• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    苏锡常地下空间开发对地下水流场的影响

    宋昀 许洁 许书刚 姜雪 龚绪龙 吴月权 孙自永

    宋昀, 许洁, 许书刚, 姜雪, 龚绪龙, 吴月权, 孙自永, 2025. 苏锡常地下空间开发对地下水流场的影响. 地球科学, 50(11): 4540-4550. doi: 10.3799/dqkx.2022.016
    引用本文: 宋昀, 许洁, 许书刚, 姜雪, 龚绪龙, 吴月权, 孙自永, 2025. 苏锡常地下空间开发对地下水流场的影响. 地球科学, 50(11): 4540-4550. doi: 10.3799/dqkx.2022.016
    Song Yun, Xu Jie, Xu Shugang, Jiang Xue, Gong Xulong, Wu Yuequan, Sun Ziyong, 2025. Influence of Underground Space Development on Groundwater Flow Field in Su-Xi-Chang Area. Earth Science, 50(11): 4540-4550. doi: 10.3799/dqkx.2022.016
    Citation: Song Yun, Xu Jie, Xu Shugang, Jiang Xue, Gong Xulong, Wu Yuequan, Sun Ziyong, 2025. Influence of Underground Space Development on Groundwater Flow Field in Su-Xi-Chang Area. Earth Science, 50(11): 4540-4550. doi: 10.3799/dqkx.2022.016

    苏锡常地下空间开发对地下水流场的影响

    doi: 10.3799/dqkx.2022.016
    基金项目: 

    苏南现代化建设示范区综合地质调查项目 苏财资环[2020]20号

    苏南现代化建设示范区综合地质调查项目 苏财资环〔2020〕53号

    详细信息
      作者简介:

      宋昀(1997-),男,硕士研究生,主要从事地下水数值模拟、流域水文模型等方面的研究.ORCID:0000-0003-1088-0980. E-mail:sy478874805@163.com

      通讯作者:

      姜雪, ORCID: 0000-0001-7564-6533. E-mail: jiangxue@cug.edu.cn

    • 中图分类号: P641

    Influence of Underground Space Development on Groundwater Flow Field in Su-Xi-Chang Area

    • 摘要: 定量研究城市地下空间开发对地下水环境的影响,对于城市地下空间合理开发及精准管理具有重要的理论和实际意义.深入探讨地下空间开发程度高且典型的苏锡常地区城市地下空间开发对地下水流场的影响.在构建苏锡常地区水文地质概念模型的基础上,建立地下水流数值模型,基于校正后的地下水流数值模型,预测地铁运行对地下水流场的影响.由于地铁对地下径流的阻碍作用,迎水面地下水位出现0~0.4 m的壅高,背水面地下水位出现0~0.8 m的下降,并引起17.56 km范围内的水力梯度增大.地铁投入运行之后,地铁附近地下水位变幅前5年较大,后5年较小;地下水径流方向在局部发生变化,而区域流向没有发生显著改变.

       

    • 图  1  研究区范围及水文地质条件示意

      a.研究区范围及潜水、Ⅰ承压水富水性分区示意;b.太湖‒长江水文地质剖面(改编于Bu et al.,2020

      Fig.  1.  Schematic diagrams of study area and hydrogeological conditions

      图  2  研究区承压观测井位置及边界条件示意

      Fig.  2.  Schematic diagram of position and boundary conditions of pressure observation wells in the study area

      图  3  承压观测孔水位对比

      a. Ⅰ承压5102、Ⅲ承压3085观测孔水位对比图;b. Ⅱ承压3077、3162、3247、4038、Ⅲ承压3163观测孔水位对比图;c.承压井观测孔模拟水位与观测水位散点图

      Fig.  3.  Comparison diagrams of water level of confined observation hole

      图  4  承压水含水层参数和越流系数分区

      a.Ⅰ承压含水层参数分区;b. Ⅱ承压含水层参数分区;c. Ⅲ承压含水层参数分区;d.Ⅰ-Ⅱ承压含水层越流系数分区;e.Ⅱ-Ⅲ承压水含水层参数和越流系数分区

      Fig.  4.  Zonal diagrams of parameters and overflow coefficient of confined water aquifer

      图  5  苏锡常地铁投入前后Ⅰ承压流场示意

      a.2010年地铁未投入预测Ⅰ承压流场;b.2010年地铁投入初期预测Ⅰ承压流场;c.2015年地铁未投入预测Ⅰ承压流场;d.2015年地铁投入预测Ⅰ承压流场;e.2020年地铁未投入预测Ⅰ承压流场;f.2020年地铁投入预测Ⅰ承压流场

