• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湖北鹤峰走马镇地区牛蹄塘组岩石地球化学特征:物源、古风化、沉积环境和构造背景

    何谋惷 丁振举 王翔 万禹

    何谋惷, 丁振举, 王翔, 万禹, 2023. 湖北鹤峰走马镇地区牛蹄塘组岩石地球化学特征:物源、古风化、沉积环境和构造背景. 地球科学, 48(9): 3280-3295. doi: 10.3799/dqkx.2022.023
    引用本文: 何谋惷, 丁振举, 王翔, 万禹, 2023. 湖北鹤峰走马镇地区牛蹄塘组岩石地球化学特征:物源、古风化、沉积环境和构造背景. 地球科学, 48(9): 3280-3295. doi: 10.3799/dqkx.2022.023
    He Mouchun, Ding Zhenju, Wang Xiang, Wan Yu, 2023. Geochemical Characteristics of Niutitang Formation in Zoumazhen Area, Hefeng, Hubei Province: Provenance, Paleoweathering, Sedimentary Environment and Tectonic Setting. Earth Science, 48(9): 3280-3295. doi: 10.3799/dqkx.2022.023
    Citation: He Mouchun, Ding Zhenju, Wang Xiang, Wan Yu, 2023. Geochemical Characteristics of Niutitang Formation in Zoumazhen Area, Hefeng, Hubei Province: Provenance, Paleoweathering, Sedimentary Environment and Tectonic Setting. Earth Science, 48(9): 3280-3295. doi: 10.3799/dqkx.2022.023

    湖北鹤峰走马镇地区牛蹄塘组岩石地球化学特征:物源、古风化、沉积环境和构造背景

    doi: 10.3799/dqkx.2022.023
    基金项目: 

    中国地质调查局项目 12120114016601

    详细信息
      作者简介:

      何谋惷(1965-),男,副教授,博士,主要从事成矿流体研究. ORCID:0000-0003-1763-8273,E-mail:hemch@126.com

      通讯作者:

      丁振举,E-mail:dingzhenju@cug.edu.cn

    • 中图分类号: P53

    Geochemical Characteristics of Niutitang Formation in Zoumazhen Area, Hefeng, Hubei Province: Provenance, Paleoweathering, Sedimentary Environment and Tectonic Setting

    • 摘要: 鹤峰地区位于湘西‒鄂西地区层控铅锌多金属成矿带内,不仅是我国“扬子型”铅锌矿床重要产区之一,也是我国页岩气资源重要的远景区,为了探讨区内分布的寒武系下统牛蹄塘组黑色岩系沉积物物质来源及其成熟度、古风化特征、沉积环境以及岩石形成的构造环境,对产于鹤峰县走马镇地区下寒武统牛蹄塘组中下部的黑色岩系开展了岩石学和岩石化学成分分析,结果显示:走马镇地区牛蹄塘组岩石的主量元素含量变化比较大,上下不同层位样品化学成分相差较大,其中下部地层除了SiO2和P2O5含量高于PAAS值外,其他组分均低于PAAS值.强烈富集U、Cr,而亏损Th,具有较高的Ni/Co值和较低的V/Cr值.REE总量略高于PAAS,具有明显的Ce负异常和弱‒微弱的Eu负异常以及略偏大的Y/Ho比值.而上部地层中Al2O3含量明显高于下部地层,与PAAS相比,除了SiO2和Na2O略微富集外,其他组分全部亏损.强烈富集V、U和Ba,明显亏损Zn、Th、Ni和Rb,Ni/Co比值低而V/Cr比值高且变化范围大.REE总量与下部地层相差不大,弱‒微弱的Ce和Eu的负异常,Y/Ho比值比下部地层更接近火成岩和陆源碎屑岩值.结果表明该套岩石为陆源碎屑岩和中性火山岩,在潮湿‒半干旱的气候条件下经过强烈的风化作用,沉积于被动大陆边缘构造环境下的缺氧‒贫氧、局部贫氧‒次氧化的海水中,有热水沉积物的参与.

