• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    火山活动期断陷湖盆富有机质混积页岩形成条件:以松辽盆地南部梨树断陷沙河子组富有机质页岩为例

    李耀华 徐兴友 张君峰 陈珊 白静 刘卫彬 王乾右

    李耀华, 徐兴友, 张君峰, 陈珊, 白静, 刘卫彬, 王乾右, 2022. 火山活动期断陷湖盆富有机质混积页岩形成条件:以松辽盆地南部梨树断陷沙河子组富有机质页岩为例. 地球科学, 47(5): 1728-1747. doi: 10.3799/dqkx.2022.015
    引用本文: 李耀华, 徐兴友, 张君峰, 陈珊, 白静, 刘卫彬, 王乾右, 2022. 火山活动期断陷湖盆富有机质混积页岩形成条件:以松辽盆地南部梨树断陷沙河子组富有机质页岩为例. 地球科学, 47(5): 1728-1747. doi: 10.3799/dqkx.2022.015
    Li Yaohua, Xu Xingyou, Zhang Junfeng, Chen Shan, Bai Jing, Liu Weibin, Wang Qianyou, 2022. Hybrid Sedimentary Conditions of Organic-Rich Shales in Faulted Lacustrine Basin during Volcanic Eruption Episode: A Case Study of Shahezi Formation (K1sh Fm.), Lishu Faulted Depression, South Songliao Basin. Earth Science, 47(5): 1728-1747. doi: 10.3799/dqkx.2022.015
    Citation: Li Yaohua, Xu Xingyou, Zhang Junfeng, Chen Shan, Bai Jing, Liu Weibin, Wang Qianyou, 2022. Hybrid Sedimentary Conditions of Organic-Rich Shales in Faulted Lacustrine Basin during Volcanic Eruption Episode: A Case Study of Shahezi Formation (K1sh Fm.), Lishu Faulted Depression, South Songliao Basin. Earth Science, 47(5): 1728-1747. doi: 10.3799/dqkx.2022.015

    火山活动期断陷湖盆富有机质混积页岩形成条件:以松辽盆地南部梨树断陷沙河子组富有机质页岩为例

    doi: 10.3799/dqkx.2022.015
    基金项目: 

    中国地质调查局项目“松辽盆地南部页岩油战略调查” DD20190115

    详细信息
      作者简介:

      李耀华(1987-),男,博士研究生,主要从事非常规油气资源评价和地质工程一体化领域. ORCID:0000-0003-4225-6736. E-mail:majing06@126.commajing06@126.com

    • 中图分类号: P624

    Hybrid Sedimentary Conditions of Organic-Rich Shales in Faulted Lacustrine Basin during Volcanic Eruption Episode: A Case Study of Shahezi Formation (K1sh Fm.), Lishu Faulted Depression, South Songliao Basin

    • 摘要: 中国地质调查局实施部署的JLYY-1井在松辽盆地南部沙河子组钻遇51 m的富有机质混积页岩.经过取心观察和室内综合分析发现,这套51 m厚的页岩具有以下特征:第一,混积(来自盆内和盆外的硅质、钙质无机矿物物源以及不同类型的有机物源混合沉积);第二,页岩中夹多套薄层凝灰岩或凝灰质泥/页岩;第三,页岩的纹层和页理极为发育,现场岩心浸水实验观察到大量气泡顺页理面涌出.基于JLYY-1井的元素测井资料,结合地球化学测试、扫描电镜成像、光学显微成像和Roqscan矿物成分成像测试结果,将其归纳为火山活动期断陷湖盆的富有机质混积页岩形成模式,并得出其形成条件如下:(1)多种有机物源的输入提高了页岩中有机质的丰度,也使Ⅰ型、Ⅱ型和Ⅲ型干酪根均有发育;(2)火山活动后期营养元素迁移造成藻类勃发;(3)干热气候条件下封闭咸水环境的碳酸盐岩化作用促进有机质生烃;(4)水体氧化分层形成了该段页岩的4类纹层:硅质、黏土质、钙质和黄铁矿纹层.

