• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于层次分析法的页岩气储层地质工程一体化甜点评价:以昭通页岩气示范区太阳页岩气田海坝地区X井区为例

    王红岩 刘钰洋 张晓伟 郭为 于荣泽 孙玉平 梁萍萍 康莉霞

    王红岩, 刘钰洋, 张晓伟, 郭为, 于荣泽, 孙玉平, 梁萍萍, 康莉霞, 2023. 基于层次分析法的页岩气储层地质工程一体化甜点评价:以昭通页岩气示范区太阳页岩气田海坝地区X井区为例. 地球科学, 48(1): 92-109. doi: 10.3799/dqkx.2022.020
    引用本文: 王红岩, 刘钰洋, 张晓伟, 郭为, 于荣泽, 孙玉平, 梁萍萍, 康莉霞, 2023. 基于层次分析法的页岩气储层地质工程一体化甜点评价:以昭通页岩气示范区太阳页岩气田海坝地区X井区为例. 地球科学, 48(1): 92-109. doi: 10.3799/dqkx.2022.020
    Wang Hongyan, Liu Yuyang, Zhang Xiaowei, Guo Wei, Yu Rongze, Sun Yuping, Liang Pingping, Kang Lixia, 2023. Geology-Engineering Intergration Shale Gas Sweet Spot Evaluation Based on Analytic Hierarchy Process: Application to Zhaotong Shale Gas Demonstration District, Taiyang Shale Gas Field, Haiba Area, X Well Region. Earth Science, 48(1): 92-109. doi: 10.3799/dqkx.2022.020
    Citation: Wang Hongyan, Liu Yuyang, Zhang Xiaowei, Guo Wei, Yu Rongze, Sun Yuping, Liang Pingping, Kang Lixia, 2023. Geology-Engineering Intergration Shale Gas Sweet Spot Evaluation Based on Analytic Hierarchy Process: Application to Zhaotong Shale Gas Demonstration District, Taiyang Shale Gas Field, Haiba Area, X Well Region. Earth Science, 48(1): 92-109. doi: 10.3799/dqkx.2022.020

    基于层次分析法的页岩气储层地质工程一体化甜点评价:以昭通页岩气示范区太阳页岩气田海坝地区X井区为例

    doi: 10.3799/dqkx.2022.020
    基金项目: 

    国家科技重大专项 2016ZX05037-006

    国家科技重大专项 2016ZX05035-004

    中石油科技管理部前瞻性基础性课题 2021DJ2005

    详细信息
      作者简介:

      王红岩(1971-),男,教授级高级工程师,博士,主要从事非常规油气资源勘探开发方面的研究.ORCID:0000-0002-9191-7599. E-mail:wanghongyan69@petrochina.com.cn

      通讯作者:

      刘钰洋,ORCID:0000-0002-6182-3786. E-mail: yuyang.liu@pku.edu.cn

    • 中图分类号: TE349

    Geology-Engineering Intergration Shale Gas Sweet Spot Evaluation Based on Analytic Hierarchy Process: Application to Zhaotong Shale Gas Demonstration District, Taiyang Shale Gas Field, Haiba Area, X Well Region

    • 摘要: “甜点”是页岩气储层中相对高产的层位和区域,地质甜点、工程甜点和综合甜点的合理预测及评价,是页岩气规模效益开发的基础之一.针对页岩气储层甜点多参数综合定量评价,引入层次分析法,综合地质与工程要素,基于高分辨率三维地质模型,形成了地质工程一体化页岩气甜点评价的新方法,进行页岩气储层甜点区域的预测.首先,综合前人研究成果,建立了一种页岩气地质甜点、工程甜点和综合甜点评价的指标体系;随后,设计了基于层次分析法的页岩气储层地质工程一体化甜点评价方法的技术路线;最后,采用昭通页岩气田海坝区块X井区实例数据,基于该区域高分辨率三维地质模型,根据形成的甜点评价方法,进行了研究区地质甜点、工程甜点和综合甜点的预测和评价.结果表明,该方法可以综合地质和工程的多种评价指标,实现了昭通页岩气田海坝区块X井区地质甜点、工程甜点和综合甜点的评价,评价的甜点区域主要分布在奥陶系五峰组,志留系龙马溪组一段1亚段1小层、2小层和3小层(L111,L112,L113),4小层(L114)相对较少.基于层次分析法的页岩气储层地质工程一体化甜点评价,可以将定性分析和定量分析相结合,为页岩气甜点的圈定提供了一种新思路,提高了甜点评价结果的合理性和准确性.