       

    • 图  1  区域构造纲要图(a)及采样位置(b)

      ①麻泥山背斜,②来凤‒鹤峰向斜,③长岭向斜,④铁家岭向斜,⑤二坪背斜,⑥雉鸡坪向斜,⑦走马‒东山峰背斜,⑧增壁台背斜. F100为燕家河断裂;F101为八方界断裂;F102为孟家沟‒清官渡断裂;F103为自生桥断裂;F104为碑垭‒官屋场断裂;F105为南里坪断裂. 图b据湖北省地质局第二地质大队,2015,湖北省鹤峰县走马地区铅锌多金属矿调查评价

      Fig.  1.  Regional structure outline map (a) and sampling location (b)

      图  2  地层柱状图及采样位置

      Fig.  2.  Stratigraphic histogram and sampling location

      图  3  岩石主量元素PAAS标准化分布

      Fig.  3.  Distribution of PAAS normalized abundances of major for the study samples

      图  4  微量元素PAAS标准化蛛网图

      Fig.  4.  PAAS-normalized trace element spider diagram

      图  5  牛蹄塘组黑色岩系稀土元素PAAS标准化配分模式

      PAAS数据来源于McLennan et al.(1989)

      Fig.  5.  PAAS-normalized REE patterns for the study samples

      图  6  页岩SiO2/Al2O3-K2O/Na2O年龄判别图

      底图据Wronkiewicz and Condie(1987)

      Fig.  6.  Bivariate SiO2/Al2O3 vs. K2O/Na2O age discrimination diagram for shales

      图  7  页岩的物源判别图

      底图据Roser and Korsch(1988)

      Fig.  7.  Provenance discrimination diagram for shales

      图  8  牛蹄塘组黑色岩系Y-Ho协变关系

      Fig.  8.  Y-Ho covariant diagram for study samples

      图  9  页岩A-CN-K图

      底图据Fedo et al.(1995)Nesbitt et al.(1984);A. Al2O3;CN. CaO*+Na2O;K. K2O

      Fig.  9.  A-CN-K ternary diagram showing weathering trend

      图  10  SiO2-(Al2O3+K2O+Na2O)古气候判别图

      底图据Suttner and Dutta(1986)

      Fig.  10.  Bivariate SiO2 vs. (Al2O3+K2O+Na2O) palaeoclimate discrimination diagram

      图  11  Ni/Co-V/(V+Ni)古氧化还原条件判别图

      底图据Awan et al.(2020)

      Fig.  11.  Paleo redox conditions by Ni/Co vs. V/(V+Ni)

      图  12  主量元素构造背景判别图解

      a. K2O/Na2O-SiO2图解,底图据Roser and Korsch(1986);b. Na2O-CaO-K2O图解,底图据Bhatia and Crook(1986);CIA. 大陆岛弧;OIA. 大洋岛弧;PCM. 被动大陆边缘;ACM. 活动大陆边缘

      Fig.  12.  Tectonic discrimination plots using major elements

      表  1  岩石主量元素含量(%)

      Table  1.   Major elements compositions for the study samples (%)

