Astakhov, V. A., 1971. Development of the Concepts of Volume Filling of Micropores in the Adsorption of Gases and Vapors by Microporous Adsorbents. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science, 20(1): 3-7. https://doi.org/10.1007/BF00849307
      Gao, Z. Y., Xiong, S. L., 2021. Methane Adsorption Capacity Reduction Process of Water-Bearing Shale Samples and Its Influencing Factors: One Example of Silurian Longmaxi Formation Shale from the Southern Sichuan Basin in China. Journal of Earth Science, 32(4): 946-959. https://doi.org/10.1007/s12583-020-1120-5
      Gasparik, M., Bertier, P., Gensterblum, Y., et al., 2014. Geological Controls on the Methane Storage Capacity in Organic-Rich Shales. International Journal of Coal Geology, 123: 34-51. https://doi.org/10.1016/j.coal.2013.06.010
      Guo, T.L., 2021. Progress and Research Direction of Deep Shale Gas Exploration and Development. Reservoir Evaluation and Development, 11(1): 1-6 (in Chinese with English abstract).
      He, Z. L., Li, S. J., Nie, H. K., et al., 2018. The Shale Gas "Sweet Window": "The Cracked and Unbroken" State of Shale and Its Depth Range. Marine and Petroleum Geology, 101: 334-342. https://doi.org/10.1016/j.marpetgeo.2018.11.033
      Li, M., Zhou, L., Wu, Q., et al., 2002. Progress in Predicting the Equilibria of Multi-Component Gas/Solid Adsorption. Progress in Chemistry, 14(2): 93-97 (in Chinese with English abstract).
      Li, T. F., Tian, H., Xiao, X. M., et al., 2017. Geochemical Characterization and Methane Adsorption Capacity of Overmature Organic-Rich Lower Cambrian Shales in Northeast Guizhou Region, Southwest China. Marine and Petroleum Geology, (86): 858-873. https://doi.org/10.1016/j.marpetgeo.2017.06.043
      Li, X.F., Pu, Y.C., Sun, C.Y., et al., 2014. Recognition of Absorption/Desorption Theory in Coalbed Methane Reservoir and Shale Gas Reservoir. Acta Petrolei Sinica, 35(6): 1113-1129 (in Chinese with English abstract).
      Liu, Y., Guo, F. Y., Hu, J., et al., 2016. Entropy Prediction for H2 Adsorption in Metal-Organic Frameworks. Physical Chemistry Chemical Physics, 18(34): 23998-24005. https://doi.org/10.1039/c6cp04645b doi: 10.1039/C6CP04645B
      Liu, Z.X., Feng, Z.C., 2012. Theoretical Study on Adsorption Heat of Methane in Coal. Journal of China Coal Society, 37(4): 647-653 (in Chinese with English abstract).
      Ono, S., Kondo, S., 1960. Molecular Theory of Surface Tension in Liquids. Springer, Berlin, 134-280.