       

    • 图  1  页岩气甜点评价指标体系及评价指标

      Fig.  1.  Shale gas evaluation indices and evaluation index system

      图  2  基于层次分析法的页岩气甜点评价技术路线

      Fig.  2.  Technical diagram of shale gas evaluation based on analytic hierarchy process

      图  3  甜点评价层次模型构建

      Fig.  3.  Construction of hierarchical model for sweet spot evaluation

      图  4  研究区三维地质模型

      共包含5层:绿色为龙马溪组一段1亚段4小层(L114),橙色为龙马溪组一段1亚段3小层(L113),粉色为龙马溪组一段1亚段2小层(L112),紫色为龙马溪组一段1亚段1小层(L111),青色为五峰组(WF)(通过Petrel可视化)

      Fig.  4.  3D geological model for the study area

      图  5  地质甜点、工程甜点和综合甜点评价参数选择、判断矩阵构建、阈值设定和综合点甜点叠加

      a.地质甜点评价参数选择及判断矩阵参数构建示意图;b.工程甜点评价参数选择及判断矩阵参数构建示意图;c.地质甜点与工程甜点阈值设定及综合甜点叠合示意图(自研软件平台软件界面)研究区内平均地层压力系数为1.03~1.60,平均1.25,为微超压‒超压区.

      Fig.  5.  Geological sweet spot, engineering sweet spot and comprehensive sweet spot evaluation parameter selection, judgment matrix construction, threshold setting and comprehensive sweet spot superposition

      图  6  研究区地质甜点部分三维评价指标模型

      Fig.  6.  3D model of geological sweet spot evaluation index of the study area

      图  7  研究区工程甜点部分三维评价指标模型

      Fig.  7.  3D model of engineering sweet spot evaluation index of the study area

      图  8  研究区地质甜点、工程甜点和综合甜点三维评价结果

      a.基于地质甜点评价指标的三维地质甜点甜度分布;b.基于工程甜点评价指标的三维工程甜点甜度分布;c.基于地质甜点和工程甜点叠合的三维综合甜点评价结果(仅保留红色网格的甜点区域,通过自研软件平台可视化)

      Fig.  8.  3D evaluation results of geological, engineering and comprehensive sweet spots of the study area

      图  9  研究区综合甜点评价二维评价结果

      a.五峰组;b.龙马溪组L111小层;c.龙马溪组L112小层;d.龙马溪组L113小层;e.龙马溪组L114小层(仪保留甜点区域,通过Petrel可视化)

      Fig.  9.  Two-dimensional comprehensive sweet spot evaluation results of the study area

      表  1  层次分析法相对重要性标度

      Table  1.   Reference value of index relative importance in analytic hierarchy process

      标度值 标度含义
      1 评价指标A与评价指标B同等重要
      3 评价指标A与评价指标B略微重要
      5 评价指标A与评价指标B比较重要
      7 评价指标A与评价指标B非常重要
      9 评价指标A与评价指标B绝对重要
      2, 4, 6, 8 分别代表处于上述判断之间状态对应的中间值
      倒数 评价指标A相对于评价指标B的重要性为x,则B相对于A的重要性为1/x
      下载: 导出CSV

      表  2  地质甜点或工程甜点评价指标专家评价参数

      Table  2.   Expert evaluation index for geological or engineering sweet spot evaluation