      成分 导线1 导线2+3 PAAS
      BGP-1-1 BGP-1-2 BGP-1-3 BGP-1-4 BGP-1-5 BGP-1-6 BGP-1-7 BGP-1-8 平均值 BGP-3-1 BGP-3-2 BGP-3-3 BGP-4-1 BGP-4-2 BGP-4-3 BGP-4-4 BGP-4-5 BGP-4-6 平均值
      SiO2 69.46 64.94 68.26 69.29 69.36 60.21 66.94 73.59 67.76 63.48 65.26 68.6 68.83 73.14 72.31 70.60 66.86 65.44 68.28 62.8
      Al2O3 6.01 6.45 6.59 6.77 6.86 9.38 8.10 6.57 7.09 11.92 12.83 11.59 12.47 11.59 12.44 11.28 14.46 14.63 12.58 18.9
      TiO2 0.32 0.34 0.37 0.38 0.42 0.54 0.56 0.37 0.41 0.90 0.64 0.56 0.78 0.68 0.70 0.64 0.75 0.79 0.72 1.00
      Fe2O3T 3.59 3.94 3.23 3.43 3.29 5.42 3.67 3.14 3.71 1.82 1.59 2.66 1.17 1.51 1.28 3.57 5.71 3.48 2.53 7.22
      MnO 0.020 0.016 0.004 0.006 0.005 0.016 0.004 0.007 0.010 0.003 0.006 0.006 0.005 0.004 0.004 0.005 0.010 0.010 0.01 0.11
      CaO 1.97 4.43 0.45 0.37 0.37 0.57 0.19 0.41 1.10 0.11 0.04 0.04 0.06 0.08 0.05 0.04 0.04 0.04 0.06 1.3
      MgO 1.30 0.91 1.16 1.12 0.88 1.35 0.63 0.62 1.00 0.79 1.29 1.28 1.33 0.99 1.05 1.03 1.23 1.85 1.20 2.2
      Na2O 0.41 0.58 0.05 0.11 0.54 0.82 1.19 0.79 0.56 2.16 1.09 0.76 1.28 1.16 1.26 1.47 1.15 1.67 1.33 1.2
      K2O 1.74 1.91 2.13 2.15 2.01 2.61 2.16 1.71 2.05 2.99 3.44 3.08 3.11 2.84 3.08 2.60 3.49 3.25 3.10 3.7
      P2O5 0.55 2.76 0.35 0.25 0.13 0.16 0.04 0.14 0.55 0.12 0.05 0.11 0.04 0.04 0.03 0.05 0.06 0.06 0.06 0.16
      H2O+ 2.09 2.15 2.97 2.90 3.50 2.95 2.50 1.98 2.63 3.16 3.60 3.63 3.71 2.74 3.11 2.82 2.91 2.89 3.17
      CO2 1.15 0.69 0.07 0.09 0.07 0.23 0.05 0.14 0.31 0.05 0.05 0.05 0.02 0.02 0.02 0.05 0.02 0.02 0.03
      LOST 14.38 13.46 15.66 14.83 15.46 18.43 15.99 12.10 15.04 15.28 13.03 10.44 10.40 7.34 7.41 8.39 5.68 8.45 9.60 6.00
      Total 103.0 102.6 101.3 101.7 102.9 102.7 102.0 101.6 102.2 102.8 102.9 102.8 103.2 102.1 102.7 102.5 102.4 102.6 102.67 104.59
      Al2O3/TiO2 18.53 19.03 17.99 17.97 16.48 17.39 14.52 17.61 17.44 13.28 20.20 20.59 15.98 17.02 17.74 17.73 19.24 18.63 17.82