      Polanyi, M., 1963. The Potential Theory of Adsorption. Science, 141(3585): 1010-1013. https://doi.org/10.1126/science.141.3585.1010
      Purewal, J., Liu, D. A., Sudik, A., et al., 2012. Improved Hydrogen Storage and Thermal Conductivity in High-Density MOF-5 Composites. The Journal of Physical Chemistry C, 116(38): 20199-20212. https://doi.org/10.1021/jp305524f
      Ren, W. X., Guo, J. C., Zeng, F. H., et al., 2019. Modeling of High-Pressure Methane Adsorption on Wet Shales. Energy & Fuels, 33(8): 7043-7051. https://doi.org/10.1021/acs.energyfuels.9b01024
      Ren, W. X., Li, G. S., Tian, S. C., et al., 2017a. Adsorption and Surface Diffusion of Supercritical Methane in Shale. Industrial & Engineering Chemistry Research, 56(12): 3446-3455. https://doi.org/10.1021/acs.iecr.6b04432
      Ren, W. X., Tian, S. C., Li, G. S., et al., 2017b. Modeling of Mixed-Gas Adsorption on Shale Using HPC-SAFT-MPTA. Fuel, 210: 535-544. https://doi.org/10.1016/j.fuel.2017.09.012
      Rexer, T. F. T., Benham, M. J., Aplin, A. C., et al., 2013. Methane Adsorption on Shale under Simulated Geological Temperature and Pressure Conditions. Energy & Fuels, 27(6): 3099-3109. https://doi.org/10.1021/ef400381v
      Sakurovs, R., Day, S., Weir, S., et al., 2007. Application of a Modified Dubinin-Radushkevich Equation to Adsorption of Gases by Coals under Supercritical Conditions. Energy & Fuels, 21(2): 992-997. https://doi.org/10.1021/ef0600614
      Shen, W. J., Li, X. Z., Ma, T. R., et al., 2021. High- Pressure Methane Adsorption Behavior on Deep Shales: Experiments and Modeling. Physics of Fluids, 33(6): 063103. https://doi.org/10.1063/5.0054486
      Shethna, H. K., Bhatia, S. K., 1994. Interpretation of Adsorption Isotherms at Above-Critical Temperatures Using a Modified Micropore Filling Model. Langmuir, 10(3): 870-876. https://doi.org/10.1021/la00015a043
      Soave, G. S., 1999. An Effective Modification of the Benedict-Webb-Rubin Equation of State. Fluid Phase Equilibria, 164(2): 157-172. https://doi.org/10.1016/S0378-3812(99)00252-6
      Stadie, N. P., Murialdo, M., Ahn, C. C., et al., 2013. Anomalous Isosteric Enthalpy of Adsorption of Methane on Zeolite-Templated Carbon. Journal of the American Chemical Society, 135(3): 990-993. https://doi.org/10.1021/ja311415m
      Tang, X., Ripepi, N., Stadie, N. P., et al., 2016. A Dual-Site Langmuir Equation for Accurate Estimation of High Pressure Deep Shale Gas Resources. Fuel, 185: 10-17. https://doi.org/10.1016/j.fuel.2016.07.088
      Tian, S.C., Wang, T.Y., Li, G.S., et al., 2017. Molecular Simulation of Methane Adsorption Behavior in Different Shale Kerogen Types. Natural Gas Industry, 37(12): 18-25 (in Chinese with English abstract).
      Wang, P.W., Chen, Z.H., Jin, Z.J., et al., 2019. Optimizing Parameter "Total Organic Carbon Content" for Shale Oil and Gas Resource Assessment: Taking West Canada Sedimentary Basin Devonian Duvernay Shale as an Example. Earth Science, 44(2): 504-512 (in Chinese with English abstract).
      Xiong, W., Zuo, L., Luo, L. T., et al., 2016. Methane Adsorption on Shale under High Temperature and High Pressure of Reservoir Condition: Experiments and Supercritical Adsorption Modeling. Adsorption Science & Technology, 34(2/3): 193-211. https://doi.org/10.1177/0263617415623425
      Yang, F., Ning, Z. F., Zhang, R., et al., 2015. Investigations on the Methane Sorption Capacity of Marine Shales from Sichuan Basin, China. International Journal of Coal Geology, 146: 104-117. doi: 10.1016/j.coal.2015.05.009
      Yang, F., Xie, C. J., Xu, S., et al., 2017. Supercritical Methane Sorption on Organic-Rich Shales over a Wide Temperature Range. Energy & Fuels, 31(12): 13427-13438. https://doi.org/10.1021/acs.energyfuels.7b02628
      Ye, Z. H., Chen, D., Pan, Z. J., et al., 2016. An Improved Langmuir Model for Evaluating Methane Adsorption Capacity in Shale under Various Pressures and Temperatures. Journal of Natural Gas Science and Engineering, 31: 658-680. https://doi.org/10.1016/j.jngse.2016.03.070
      Yu, W., Sepehrnoori, K., Patzek, T. W., 2016. Modeling Gas Adsorption in Marcellus Shale with Langmuir and Bet Isotherms. SPE Journal, 21(2): 589-600. https://doi.org/10.2118/170801-PA
      Zhou, S.W., Wang, H.Y., Xue, H.Q., et al., 2017. Discussion on the Supercritical Adsorption Mechanism of Shale Gas Based on Ono-Kondo Lattice Model. Earth Science, 42(8): 1421-1430 (in Chinese with English abstract).