      评价指标A 评价指标B 评价指标C 评价指标D 评价指标E 评价指标F 评价指标G
      评价指标A 1 2 2.5 2 3 2 1
      评价指标B 1/2 1 3 1.5 4 3 9
      评价指标C 1/2.5 1/3 1 2 2 5 1
      评价指标D 1/2 1/1.5 1/2 1 3 6 8
      评价指标E 1/3 1/4 1/2 1/3 1 2 1
      评价指标F 1/2 1/3 1/5 1/6 1/2 1 7
      评价指标G 1/1 1/9 1/1 1/8 1/1 1/7 1
      注:专家打分时仅需要完成表中黑色部分重要性标度值的判断,红色部分自动计算.
      下载: 导出CSV

      表  3  地质甜点和工程甜点专家评价参数

      Table  3.   Expert evaluation index between geological and engineering sweet spot evaluation

      地质甜点 工程甜点
      地质甜点 1 2
      工程甜点 1/2 1
      注:专家打分时仅需要完成表中黑色部分重要性标度值的判断,红色部分自动计算.
      下载: 导出CSV

      表  4  研究区各小层部分主要参数

      Table  4.   Main attributes of each layer in the study area

      层位平均含量 五峰组 1小层 2小层 3小层 4小层
      TOC(%) 3.3 5.1 3.6 3 1.5
      含气饱和度(%) 62.11 74.12 67.08 55.05 40.18
      总含气量(m3/t) 3.1 4.4 3.2 2.6 1.4
      吸附气含量(m3/t) 2.03 2.81 2.13 1.82 0.92
      孔隙度(%) 4.2 5.1 4.1 3.8 2.7
      基质渗透率(10-9 µm2 167.32 186.16 184.67 165.96 111.51
      下载: 导出CSV

      表  5  自然资源部页岩气层分类评价标准

      Table  5.   Shale gas reservoir classification standard of Ministry of Natural Resources of China

      评价参数
      类别
      TOC 有效孔隙度 含气量(m3/t)
      Ⅰ类页岩气层 > 3% > 4% > 3
      Ⅱ类页岩气层 2%~3% 3%~4% 2~3
      Ⅲ类页岩气层 1%~2% 2%~3% 1~2
      Ⅳ类页岩气层 < 1% < 2% < 1
      下载: 导出CSV