      Al/Ti 16.35 16.79 15.88 15.86 14.54 15.35 12.81 15.54 15.39 11.72 17.82 18.17 14.10 15.02 15.66 15.64 16.98 16.44 15.73
      SiO2/Al2O3 11.56 10.06 10.36 10.23 10.12 6.42 8.26 11.20 9.78 5.32 5.09 5.92 5.52 6.31 5.82 6.26 4.62 4.47 5.48
      K2O/Na2O 4.29 3.28 40.00 20.20 3.73 3.19 1.81 2.16 9.83 1.38 3.15 4.03 2.42 2.44 2.45 1.78 3.04 1.94 2.51
      K2O/Al2O3 0.29 0.30 0.32 0.32 0.29 0.28 0.27 0.26 0.29 0.25 0.27 0.27 0.25 0.25 0.25 0.23 0.24 0.22 0.25
      ICV 1.50 1.83 1.07 1.06 1.04 1.15 0.97 1.02 1.21 0.66 0.58 0.68 0.56 0.57 0.54 0.77 0.80 0.70 0.65
      Al2O3 0.058 9 0.063 3 0.064 6 0.066 4 0.067 2 0.092 0 0.079 5 0.064 4 0.070 0 0.116 9 0.125 8 0.113 6 0.122 2 0.113 7 0.121 9 0.110 5 0.141 8 0.143 4 0.12
      CaO* 0.006 5 0.009 4 0.000 9 0.001 7 0.005 7 0.009 0 0.003 0 0.006 4 0.010 0 0.001 1 0.000 4 0.012 3 0.000 8 0.001 1 0.000 7 0.000 4 0.000 3 0.000 3 0.00
      Na2O 0.006 5 0.009 4 0.000 9 0.001 7 0.008 7 0.013 2 0.019 2 0.012 8 0.010 0 0.034 8 0.017 6 0.012 3 0.020 7 0.018 8 0.020 3 0.023 7 0.018 5 0.027 0 0.02
      K2O 0.018 5 0.020 3 0.022 7 0.022 9 0.021 4 0.027 8 0.023 0 0.018 2 0.020 0 0.031 8 0.036 6 0.032 8 0.033 0 0.030 2 0.032 8 0.027 7 0.037 1 0.034 6 0.03
      CIA 65.12 61.78 72.58 71.58 65.19 64.80 63.74 63.31 66.01 63.32 69.75 66.43 69.16 69.40 69.41 68.14 71.71 69.85 68.57
      PIA 75.57 69.54 96.06 92.67 75.99 74.33 71.75 70.73 78.33 70.32 83.23 76.65 80.61 80.74 80.97 77.54 84.76 79.94 79.42
      CIW 81.84 77.09 97.41 95.07 82.29 80.58 78.14 77.10 83.69 76.49 87.49 82.18 85.07 85.10 85.33 82.16 88.29 84.01 84.01
      CIW' 90.02 87.06 98.69 97.47 88.52 87.44 80.54 83.45 89.15 77.04 87.71 90.21 85.53 85.82 85.73 82.38 88.44 84.15 85.22
      注:Al2O3、CaO*、Na2O、K2O的单位为moles;ICV(index of compositional variation)和CIA(chemical index of alteration)据Nesbitt and Young(1982)PIA(plagioclase index of alteration)据Fedo et al.(1995)CIW(chemical index of weathering)据Harnois(1988)CIW'据Cullers(2000).
      下载: 导出CSV