      Fig.  5.  Ⅰ Schematic diagrams of confined flow field before and after Su-Xi-Chang metro

      表  1  Ⅰ承压含水层水文地质参数

      Table  1.   Hydrogeological parameters of confined aquifer Ⅰ

      分区代号 1 2 3 4 5 6 7 8 9
      含水层渗透系数K(m/d) 40 40 37.5 30 25 22.5 17.5 15 10
      贮水系数μ* 0.006 0 0.005 5 0.007 5 0.006 0 0.006 0 0.009 5 0.008 5 0.006 5 0.004 5
      下载: 导出CSV

      表  2  Ⅱ承压含水层水文地质参数

      Table  2.   Hydrogeological parameters of confined aquifer Ⅱ

      分区代号 渗透系数K(m/d) 贮水系数μ* 分区代号 渗透系数K(m/d) 贮水系数μ*
      1 50 0.008 5 14 10 0.002 0
      2 40 0.004 5 15 6.67 0.004 0
      3 33.33 0.005 5 16 5 0.005 5
      4 26.67 0.008 5 17 5 0.003 5
      5 26.67 0.004 5 18 4.17 0.004 5
      6 23.33 0.007 5 19 2.67 0.001 3
      7 21.67 0.006 5 20 2.67 0.003 5
      8 20 0.007 5 21 1.67 0.004 5
      9 20 0.006 0 22 1 0.001 2
      10 16.67 0.006 5 23 1 0.000 4
      11 13.33 0.008 0 24 1 0.000 6
      12 13.33 0.003 5 25 0.67 0.000 35
      13 10 0.003 5
      下载: 导出CSV

      表  3  Ⅲ承压含水层水文地质参数

      Table  3.   Hydrogeological parameters of confined aquifer Ⅲ

      分区代号 1 2 3 4 5 6 7 8 9 10 11 12
      渗透系数K(m/d) 125 125 60 50 5 40 25 25 17.5 14 7.5 5
      贮水系数μ* 0.009 0.005 0.004 0.008 0.007 5 0.005 0.007 0.005 5 0.003 0.005 5 0.003 0.001
      下载: 导出CSV

      表  4  Ⅰ-Ⅱ承压含水层和Ⅱ-Ⅲ承压含水层间弱透水层越流系数分区

      Table  4.   Partition of overflow coefficients of Ⅰ-Ⅱ and Ⅱ-Ⅲ confined aquifers

      分区代号 1 2 3 4 5 6 7 8
      Ⅰ-Ⅱ承压含水层间越流系数(1/d) Ⅰ、Ⅱ承压含水层连通区 0.0005 8 0.000 5 0.000 01 0.000 004 0.000 001 0.000 000 5 0.000 000 3
      Ⅱ-Ⅲ承压含水层间越流系数(1/d) Ⅱ、Ⅲ承压含水层连通区 0.000 1 0.000 01 0.000 008 0.000 005 0.000 003 0.000 001 0.000 001
      下载: 导出CSV