      表  6  中国石油页岩气层分类评价标准

      Table  6.   Shale gas reservoir classification standard of PetroChina

      评价参数类别 TOC 有效孔隙度 含气量(m3/t) 脆性含量
      Ⅰ类页岩气层 > 3% > 5% > 3 55%
      Ⅱ类页岩气层 2%~3% 3%~5% 2~3 45%~55%
      Ⅲ类页岩气层 1%~2% 2%~3% 1~2 -
      Ⅳ类页岩气层 < 1% < 2% < 1 < 45%
      下载: 导出CSV
    • Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China (AQSIQ) and Standardization Administration of the People's Republic of China (SA), 2015. National Standard for Geological Evaluation Method for Shale Gas GB/T 31483-2015. Standards Press of China, Beijing (in Chinese).
      Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China (AQSIQ) and Standardization Administration of the People's Republic of China (SA), 2017. National Standard for Target Optimization Method for Marine Shale Gas Exploration GB/T 35110-2017. Standards Press of China, Beijing (in Chinese).
      Chen, H. B., 2013. Shale Gas Revolution & North America's Energy Independence and How They Inspire China. Natural Gas Technology and Economy, 7(5): 7-10, 77 (in Chinese with English abstract). doi: 10.3969/j.issn.2095-1132.2013.05.18
      Dong, D. Z., Zou, C. N., Li, J. Z., et al., 2011. Resource Potential, Exploration and Development Prospect of Shale Gas in the Whole World. Geological Bulletin of China, 30(Z1): 324-336 (in Chinese with English abstract).
      Guo, Q. L., Cao H., 2018. Tight Oil Sweet Spot Prediction. Geological Publishing House, Beijing (in Chinese).
      Guo, Q. L., Li, F., Chen, N. S., et al., 2016. Methodology, New Software System and Key Technology for Tight Oil Resources Assessment. Natural Gas Geoscience, 27(9): 1566-1575 (in Chinese with English abstract).
      Guo, X. Y., Chen, Y. C., Zhang, J., et al., 2015. Assessment Index Selection and Weight Determination of Shale Gas Plays: A Case Study of Marine Shale in the Sichuan Basin. Natural Gas Industry, 35(10): 57-64 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2015.10.007
      Hashmy, K. H., Abueita, S., Barnett, C., et al., 2011. Log-Based Identification of Sweet Spots for Effective Fracs in Shale Reservoirs. Canadian Unconventional Resources Conference. Society of Petroleum Engineers, Calgary.
      Huang, T. J., Liu, Y. Y., Wu, Y. Q., et al., 2021. Evaluation Method of Comprehensive Sweet Spots in Tight Sandstone Reservoir Based on Analytical Hierarchy Process. Science Technology and Engineering, 21(5): 1775-1782 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2021.05.016
      Liu, Y. Y., Liu, S. Q., Pan, M., 2020. Finite Element Simulation of Oil and Gas Reservoir In Situ Stress Based on a 3D Corner-Point Grid Model. Mathematical Problems in Engineering, 1-14. https://doi.org/10.1155/2020/7384085
      Liu, Y. Y., Liu, S. Q., Pan, M., et al., 2019. Research of Crustal Stress Simulation Using Finite Element Analysis Based on Corner Point Grid. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(4): 643-653 (in Chinese with English abstract).
      Liu, Y. Y., Pan, M., Liu, S. Q., 2019. Petrel2ANSYS: Accessible Software for Simulation of Crustal Stress Fields Using Constraints Provided by Multiple 3D Models Employing Different Types of Grids. Journal of Central South University, 26(9): 2447-2463. https://doi.org/10.1007/s11771-019-4186-4
      Ma, X. H., 2017a. A Golden Era for Natural Gas Development in the Sichuan Basin. Natural Gas Industry, 37(2): 1-10 (in Chinese with English abstract).
      Ma, X. H., 2017b. Natural Gas and Energy Revolution: A Case Study of Sichuan-Chongqing Gas Province. Natural Gas Industry, 37(1): 1-8 (in Chinese with English abstract).
      Ma, X. H., 2018. Enrichment Laws and Scale Effective Development of Shale Gas in the Southern Sichuan Basin. Natural Gas Industry, 38(10): 1-10 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2018.10.001