      表  2  牛蹄塘组黑色岩系微量元素含量(10‒6

      Table  2.   Trace elements compositions for the study samples (10‒6)

      元素 导线1 导线2+3
      BGP-
      1-1
      BGP-
      1-2
      BGP-
      1-3
      BGP-
      1-4
      BGP-
      1-5
      BGP-
      1-6
      BGP-
      1-7
      BGP-
      1-8
      平均值 BGP-
      3-1
      BGP-3-2 BGP-
      3-3
      BGP-4-1 BGP-4-2 BGP-
      4-3
      BGP-
      4-4
      BGP-4-5 BGP-
      4-6
      平均数
      Cu 228.71 261.53 534.30 433.16 66.72 73.11 19.67 31.14 206.04 22.76 15.42 15.46 8.54 8.91 11.60 12.57 55.74 14.06 18.34
      Zn 310.24 358.85 1 134.03 1 009.30 206.00 446.09 22.66 89.12 447.04 16.29 21.14 83.08 26.33 44.68 33.50 78.01 245.55 198.79 83.04
      Pb 20.01 19.43 23.66 26.51 18.93 17.32 17.44 16.45 19.97 12.34 16.84 20.54 14.81 10.38 23.44 20.69 17.13 14.89 16.78
      U 19.20 27.20 55.60 54.30 66.40 93.90 32.60 27.00 47.03 71.50 19.25 25.00 18.40 15.30 12.10 10.95 11.60 13.50 21.96
      Th 4.84 5.24 6.06 6.03 6.06 8.66 6.94 6.35 6.27 13.35 10.65 10.85 14.50 13.25 10.00 8.55 13.75 11.45 11.82
      V 1 220 1 050 9 860 7 650 3 440 2 580 1 060 940 3 475 547 1 040 1 440 319 250 224 225 230 293 507.56
      Cr 870 750 2 390 2 030 260 190 100 80 833.75 130 130 140 120 100 100 90 120 120 116.67
      Ni 129.00 146.40 390.90 333.70 215.00 322.60 179.10 137.50 231.78 47.66 54.64 53.18 26.67 31.41 16.47 86.06 95.61 68.57 53.36
      Co 15.95 31.16 31.76 36.75 45.29 33.34 309.30 36.32 67.48 367.10 72.87 77.57 25.22 28.86 39.04 87.23 39.30 44.41 86.84
      Ag 0.35 0.29 0.31 0.24 0.37 0.26 0.29 0.27 0.30 0.25 0.54 0.61 0.95 0.91 2.33 2.04 2.68 6.36 1.85
      V 317 379 250 293 230 225 224 250 271 319 1 440 1 040 547 940 1 060 2 580 3 440 7 650 2 113
      Mo 28.70 48.80 33.28 28.52 27.27 31.18 24.67 41.44 32.98 64.05 133.00 92.18 51.63 37.16 140.90 177.50 164.10 92.09 105.85
      Rb 121.00 126.00 126.00 138.00 147.50 107.50 129.50 117.50 126.63 129.00 121.50 130.00 96.00 55.20 71.60 91.20 72.20 93.60 95.59
      Ba 2 040 2 130 1 845 2 100 3 890 2 400 3 860 4 560 2 853.13 4 640 6 600 7 470 10 000 3 620 4 540 5 200 3 780 3 430 5 475.56
      Hf 3.60 4.10 3.90 4.40 3.90 3.30 3.80 3.60 3.83 4.60 3.50 3.70 6.40 2.30 3.40 3.30 2.60 2.30 3.57
      Zr 138 153 141 161 146 124 140 141 143 173 130 146 246 90 130 131 101 89 137.33
      Ta 1.00 1.10 1.10 1.20 1.10 1.00 1.10 1.10 1.09 1.20 0.80 0.90 1.10 0.80 0.80 0.70 0.70 0.70 0.86
      Ni/Co 8.09 4.70 12.31 9.08 4.75 9.68 0.58 3.79 6.62 0.13 0.75 0.69 1.06 1.09 0.42 0.99 2.43 1.54 1.01
      Cu/Zn 0.74 0.73 0.47 0.43 0.32 0.16 0.87 0.35 0.51 1.40 0.73 0.19 0.32 0.20 0.35 0.16 0.23 0.07 0.40
      V/(V+Ni) 0.71 0.72 0.39 0.47 0.52 0.41 0.56 0.65 0.55 0.87 0.96 0.95 0.95 0.97 0.98 0.97 0.97 0.99 0.96
      V/Cr 0.36 0.51 0.10 0.14 0.88 1.18 2.24 3.13 1.07 2.45 11.08 7.43 4.56 9.40 10.60 28.67 28.67 63.75 18.51
      U/Th 3.97 5.19 9.17 9.00 10.96 10.84 4.70 4.25 7.26 5.36 1.81 2.30 1.27 1.15 1.21 1.28 0.84 1.18 1.82
      下载: 导出CSV

      表  3  牛蹄塘组黑色岩系稀土元素分析结果(10-6

      Table  3.   Rare earth elements compositions for the study samples (10-6)