       

    • 图  1  梨树断陷区域构造位置和JLYY-1井地理位置

      Fig.  1.  Regional structure location of Lishu fault depression and geographical location of well JLYY-1

      图  2  3 130 m沙河子组页岩m/z-217色谱‒质谱等离子流图

      24-5α(H),14α(H),17α(H)-胆甾烷(20R)、24-甲基-5α(H),14β(H),17β(H)-胆甾烷(20R)、24-乙基-5α(H),14α(H),17α(H)-胆甾烷(20R)在正文分别用C27(R)、C28(R)和C29(R)表示,对应的等离子流积分保存时间分别为56.188、58.746和60.242

      Fig.  2.  The m/z-217 chromatography-mass spectrometry plasma flow diagram of Shahezi Formation shale at 3 130 m

      图  3  3 117.2 m和3 124.8 m沙河子组页岩显微组分

      低等水生藻类来源为主,含量丰富,呈层状与其他矿物混合分布.藻类降解形成的矿物沥青基质已无荧光,部分反光下呈亮白色(微粒体)

      Fig.  3.  Shale macerals of Shahezi Formation at 3 117.2 m and 3 124.8 m (complete information)

      图  4  JLYY1井沙河子组页岩有机质电镜照片

      a,b.固定形态腐殖型有机质;c,d.无定形腐泥型多孔有机质

      Fig.  4.  Electron microscope photos of shale organic matter in Shahezi Formation of well JLYY-1

      图  5  沙河子组混积页岩纹层裂缝有机质填充显微图像

      Fig.  5.  Microscopic images of organic matter filling in laminar fractures of mixed shale of Shahezi Formation

      图  6  成岩作用改造的条带状硅藻类物质显微图像

      Fig.  6.  Microscopic images of banded diatom material transformed by diagenesis

      图  7  JLYY-1井地化录井图:热解S1值、Tmax值、解吸气量(TGC)、生烃组分差异指数(HSCI)计算结果

      Fig.  7.  Geochemical logging of well JLYY-1: calculation results of pyrolysis S1 value, Tmax value, analytical gas volume and hydrocarbon generation index (HSCI)

      图  8  松辽盆地JLYY1井沙河子组泥页岩段柱状图

      左侧元素值为JLYY-1井元素录井数据,有机碳为特殊测井解释结果,S1值为有机地球化学录井数据,解吸气量也是JLYY-1井现场解吸气测试结果

      Fig.  8.  Columnar diagram of Shahezi Formation shale section of well JLYY1 in Songliao basin

      图  9  火山灰沉积成岩后期的营养元素迁移模式

      Fig.  9.  Nutrient element migration model in the later diagenetic stage of volcanic ash deposition

      图  10  JLYY1井沙河子组凝灰岩夹层锆石颗粒

      该20个锆石颗粒边缘条带明显,属于再生重结晶锆石.探针打点为颗粒上红圈处,均为锆石重结晶条带处

      Fig.  10.  Hand specimen and optical micrograph of 3 143 m tuff in Shahezi Formation of well JLYY-1

      图  11  凝灰岩夹层锆石颗粒及其临近页岩层的280U和232Th元素含量

      Fig.  11.  280U and 232Th element contents of zircon particles in tuff interlayer and its adjacent shale of well JLYY-1

      图  12  JLYY-1井混积页岩XRD全岩矿物组成

      全岩矿物组成测试数据是从JLYY-1井3 076~3 164 m均匀采样,采样间隔2~4 m

      Fig.  12.  XRD whole rock mineral compositions of mixed shale in well JLYY-1

      图  13  JLYY-1井混积页岩碳酸岩矿物的赋存形态

      Fig.  13.  Occurrence form of carbonatite minerals in mixed shale of well JLYY-1

      图  14  碳酸根诱导有机质去碳化+羟基化反应原理(Zhang et al., 2015

      Fig.  14.  Principle of decarbonization + hydroxylation of organic matter induced by carbonate