      Ma, X. H., Li, X. Z., Liang, F., et al., 2020a. Dominating Factors on Well Productivity and Development Strategies Optimization in Weiyuan Shale Gas Play, Sichuan Basin, SW China. Petroleum Exploration and Development, 47(3): 555-563 (in Chinese with English abstract).
      Ma, X. H., Xie, J., 2018. The Progress and Prospects of Shale Gas Exploration and Exploitation in Southern Sichuan Basin, NW China. Petroleum Exploration and Development, 45(1): 161-169 (in Chinese with English abstract).
      Ma, X. H., Xie, J., Yong, R., et al., 2020b. Geological Characteristics and High Production Control Factors of Shale Gas Reservoirs in Silurian Longmaxi Formation, Southern Sichuan Basin, SW China. Petroleum Exploration and Development, 47(5): 841-855 (in Chinese with English abstract).
      Naides C. H., 2010. Petrophysical Analysis Method to Identify "Sweet Spots" in Tight Gas Reservoirs: Case Study from Punta Rosada Formation in Neuquen Basin, Argentina. SPE Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, Lima.
      Nie, H. K., He, Z. L., Liu, G. X., et al., 2020a. Genetic Mechanism of High-Quality Shale Gas Reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin. Natural Gas Industry, 40(6): 31-41 (in Chinese with English abstract).
      Nie, H. K., He, Z. L., Liu, G. X., et al., 2020b. Status and Direction of Shale Gas Exploration and Development in China. Journal of China University of Mining & Technology, 49(1): 13-35 (in Chinese with English abstract).
      Pang, F., Zhang, Z. H., Zhang, J. F., et al., 2020. Progress and Prospect on Exploration and Development of Shale Gas in the Yangtze River Economic Belt. Earth Science, 45(6): 2152-2159 (in Chinese with English abstract).
      Saaty, T. L., 1977. A Scaling Method for Priorities in Hierarchical Structures. Journal of Mathematical Psychology, 15(3): 234-281. https://doi.org/10.1016/0022-2496(77)90033-5
      Saaty, T. L., 1986. Axiomatic Foundation of the Analytic Hierarchy Process. Management Science, 32(7): 841-855. https://doi.org/10.1287/mnsc.32.7.841
      Saaty, T. L., 1990. How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research, 48(1): 9-26. https://doi.org/10.1016/0377-2217(90)90057-I
      Tinnin, B., McChesney, M. D., Bello, H., 2015. Multi-Source Data Integration: Eagle Ford Shale Sweet Spot Mapping. Unconventional Resources Technology Conference. Society of Petroleum Engineers, San Antonio.
      Yang, Z., Hou, L. H., Tao, S. Z., et al., 2015. Formation Conditions and "Sweet Spot" Evaluation of Tight Oil and Shale Oil. Petroleum Exploration and Development, 42(5): 555-565 (in Chinese with English abstract).
      Yao, G. Q., Jiang, P., 2021. Method and Application of Reservoir "Source-Route-Sink-Rock" System Analysis. Earth Science, 46(8): 2934-2943 (in Chinese with English abstract).
      Yin, B. J., 2017. The American Shale Revolution and Its Impact (Dissertation). Liaoning University, Shenyang (in Chinese with English abstract).
      Zhang, X. L., 2014. Study on Risks of China's International Oil Trade Based on Revised AHP (Dissertation). University of International Business and Economics, Beijing (in Chinese with English abstract).
      Zhou, Z., Jiang, Z. X., Li, S. Z., et al., 2021. Biostratigraphic Characteristics of Black Graptolite Shale in Wufeng Formation and Longmaxi Formation in Jianshi Area of West Hubei. Earth Science, 46(2): 432-443 (in Chinese with English abstract).
      Zou, C. N., 2013. Unconventional Petroleum Geology (2nd Edition). Geological Publishing House, Beijing (in Chinese).
      Zou, C. N., Ding, Y. H., Lu, Y. J., et al., 2017. Concept, Technology and Practice of "Man-Made Reservoirs" Development. Petroleum Exploration and Development, 44(1): 144-154 (in Chinese with English abstract).