      导线号 样品号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE Y/ Ho LaN/YbN δEu δCe
      导线1 BGP-1-1 26.2 27.4 5.69 22.8 4.40 0.88 5.52 0.88 5.84 1.46 4.43 0.62 3.65 0.57 57 167.34 87.37 79.97 39 4.84 0.55 0.52
      BGP-1-2 40.9 43.6 10.00 44.4 9.85 2.34 12.55 1.84 10.75 2.49 7.09 0.91 5.42 0.81 95 287.55 151.09 136.46 38 5.09 0.64 0.50
      BGP-1-3 45.3 43.3 10.40 44.3 8.86 1.88 11.50 1.86 12.15 3.02 9.13 1.23 7.29 1.08 121 321.80 154.04 167.76 40 4.19 0.57 0.46
      BGP-1-4 36.5 39.2 8.95 36.4 7.42 1.53 8.96 1.39 9.06 2.21 6.49 0.96 5.44 0.83 87 252.35 130.00 122.35 39 4.52 0.57 0.51
      BGP-1-5 26.2 38.6 5.37 20.0 3.58 0.68 3.63 0.59 3.76 0.94 2.69 0.40 2.39 0.37 34 142.80 94.43 48.37 36 7.39 0.57 0.74
      BGP-1-6 31.8 50.6 6.93 27.1 5.04 1.09 5.13 0.80 5.02 1.20 3.54 0.51 3.22 0.49 40 181.97 122.56 59.41 33 6.66 0.65 0.79
      BGP-1-7 31.4 52.2 6.69 24.6 3.87 0.72 3.20 0.49 3.15 0.74 2.27 0.33 2.02 0.30 29 160.78 119.48 41.30 39 10.48 0.61 0.83
      BGP-1-8 21.0 36.8 4.51 17.5 3.24 0.60 3.54 0.54 3.29 0.74 2.06 0.29 1.77 0.27 26 121.65 83.65 38.00 34 8.00 0.54 0.87
      平均值 32.41 41.46 7.32 29.64 5.78 1.22 6.75 1.05 6.63 1.60 4.71 0.66 3.90 0.59 60.81 204.53 117.83 86.70 37.29 6.40 0.59 0.65
      导线2+3 BGP-3-1 51.8 85.7 9.74 34.3 5.71 0.82 5.50 0.94 5.96 1.40 4.29 0.59 3.60 0.54 51 262.19 188.07 74.12 37 9.70 0.44 0.86
      BGP-3-2 32.2 61.6 7.01 24.8 4.14 0.59 3.27 0.53 3.30 0.77 2.41 0.39 2.37 0.37 25 168.75 130.34 38.41 32 9.16 0.47 0.95
      BGP-3-3 28.3 51.8 6.20 21.1 3.55 0.59 2.78 0.51 3.13 0.74 2.26 0.36 2.32 0.36 22 145.80 111.54 34.26 29 8.22 0.55 0.90
      BGP-4-1 42.9 81.2 8.87 31.0 4.52 0.72 3.58 0.58 3.67 0.84 2.41 0.38 2.28 0.33 24 207.38 169.21 38.17 29 12.69 0.53 0.95
      BGP-4-2 37.3 70.7 7.73 26.5 4.20 0.66 3.20 0.55 3.41 0.77 2.22 0.33 2.08 0.32 23 182.77 147.09 35.68 30 12.09 0.53 0.95
      BGP-4-3 39.9 74.2 8.07 27.6 4.22 0.61 3.19 0.57 3.52 0.76 2.24 0.35 2.03 0.31 22 189.87 154.60 35.27 29 13.25 0.49 0.94
      BGP-4-4 32.2 62.1 6.82 24.1 3.81 0.64 3.34 0.55 3.33 0.78 2.29 0.33 1.98 0.30 22 164.77 129.67 35.10 28 10.96 0.54 0.96
      BGP-4-5 44.0 89.1 10.20 40.6 8.63 1.86 8.45 1.28 7.39 1.55 4.23 0.62 3.74 0.55 45 267.40 194.39 73.01 29 7.93 0.66 0.98
      BGP-4-6 43.4 83.0 9.58 35.4 6.17 1.03 4.74 0.74 4.17 0.92 2.62 0.38 2.45 0.34 25 219.94 178.58 41.36 27 11.94 0.56 0.94
      平均值 39.11 73.27 8.25 29.49 4.99 0.84 4.23 0.69 4.21 0.95 2.77 0.41 2.54 0.38 28.86 200.99 155.94 45.04 30.11 10.66 0.53 0.94
      下载: 导出CSV
    • Awan, R. S., Liu, C. L., Gong, H. W., et al., 2020. Paleo-Sedimentary Environment in Relation to Enrichment of Organic Matter of Early Cambrian Black Rocks of Niutitang Formation from Xiangxi Area China. Marine and Petroleum Geology, 112: 104057. https://doi.org/10.1016/j.marpetgeo.2019.104057
      Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. https://doi.org/10.1007/s004100050159
      Bhatia, M. R., 1983. Plate Tectonics and Geochemical Composition of Sandstones. The Journal of Geology, 91(6): 611-627. https://doi.org/10.1086/628815
      Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/BF00375292