      图  15  沙河子组混积页岩碳酸盐岩矿物‒粘土矿物‒有机质的Ca和C元素交换

      Fig.  15.  Ca and C element exchange of carbonate mineral⁃clay mineral⁃organic matter in mixed shale of Shahezi Formation

      图  16  JLYY1井沙河子组泥页岩层古环境元素分析柱状图

      左侧元素数据来源于元素录井数据,中间矿物组成来源于元素测井解释结果,左侧S1值来源于有机地化录井数据,最左侧TGC代表现场解吸气数据

      Fig.  16.  Histogram of paleoenvironmental element analysis of Shahezi Formation shale in well JLYY-1

      图  17  JLYY1井沙河子组泥页岩现场浸水实验和荧光显示照片

      Fig.  17.  Water immersion test and fluorescent display photos of shale in Shahezi Formation of well JLYY-1

      图  18  JLYY1井沙河子组混积页岩纹层Roqscan扫描图像

      BSE为扫描电镜背散射图像,Minmap是Roqscan全视域矿物图像,识别图像以硅质和黏土质纹层交互出现为主,且存在黄铁矿纹层

      Fig.  18.  Roqscan scanning images of mixed shale lamina of Shahezi Formation in well JLYY-1

      图  19  火山活动期富有机质混积页岩沉积模式

      Fig.  19.  Sedimentary model of organic⁃rich mixed shale during volcanic activity