      表  5  模型中考虑的地铁线路情况表

      Table  5.   Subway lines considered in the model

      地铁线路 修建年份
      苏州二号线 2009年
      苏州三号线 2014年
      苏州四号线 2012年
      苏州五号线 2016年
      无锡一号线 2009年
      无锡二号线 2011年
      无锡三号线 2016年
      无锡四号线 2018年
      常州一号线 2014年
      常州二号线 2017年
      下载: 导出CSV
    • Bu, J. W., Sun, Z. Y., Ma, R., et al., 2020. Shallow Groundwater Quality and Its Controlling Factors in the Su-Xi-Chang Region, Eastern China. International Journal of Environmental Research and Public Health, 17(4): 1267. https://doi.org/10.3390/ijerph17041267
      Chae, G. T., Yun, S. T., Choi, B. Y., et al., 2008. Hydrochemistry of Urban Groundwater, Seoul, Korea: The Impact of Subway Tunnels on Groundwater Quality. Journal of Contaminant Hydrology, 101(1/2/3/4): 42-52. https://doi.org/10.1016/j.jconhyd.2008.07.008
      Chen, G. D., 2004. The Environment Geological Problems of Urbanization in Southern Jiangsu. Volcanology & Mineral Resources, 25(2): 111-115 (in Chinese with English abstract).
      Chen, Y. X., Huang, S. S., 2020. Three-Dimensional Flow Numerical Simulation of a Station on Chengdu Metro Line 7 Based on FEFLOW. Ground Water, 42(6): 8-10 (in Chinese with English abstract).
      Colombo, L., Gattinoni, P., Scesi, L., 2017. Influence of Underground Structures and Infrastructures on the Groundwater Level in the Urban Area of Milan, Italy. International Journal of Sustainable Development and Planning, 12(1): 176-184. https://doi.org/10.2495/sdp-v12-n1-176-184
      De Caro, M., Crosta, G. B., Previati, A., 2020. Modelling the Interference of Underground Structures with Groundwater Flow and Remedial Solutions in Milan. Engineering Geology, 272: 105652. https://doi.org/10.1016/j.enggeo.2020.105652
      Gao, Y., Liang, C., Che, Z. G., 2020. The Influence of Typical Subway Project in Nanjing on Underground Flow Dynamics. Science Technology and Engineering, 20(28): 11711-11717 (in Chinese with English abstract).
      General Office of Jiangsu Provincial People's Government, 2020. Opinions of the People's Government of Jiangsu Province on Strengthening the Development and Exploitation of Urban Underground Space. Gazette of the People's Government of Jiangsu Province, (13): 21-25 (in Chinese with English abstract).
      General Office of Jiangsu Provincial People's Government, 2021. The Circular of Jiangsu Provincial People's Government on Printing and Distributing the 14th Five Year Plan for National Economic and Social Development of Jiangsu Province and the Outline of Long Term Goals for the Year 2035. Gazette of the People's Government of Jiangsu Province, (5): 5-14 (in Chinese with English abstract).
      Guo, H. D., Wei, L. S., Zheng, W., et al., 2020. Impact from Subway Project on Groundwater Environment in Lanzhou Fault Basin. Water Resources and Hydropower Engineering, 51(8): 119-128 (in Chinese with English abstract).
      Lan, Y. Y., 2017. Analysis of the Influence of Nanchang Metro Line 4 on Groundwater. IOP Conference Series: Earth and Environmental Science, 61: 012112. https://doi.org/10.1088/1755-1315/61/1/012112
      Liang, X. J., Lin, X. Y., Su, X. S., et al., 2005. GMS and Groundwater Flow Simulation in Suzhou-Wuxi-Changzhou Area. Yangtze River, 36(11): 26-28, 36 (in Chinese with English abstract).
      Santos, O. J. Jr, Celestino, T. B., 2008. Artificial Neural Networks Analysis of São Paulo Subway Tunnel Settlement Data. Tunnelling and Underground Space Technology, 23(5): 481-491. https://doi.org/10.1016/j.tust.2007.07.002
      Shin, E., Kim, H. S., Ha, K., et al., 2015. Regional Groundwater Flow Characteristics Due to the Subway System in Seoul, Korea. Journal of Soil and Groundwater Environment, 20(3): 41-50. https://doi.org/10.7857/jsge.2015.20.3.041
      Tan, F., Wang. J, Jiao, Y. Y., et al., 2021. Research Status and Trend of Urban Underground Space Suitability Evaluation. Earth Science, 46(5): 1896-1908 (in Chinese with English abstract).