      Boström, K., Kraemer, T., Gartner, S., 1973. Provenance and Accumulation Rates of Opaline Silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific Pelagic Sediments. Chemical Geology, 11(2): 123-148. https://doi.org/10.1016/0009-2541(73)90049-1
      Cao, L., Duan, Q. F., Peng, S. G., et al., 2013. Metallogenic Characteristics and Prospecting Progress of the Yangtze Type Lead-Zinc Deposit. Geology and Mineral Resources of South China, 29(4): 308-317 (in Chinese with English abstract).
      Cao, J., Hu, K., Zhou, J., et al., 2013. Organic Clots and Their Differential Accumulation of Ni and Mo within Early Cambrian Black-Shale-Hosted Polymetallic Ni-Mo Deposits, Zunyi, South China. Journal of Asian Earth Sciences, 62: 531-536. https://doi.org/10.1016/j.jseaes.2012.11.002
      Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9
      Cullers, R. L., 2000. The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies. Lithos, 51(3): 181-203. https://doi.org/10.1016/S0024-4937(99)00063-8
      Duan, T. Z., Zeng, Y. F., Gao, Z. Z., 1988. Analysis of Tectonic Evolution of Paleo-Continental Margin in South China. Oil & Gas Geology, 9(4): 410-420 (in Chinese with English abstract).
      Fan, D. L., 1988. Geological Events and Mineralization. Chinese Geology, 15(11): 22-25 (in Chinese with English abstract).
      Fedo, C. M., Nesbitt, H. W., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921. https://doi.org/10.1130/0091-7613(1995)0230921: uteopm>2.3.co; 2 doi: 10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2
      Floyd, P. A., Franke, W., Shail, R., et al., 1990. Provenance and Depositional Environment of Rhenohercynian Synorogenic Greywacke from the Giessen Nappe, Germany. Geologische Rundschau, 69: 611-626 (in German).
      Floyd, P. A., Winchester, J. A., Park, R. G., 1989. Geochemistry and Tectonic Setting of Lewisian Clastic Metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research, 45(1-3): 203-214. https://doi.org/10.1016/0301-9268(89)90040-5
      Fyffe, L. R., Pickerill, R. K., 1993. Geochemistry of Upper Cambrian-Lower Ordovician Black Shale along a Northeastern Appalachian Transect. Geological Society of America Bulletin, 105(7): 897-910. https://doi.org/10.1130/0016-7606(1993)1050897: gouclo>2.3.co; 2 doi: 10.1130/0016-7606(1993)1050897:gouclo>2.3.co;2
      Han, T., Zhu, X. Q., Li, K., et al., 2015. Metal Sources for the Polymetallic Ni-Mo-PGE Mineralization in the Black Shales of the Lower Cambrian Niutitang Formation, South China. Ore Geology Reviews, 67: 158-169. https://doi.org/10.1016/j.oregeorev.2014.11.020
      Harnois, L., 1988. The CIW Index: A New Chemical Index of Weathering. Sedimentary Geology, 55(3-4): 319-322. https://doi.org/10.1016/0037-0738(88)90137-6
      Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A. Chemical Geology, 99(1-3): 65-82. https://doi.org/10.1016/0009-2541(92)90031-Y
      Hayashi, K. I., Fujisawa, H., Holland, H. D., et al., 1997. Geochemistry of ∼1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115-4137. https://doi.org/10.1016/s0016-7037(97)00214-7
      He, M. C., Ding, Z. J., Wei, L. X., et al., 2021. Geochemical Characteristics and Metallogenic Significance of Lower Permian Shuangqiaozi Formation in Taiping Mountains, Heilongjiang Province. Earth Science, 46(5): 1537-1553 (in Chinese with English abstract).