      表  1  JLYY⁃1井生产天然气的碳同位素测试结果

      Table  1.   Carbon isotope test results of natural gas produced by well JLYY-1

      样品编号 δ13CPDB(‰)
      甲烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 二氧化碳
      1 ‒37.1 ‒28.2 ‒25.4 ‒25.9 ‒24.2 ‒25.2 ‒24.1 ‒28.8
      2 ‒37.0 ‒28.2 ‒25.4 ‒25.8 ‒23.9 ‒25.5 ‒24.0 ‒28.9
      3 ‒37.0 ‒28.3 ‒25.4 ‒25.7 ‒24.0 ‒25.9 ‒24.1 ‒29.0
      下载: 导出CSV
    • Cao, F.L., Wei, H.Y., 2015. Two Causes for the Low Abundance of Framboidal Pyrite in the Permian in Enshi Area in Hubei Province. Journal of East China Institute of Technology (Natural Science), 38(2): 158-166 (in Chinese with English abstract).
      Chen, J. P., Wang, X. L., Chen, J. F., et al., 2021. New Equation to Decipher the Relationship between Carbon Isotopic Composition of Methane and Maturity of Gas Source Rocks. Science in China (Series D: Earth Sciences), 51(4): 560-581 (in Chinese).
      Du, X.B., Liu, X.F., Lu, Y.C., et al., 2020. Classification, Characteristics and Development Models of Continental Fine-Grained Mixed Sedimentation: A Case Study of Dongying Sag. Acta Petrolei Sinica, 41(11): 1324-1333 (in Chinese with English abstract).
      El Diasty, K. E., Peters, J. M., Moldowan, G. I., et al., 2020. Organic Geochemistry of Condensates and Natural Gases in the Northwest Nile Delta Offshore Egypt. Journal of Petroleum Science and Engineering, 187: 106819. doi: 10.1016/j.petrol.2019.106819
      Emmings, J. F., Davies, S. J., Vane, C. H., et al., 2020. From Marine Bands to Hybrid Flows: Sedimentology of a Mississippian Black Shale. Sedimentology, 67(1): 261-304. https://doi.org/10.1111/sed.12642
      Gao, F.L., Song, Y., Liang, Z.K., et al., 2019. Development Characteristics of Organic Pore in the Continental Shale and Its Genetic Mechanism: A Case Study of Shahezi Formation Shale in the Changling Fault Depression of Songliao Basin. Acta Petrolei Sinica, 40(9): 1030-1044 (in Chinese with English abstract).
      Gao, F.L., Wang, C.X., Song, Y., et al., 2021. Pore Evolution of Organic Maceral in Shahezi Formation Shale of Changling Fault Depression, Songliao Basin. Geology in China, 48(3): 948-958 (in Chinese with English abstract).
      Gao, G., Yang, S.R., Qu, T., 2018. Research Status of Mixing Sediments and Their Relationship with Petroleum Enrichment. Geological Science and Technology Information, 37(6): 82-88 (in Chinese with English abstract).
      Gao, Y.F., Liu, W.Z., Ji, X.Y., et al., 2007. Diagenesis Types and Features of Volcanic Rocks and Its Impact on Porosity and Permeability in Yingcheng Formation, Songliao Basin. Journal of Jilin University (Earth Science Edition), 37(6): 1251-1258 (in Chinese with English abstract).
      Guo, Y.R., Liu, J.B., Yang, H., et al., 2012. Hydrocarbon Accumulation Mechanism of Low Permeable Tight Lithologic Oil Reservoirs in the Yanchang Formation, Ordos Basin, China. Petroleum Exploration and Development, 39(4): 417-425 (in Chinese with English abstract).
      Lee, C. T. A., Jiang, H. H., Ronay, E., et al., 2018. Volcanic Ash as a Driver of Enhanced Organic Carbon Burial in the Cretaceous. Scientific Reports, 8(1): 4197. https://doi.org/10.1038/s41598-018-22576-3
      Li, H., Li, F., Gong, Q.L., et al., 2021. Morphological Characteristics and Provenance Significance of Heavy Minerals in the Mixed Siliciclastic-Carbonate Sedimentation: A Case Study from the Xiannüdong Formation, Cambrian (Series 2), Northern Sichuan. Acta Sedimentologica Sinica, 39(3): 525-539 (in Chinese with English abstract).