      Zhou, S. W., Xue, H. Q., Ning, Y., et al., 2018. Experimental Study of Supercritical Methane Adsorption in Longmaxi Shale: Insights into the Density of Adsorbed Methane. Fuel, 211: 140-148. https://doi.org/10.1016/j.fuel.2017.09.065
      Zhou, Z., Jiang, Z.X., Li, S.Z., et al., 2021. Biostratigraphic Characteristics of Black Graptolite Shale in Wufeng Formation and Longmaxi Formation in Jianshi Area of West Hubei. Earth Science, 46(2): 432-443 (in Chinese with English abstract).
      Zhu, W. T., 2011. Basic Physical Chemistry. Tsinghua University Press, Beijing, 163 (in Chinese).
      Zou, C. N., Dong, D. Z., Wang Y. M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects (I). Petroleum Exploration and Development, 42(6): 689-701 (in Chinese with English abstract).
      Zou, C.N., Zhao, Q., Cong, L.Z., et al., 2021. Development Progress, Potential and Prospect of Shale Gas in China. Natural Gas Industry, 41(1): 1-14 (in Chinese with English abstract).
      Zuo, L., Jiang, T. X., Wang, H. T., 2020. Calculating the Absolute Adsorption of High-Pressure Methane on Shale by a New Method. Adsorption Science & Technology, 38(1/2): 46-59. https://doi.org/10.1177/0263617420902658
      陈国辉, 卢双舫, 刘可禹, 等, 2020. 页岩气在孔隙表面的赋存状态及其微观作用机理. 地球科学, 45(5): 1782-1790. doi: 10.3799/dqkx.2019.194
      郭彤楼, 2021. 深层页岩气勘探开发进展与攻关方向. 油气藏评价与开发, 11(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101001.htm
      李明, 周理, 吴琴, 等, 2002. 多组分气体吸附平衡理论研究进展. 化学进展, 14(2): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200202002.htm
      李相方, 蒲云超, 孙长宇, 等, 2014. 煤层气与页岩气吸附/解吸的理论再认识. 石油学报, 35(6): 1113-1129. doi: 10.3969/j.issn.1001-8719.2014.06.023
      刘志祥, 冯增朝, 2012. 煤体对瓦斯吸附热的理论研究. 煤炭学报, 37(4): 647-653. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201204023.htm
      田守嶒, 王天宇, 李根生, 等, 2017. 页岩不同类型干酪根内甲烷吸附行为的分子模拟. 天然气工业, 37(12): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201712006.htm
      王鹏威, 谌卓恒, 金之钧, 等, 2019. 页岩油气资源评价参数之"总有机碳含量"的优选: 以西加盆地泥盆系Duvernay页岩为例. 地球科学, 44(2): 504-512. doi: 10.3799/dqkx.2018.191
      周尚文, 王红岩, 薛华庆, 等, 2017. 基于Ono-Kondo格子模型的页岩气超临界吸附机理探讨. 地球科学, 42(8): 1421-1430. doi: 10.3799/dqkx.2017.543
      周志, 姜振学, 李世臻, 等, 2021. 鄂西建始地区五峰-龙马溪组黑色页岩生物地层特征. 地球科学, 46(2): 432-443. doi: 10.3799/dqkx.2020.059
      朱文涛, 2011. 基础物理化学. 北京: 清华大学出版社, 163.
      邹才能, 董大忠, 王玉满, 等, 2015. 中国页岩气特征、挑战及前景(一). 石油勘探与开发, 42(6): 689-701. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506002.htm
      邹才能, 赵群, 丛连铸, 等, 2021. 中国页岩气开发进展、潜力及前景. 天然气工业, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm
    • 加载中
    图(10) / 表(6)
    计量
    • 文章访问数:  1130
    • HTML全文浏览量:  796
    • PDF下载量:  84
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-10-07
    • 刊出日期:  2022-05-25

    目录

      /

      返回文章
      返回