      Zou, C. N., Tao, S. Z., Bai, B., et al., 2015. Differences and Relations between Unconventional and Conventional Oil and Gas. China Petroleum Exploration, 20(1): 1-16 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2015.01.001
      Zou, C. N., Zhang, G. S., Yang, Z., et al., 2013. Geological Concepts, Characteristics, Resource Potential and Key Techniques of Unconventional Hydrocarbon: On Unconventional Petroleum Geology. Petroleum Exploration and Development, 40(4): 385-399, 454 (in Chinese with English abstract).
      陈海波, 2013. 页岩气革命与北美能源独立及其对中国的启示. 天然气技术与经济, 7(5): 7-10, 77. doi: 10.3969/j.issn.2095-1132.2013.05.18
      董大忠, 邹才能, 李建忠, 等, 2011. 页岩气资源潜力与勘探开发前景. 地质通报, 30(Z1): 324-336. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1019.htm
      郭秋麟, 曹宏, 2018. 致密油"甜点区"预测. 北京: 地质出版社.
      郭秋麟, 李峰, 陈宁生, 等, 2016. 致密油资源评价方法、软件及关键技术. 天然气地球科学, 27(9): 1566-1575. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201609003.htm
      郭秀英, 陈义才, 张鉴, 等, 2015. 页岩气选区评价指标筛选及其权重确定方法——以四川盆地海相页岩为例. 天然气工业, 35(10): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201510012.htm
      黄天镜, 刘钰洋, 吴英强, 等, 2021. 基于层次分析法的致密砂岩双甜点评价方法. 科学技术与工程, 21(5): 1775-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202105016.htm
      刘钰洋, 刘诗琦, 潘懋, 等, 2019. 基于三维角点网格模型的现今地应力有限元模拟. 北京大学学报(自然科学版), 55(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201904007.htm
      马新华, 2017a. 四川盆地天然气发展进入黄金时代. 天然气工业, 37(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201702003.htm
      马新华, 2017b. 天然气与能源革命——以川渝地区为例. 天然气工业, 37(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201701002.htm
      马新华, 2018. 四川盆地南部页岩气富集规律与规模有效开发探索. 天然气工业, 38(10): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201810002.htm
      马新华, 李熙喆, 梁峰, 等, 2020a. 威远页岩气田单井产能主控因素与开发优化技术对策. 石油勘探与开发, 47(3): 555-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003012.htm
      马新华, 谢军, 雍锐, 等, 2020b. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素. 石油勘探与开发, 47(5): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm
      马新华, 谢军, 2018. 川南地区页岩气勘探开发进展及发展前景. 石油勘探与开发, 45(1): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801020.htm
      聂海宽, 何治亮, 刘光祥, 等, 2020a. 四川盆地五峰组‒龙马溪组页岩气优质储层成因机制. 天然气工业, 40(6): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006004.htm
      聂海宽, 何治亮, 刘光祥, 等, 2020b. 中国页岩气勘探开发现状与优选方向. 中国矿业大学学报, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm
      庞飞, 张作衡, 张君峰, 等, 2020. 长江经济带页岩气勘探开发进展及建议. 地球科学, 45(6): 2152-2159. doi: 10.3799/dqkx.2020.061
      杨智, 侯连华, 陶士振, 等, 2015. 致密油与页岩油形成条件与"甜点区"评价. 石油勘探与开发, 42(5): 555-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505002.htm
      姚光庆, 姜平, 2021. 储层"源‒径‒汇‒岩"系统分析的思路方法与应用. 地球科学, 46(8): 2934-2943. doi: 10.3799/dqkx.2020.327
      尹冰洁, 2017. 美国页岩革命及其影响(硕士学位论文). 沈阳: 辽宁大学.
      张小琳, 2014. 基于修正层次分析法的我国石油贸易风险问题研究(博士学位论文). 北京: 对外经济贸易大学.
      中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2015. 页岩气地质评价方法GB/T 31483-2015. 北京: 中国标准出版社.
      中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017. 海相页岩气勘探目标优选方法GB/T 35110-2017. 北京: 中国标准出版社.
      周志, 姜振学, 李世臻, 等, 2021. 鄂西建始地区五峰‒龙马溪组黑色页岩生物地层特征. 地球科学, 46(2): 432-443. doi: 10.3799/dqkx.2020.059
      [i] 邹才能, 2013. 非常规油气地质(第二版). 北京: 地质出版社.
      邹才能, 丁云宏, 卢拥军, 等, 2017. "人工油气藏"理论、技术及实践. 石油勘探与开发, 44(1): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701019.htm
      邹才能, 陶士振, 白斌, 等, 2015. 论非常规油气与常规油气的区别和联系. 中国石油勘探, 20(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201501001.htm
      邹才能, 张国生, 杨智, 等, 2013. 非常规油气概念、特征、潜力及技术——兼论非常规油气地质学. 石油勘探与开发, 40(4): 385-399, 454. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm
    • 加载中
    图(9) / 表(6)
    计量
    • 文章访问数:  1063
    • HTML全文浏览量:  1092
    • PDF下载量:  117
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-09
    • 网络出版日期:  2023-02-01
    • 刊出日期:  2023-01-25

    目录

      /

      返回文章
      返回