      Liang, X.P., Jin, Z.J., Liu, Q.Y., et al., 2021. Impact of Volcanic Ash on the Formation of Organic-Rich Shale: A Case Study on the Mesozoic Bazhenov Formation, West Siberian Basin. Oil & Gas Geology, 42(1): 201-211 (in Chinese with English abstract).
      Liu, Z.G., Zhang, Y.S., Song, G.Y., et al., 2021. Mixed Carbonate Rocks Lithofacies Features and Reservoirs Controlling Mechanisms in the Saline Lacustrine Basin in Yingxi Area, Qaidam Basin, NW China. Petroleum Exploration and Development, 48(1): 68-80 (in Chinese with English abstract).
      Long, S.X., Wu, S.X., Li, H.T., et al., 2011. Hybrid Sedimentation in Late Permian-Early Triassic in Western Sichuan Basin, China. Journal of Earth Science, 22(3): 340-350. doi: 10.1007/s12583-011-0186-5
      Ma, K., Hou, J.G., Liu, Y.M., et al., 2017. The Sedimentary Model of Saline Lacustrine Mixed Sedimentation in Permian Lucaogou Formation, Jimsar Sag. Acta Petrolei Sinica, 38(6): 636-648 (in Chinese with English abstract).
      Mount, J., 1985. Mixed Siliciclastic and Carbonate Sediments: A Proposed First-Order Textural and Compositional Classification. Sedimentology, 32(3): 435-442. doi: 10.1111/j.1365-3091.1985.tb00522.x
      Pan, W.J., Wang, Q.B., Du, X.F., et al., 2020. Paleobiological Characteristics and Its Reservoir Significance of Bioclastic Migmatite in First Member of Shahejie Formation in Bohai Sea. Earth Science, 45(10): 3827-3840 (in Chinese with English abstract).
      Pettijohn, F. J., 1975. Sedimentary Rocks. Harper & Row, New York.
      Plet, C., Grice, K., Scarlett, A.G., et al., 2020. Aromatic Hydrocarbons Provide New Insight into Carbonate Concretion Formation and the Impact of Eogenesis on Organic Matter. Organic Geochemistry, 143: 103961. doi: 10.1016/j.orggeochem.2019.103961
      Qiu, X.W., Liu, C.Y., Mao, G.Z., et al., 2011. Petrological-Geochemical Characteristics of Volcanic Ash Sediments in Yanchang Formation in Ordos Basin. Earth Science, 36(1): 139-150 (in Chinese with English abstract).
      Qu, C. S., Qiu, L.W., Yang, Y. Q., et al., 2017. Carbon and Oxygen Isotope Compositions of Carbonatic Rock from Permian Lucaogou Formation in the Jimsar Sag, NW China and Their Paleolimnological Significance. Acta Geologica Sinica, 91(3): 605-616. (in Chinese with English abstract).
      Raji, M., Gröcke, D.R., Chris Greenwell, H., et al., 2015. The Effect of Interbedding on Shale Reservoir Properties. Marine and Petroleum Geology, 67: 154-169. doi: 10.1016/j.marpetgeo.2015.04.015
      Santos, C. X. C., Bonini, M. G., Augusto, O., 2000. Role of the Carbonate Radical Anion in Tyrosine Nitration and Hydroxylation by Peroxynitrite. Archives of Biochemistry and Biophysics, 377(1): 146-152. https://doi.org/10.1006/abbi.2000.1751
      Schieber, J., 2016. Mud Re-Distribution in Epicontinental Basins-Exploring Likely Processes. Marine and Petroleum Geology, 71: 119-133. doi: 10.1016/j.marpetgeo.2015.12.014
      Sha, Q. A., 2001. Discussion on Mixing Deposit and Hunji Rock. Journal of Palaeogeography, 3(3): 63-66 (in Chinese with English abstract).
      Shao, M.L., Li, J.Q., Cao, Q., 2019. Recognition, Evaluation and Significance of Source Rocks in Taodi Well 1, Taonan Fault Depression, Southern Songliao Basin. In: Natural Gas Professional Committee of China Petroleum Society, Proceedings of the 31st National Natural Gas Academic Conference (2019) (01 Geological Exploration), 6 (in Chinese).