      von der Tann, L., Ritter, S., Hale, S., et al., 2021. From Urban Underground Space (UUS) to Sustainable Underground Urbanism (SUU): Shifting the Focus in Urban Underground Scholarship. Land Use Policy, 109: 105650. https://doi.org/10.1016/j.landusepol.2021.105650
      Wang, J. H., Han, X., Zhou, H. L., 2013. Effect of Urban Metro Operation on Groundwater Environment. Journal of Engineering Geology, 21(3): 408-415 (in Chinese with English abstract).
      Wang, X. M., Zhu, G. R., Yu, Q., et al., 2003. Numerical Simulation of Groundwater Flow of Main Aquifer in Suzhou-Wuxi-Changzhou Area. Hydrogeology and Engineering Geology, 30(1): 26-29 (in Chinese with English abstract).
      Wang, X. R., Jiang, H. J., Zhu, K., et al., 2019. Research on Ground Settlement Laws of Urban Subway Tunnel Construction Process Based on Earth Pressure Shield. Earth Science, 44(12): 4293-4298 (in Chinese with English abstract).
      Wang, Y. B., 2020. Research on Anti-Floating Water Level Base on Regional Numerical Simulation: Take Phase Ⅱ of Shijiazhuang Metro Line 1 as an Example. Railway Investigation and Surveying, 46(3): 28-36 (in Chinese with English abstract).
      Xiong, Z. T., Zhang, Y., Wen, M. X., et al., 2014. Analysis of Influence of Engineering Construction of Wuhan Metro Line 3 and Line 4 on Groundwater Flow Field. Resources Environment & Engineering, 28(3): 308-312 (in Chinese with English abstract).
      Xu, R. Y., Wei, J. L., Xiao, Q. F., 2020. Analysis on the Influence of Groundwater in the First Phase of Chengdu Metro Line 8. Henan Science and Technology, (7): 122-125 (in Chinese with English abstract).
      Zhang, G. Q., 2021. Scientifically Exploiting Underground Space to Create a Safe and Happy City—Interview with Peng Suping, Academician of China Academy of Engineering and Expert in Engineering Geology and Geophysical Exploration. China Emergency Management, (4): 30-33 (in Chinese with English abstract).
      Zhang, H., Wang, W. K., Yang, X. T., et al., 2008. Influence of Urban Subway Construction on the Groundwater Environment: A Case Study on Line Ⅱ of Xi'an Subway. Geotechnical Investigation & Surveying, 36(5): 42-44 (in Chinese with English abstract).
      Zhang, M., 2008. Study on Optimal Pumping of Groundwater Based on GMS (Dissertation). Nanjing Normal University, Nanjing (in Chinese with English abstract).
      陈国栋, 2004. 苏锡常地区城市化进程中的环境地质问题. 资源调查与环境, 25(2): 111-115.
      陈永祥, 黄思霜, 2020. 基于FEFLOW的成都地铁7号线某站点三维水流数值模拟. 地下水, 42(6): 8-10.
      高咏, 梁聪, 车增光, 2020. 南京典型段地铁工程对地下水流动态的影响. 科学技术与工程, 20(28): 11711-11717.
      江苏省人民政府办公厅, 2020. 江苏省人民政府办公厅关于加强城市地下空间开发利用的指导意见. 江苏省人民政府公报, (13): 21-25.
      江苏省人民政府办公厅, 2021. 江苏省人民政府关于印发江苏省国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲要的通知. 江苏省人民政府公报, (5): 5-14.
      郭红东, 魏林森, 郑伟, 等, 2020. 地铁工程对兰州断陷盆地地下水环境的影响分析. 水利水电技术, 51(8): 119-128.
      梁秀娟, 林学钰, 苏小四, 等, 2005. GMS与苏锡常地区地下水流模拟. 人民长江, 36(11): 26-28, 36.
      谭飞, 汪君, 焦玉勇, 等, 2021. 城市地下空间适宜性评价研究国内外现状及趋势. 地球科学, 46(5): 1896-1908. doi: 10.3799/dqkx.2020.155
      王军辉, 韩煊, 周宏磊, 2013. 城市地铁运营期间对地下水环境影响分析. 工程地质学报, 21(3): 408-415.
      王晓梅, 朱国荣, 余勤, 等, 2003. 苏锡常地区主采层地下水流数值模拟. 水文地质工程地质, 30(1): 26-29.
      王晓睿, 姜洪建, 朱坤, 等, 2019. 基于土压盾构的城市地铁隧道构筑过程地表沉降规律. 地球科学, 44(12): 4293-4298. doi: 10.3799/dqkx.2019.269
      王宇博, 2020. 基于区域数值模拟的抗浮水位研究: 以石家庄地铁1号线二期为例. 铁道勘察, 46(3): 28-36.
      熊志涛, 张艺, 文美霞, 等, 2014. 武汉地铁三、四号线工程建设对地下水流场的影响分析. 资源环境与工程, 28(3): 308-312.
      徐瑞御, 魏镜玲, 肖庆峰, 2020. 成都地铁8号线一期地下水影响分析. 河南科技, (7): 122-125.
      张广泉, 2021. 科学开拓地下空间打造安全幸福城市: 访中国工程院院士、工程地质与工程物探专家彭苏萍. 中国应急管理, (4): 30-33.
      张徽, 王文科, 杨晓婷, 等, 2008. 城市地铁工程建设对地下水环境的影响分析: 以西安地铁Ⅱ号线为例. 工程勘察, 36(5): 42-44.
      张敏, 2008. 基于GMS的地下水开采优化方案研究: 以苏锡常地区地下水开采为例(硕士学位论文). 南京: 南京师范大学.
    • 加载中
    图(5) / 表(5)
    计量
    • 文章访问数:  28
    • HTML全文浏览量:  14
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-11
    • 刊出日期:  2025-11-25

    目录

      /

      返回文章
      返回