      Strąpoć, D., Jacquet, B., Torres, O., et al., 2020. Deep Biogenic Methane and Drilling-Associated Gas Artifacts: Influence on Gas-Based Characterization of Petroleum Fluids. AAPG Bulletin, 104: 887-912. doi: 10.1306/08301918011
      Tandel, R. S., Dash, P., Bhat, A., et al., 2021. Morphological and Molecular Characterization of Saprolegnia spp. from Himalayan Snow Trout, Schizothorax Richardsonii: A Case Study Report. Aquaculture, 531: 735824.
      Walker, K. R., Shanmugam, G., Ruppel, S. C., 1983. A Model for Carbonate to Terrigenous Clastic Sequences. GSA Bulletin, 94(6): 700-712. https://doi.org/10.1130/0016-7606(1983)94700:AMFCTT>2.0.CO;2 doi: 10.1130/0016-7606(1983)94700:AMFCTT>2.0.CO;2
      Wang, Y. M., Wang, H. Y., Shen, J. J., et al., 2020. A New Discovery and Geological Significance of Thick-Layered Bentonites in the Upper Member of Lower Silurian Longmaxi Formation in the Northern Sichuan- Western Hubei Area. Acta Petrolei Sinica, 41(11): 1309-1323 (in Chinese with English abstract).
      Williams, H., Turner, F., Gilbert, C., et al., 1982. Petrography: An Introduction to the Study of Rocks in Thin Section. W.H. Freeman and Co., New York.
      Yang, S., Hu, W., Wang, X., et al., 2019. Duration, Evolution, and Implications of Volcanic Activity across the Ordovician-Silurian Transition in the Lower Yangtze Region, South China. Earth and Planetary Science Letters, 518: 13-25. doi: 10.1016/j.epsl.2019.04.020
      Yuan, X. D, Jiang, Z.X., Zhang, Y.F., 2020. Characteristics of the Cretaceous Continental Shale Oil Reservoirs in Luanping Basin. Acta Petrolei Sinica, 41(10): 1197-1208 (in Chinese with English abstract).
      Zhang, G. S., He, X. X., Nadagouda, M. N., et al., 2015. The Effect of Basic pH and Carbonate Ion on the Mechanism of Photocatalytic Destruction of Cylindrospermopsin. Water Research, 73: 353-361. https://doi.org/10.1016/j.watres.2015.01.011
      Zhang, H., Peng, P.A., Zhang, W.Z., et al., 2014. Zircon U-Pb Ages and Hf Isotope Characterization and Their Geological Significance of Chang 7 Tuff of Yanchang Formation in Ordos Basin. Acta Petrologica Sinica, 30(2): 565-575 (in Chinese with English abstract).
      Zhang, J.F., Xu, X.Y., Bai, J., et al., 2020. Enrichment and Exploration of Deep Lacustrine Shale Oil in the First Member of Cretaceous Qingshankou Formation, Southern Songliao Basin, NE China. Petroleum Exploration and Development, 47(4): 637-652 (in Chinese with English abstract).
      Zhang, K., Song, Y., Jiang, S., et al., 2019. Mechanism Analysis of Organic Matter Enrichment in Different Sedimentary Backgrounds: A Case Study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze Region. Marine and Petroleum Geology, 99: 488-497. doi: 10.1016/j.marpetgeo.2018.10.044
      Zhang, L. M., Wang, C. S., Wignall, P. B., et al., 2018. Deccan Volcanism Caused Coupled pCO(2) and Terrestrial Temperature Rises, and Pre-Impact Extinctions in Northern China. Geology, 46(3): 271-274. doi: 10.1130/G39992.1
      Zhang, W. Z., Yang, H., Xie, L.Q., et al., 2010. Lake- Bottom Hydrothermal Activities and Their Influences on the High-Quality Source Rock Development: A Case from Chang 7 Source Rocks in Ordos Basin. Petroleum Exploration and Development, 37(4): 424-429 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60043-2
      Zou, C. N., Zhu, R. K., Chen, Z. Q., et al., 2019. Organic-Matter-Rich Shales of China. Earth-Science Reviews, 189: 51-78. https://doi.org/10.1016/j.earscirev.2018.12.002
      曹丰龙, 韦恒叶, 2015. 湖北省恩施地区二叠系低丰度草莓状黄铁矿的两种成因. 东华理工大学学报(自然科学版), 38(2): 158-166. doi: 10.3969/j.issn.1674-3504.2015.02.004
      陈建平, 王绪龙, 陈践发, 等, 2021. 甲烷碳同位素判识天然气及其源岩成熟度新公式. 中国科学(D辑: 地球科学), 51(4): 560-581. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202104005.htm
      杜学斌, 刘晓峰, 陆永潮, 等, 2020. 陆相细粒混合沉积分类、特征及发育模式: 以东营凹陷为例. 石油学报, 41(11): 1324-1333. doi: 10.7623/syxb202011003
      高凤琳, 宋岩, 梁志凯, 等, 2019. 陆相页岩有机质孔隙发育特征及成因: 以松辽盆地长岭断陷沙河子组页岩为例. 石油学报, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm
      高凤琳, 王成锡, 宋岩, 等, 2021. 松辽盆地长岭断陷沙河子组页岩有机显微组分孔隙演化规律研究. 中国地质, 48(3): 948-958. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103022.htm
      高岗, 杨尚儒, 屈童, 2018. 混合沉积研究现状及其与油气富集的关系. 地质科技情报, 37(6): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806010.htm
      高有峰, 刘万洙, 纪学雁, 等, 2007. 松辽盆地营城组火山岩成岩作用类型、特征及其对储层物性的影响. 吉林大学学报(地球科学版), 37(6): 1251-1258. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200706024.htm
      郭彦如, 刘俊榜, 杨华, 等, 2012. 鄂尔多斯盆地延长组低渗透致密岩性油藏成藏机理. 石油勘探与开发, 39(4): 417-425. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201204005.htm
      李红, 李飞, 龚峤林, 等, 2021. 混积岩中重矿物形貌学特征及物源意义: 以川北寒武系第二统仙女洞组为例. 沉积学报, 39(3): 525-539. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202103003.htm
      梁新平, 金之钧, 刘全有, 等, 2021. 火山灰对富有机质页岩形成的影响: 以西西伯利亚盆地中生界巴热诺夫组为例. 石油与天然气地质, 42(1): 201-211. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101018.htm
      刘占国, 张永庶, 宋光永, 等, 2021. 柴达木盆地英西地区咸化湖盆混积碳酸盐岩岩相特征与控储机制. 石油勘探与开发, 48(1): 68-80. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101008.htm
      马克, 侯加根, 刘钰铭, 等, 2017. 吉木萨尔凹陷二叠系芦草沟组咸化湖混合沉积模式. 石油学报, 38(6): 636-648. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201706003.htm
      潘文静, 王清斌, 杜晓峰, 等, 2020. 渤海沙一段生物碎屑混积岩古生物特征及储层意义. 地球科学, 45(10): 3827-3840. doi: 10.3799/dqkx.2020.109
      邱欣卫, 刘池洋, 毛光周, 等, 2011. 鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征. 地球科学, 36(1): 139-150. doi: 10.3799/dqkx.2011.015
      曲长胜, 邱隆伟, 杨勇强, 等, 2017. 吉木萨尔凹陷芦草沟组碳酸盐岩碳氧同位素特征及其古湖泊学意义. 地质学报, 91(3): 605-616. doi: 10.3969/j.issn.0001-5717.2017.03.008
      沙庆安, 2001. 混合沉积和混积岩的讨论. 古地理学报, 3(3): 63-66. doi: 10.3969/j.issn.1671-1505.2001.03.008
      邵明礼, 李晶秋, 曹群, 2019. 松辽盆地南部洮南断陷洮地1井烃源岩的认识和评价及其意义. 见: 中国石油学会天然气专业委员会, 第31届全国天然气学术年会(2019)论文集(01地质勘探), 6.
      王玉满, 王红岩, 沈均均, 2020. 川北‒鄂西地区下志留统龙马溪组上段厚层斑脱岩的新发现及地质意义. 石油学报, 41(11): 1309-1323. doi: 10.7623/syxb202011002
      袁晓冬, 姜在兴, 张元福, 等, 2020. 滦平盆地白垩系陆相页岩油储层特征. 石油学报, 41(10): 1197-1208. doi: 10.7623/syxb202010004
      张辉, 彭平安, 张文正, 2014. 鄂尔多斯盆地延长组长7段凝灰岩锆石U-Pb年龄、Hf同位素组成特征及其地质意义. 岩石学报, 30(2): 565-575. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201402018.htm
      张君峰, 徐兴友, 白静, 等, 2020. 松辽盆地南部白垩系青一段深湖相页岩油富集模式及勘探实践. 石油勘探与开发, 47(4): 637-652. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004002.htm
      张文正, 杨华, 解丽琴, 等, 2010. 湖底热水活动及其对优质烃源岩发育的影响: 以鄂尔多斯盆地长7烃源岩为例. 石油勘探与开发, 37(4): 424-429. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201004006.htm
    • 加载中
    图(19) / 表(1)
    计量
    • 文章访问数:  868
    • HTML全文浏览量:  838
    • PDF下载量:  92
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-05
    • 刊出日期:  2022-05-25

    目录

      /

      返回文章
      返回