      He, Q., He, S., Dong, T., et al., 2019. Pore Structure Characteristics and Controls of Lower Cambrian Niutitang Formation, Western Hubei Province. Petroleum Geology & Experiment, 41(4): 530-539 (in Chinese with English abstract).
      Hsü, K. J., Li, J. L., Chen, H. H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183(1-4): 9-39. https://doi.org/10.1016/0040-1951(90)90186-C
      Jiang, S. Y., Chen, Y. Q., Ling, H. F., et al., 2006. Trace- and Rare-Earth Element Geochemistry and Pb-Pb Dating of Black Shales and Intercalated Ni-Mo-PGE-Au Sulfide Ores in Lower Cambrian Strata, Yangtze Platform, South China. Mineralium Deposita, 41(5): 453-467. https://doi.org/10.1007/s00126-006-0066-6
      Jiang, Y. H., Yue, W. Z., Ye, Z. Z., 1994. Anoxic Event, Black Shales and Related Mineral Resources: Taking the Lower Palaeozoic in Southern China as an Example. Geological Exploration for Non-Ferrous Metals, 3(5): 272-278 (in Chinese with English abstract).
      Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-X
      Li, H., Liu, A., Wei, K., et al., 2016. Geological Characteristic of Cambrian Black Shale and Prediction of Shale Gas Prospective Area in Western Hubei Province. Geology and Mineral Resources of South China, 32(2): 117-125 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-3701.2016.02.003
      Li, J., Gao, J. B., Wei, H. R., et al., 2019. Division and Contrast of Metallogenic Sequence in the Base of Cambrian Black Rock Series in Guizhou Province. Geology and Exploration, 55(2): 508-518 (in Chinese with English abstract).
      Li, Q. Q., Lan, B. F., Li, G. Q., et al., 2021. Element Geochemical Characteristics and Their Geological Significance of Wufeng-Longmaxi Formation Shales in North Margin of the Central Guizhou Uplift. Earth Science, 46(9): 3172-3188 (in Chinese with English abstract).
      Li, Y. X., Lin, J. H., Long, Y. K., et al., 2011. Exploration Prospect of Gas-Bearing Marine Mudstone-Shale in Lower Palaeozoic in the Central Yangtze Area, China. Geological Bulletin of China, 30(S1): 349-356 (in Chinese with English abstract).
      Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/S0301-9268(02)00208-5
      Lindsey, D. A., 1999. An Evaluation of Alternative Chemical Classifications of Sand-Stones. U. S. Geological Survey, Denver.
      Liu, A., Li, X. B., Wang, C. S., et al., 2013. Analysis of Geochemical Feature and Sediment Environment for Hydrocarbon Source Rocks of Cambrian in West Hunan-Hubei Area. Acta Sedimentologica Sinica, 31(6): 1122-1132 (in Chinese with English abstract).
      Liu, B. J., Xu, X. S., 1994. Atlas of the Lithofacies and Palaeogeography of Sonth China (Sinian-Triassic). Science Press, Beijing (in Chinese).
      McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295-303. https://doi.org/10.1086/648222
      McLennan, S. M., McCulloch, M. T., Taylor, S. R., et al., 1989. Effects of Sedimentary Sorting on Neodymium Isotopes in Deep-Sea Turbidites. Nature, 337(6207): 547-549. https://doi.org/10.1038/337547a0
      Moosavirad, S. M., Janardhana, M. R., Sethumadhav, M. S., et al., 2011. Geochemistry of Lower Jurassic Shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, Source Weathering and Tectonic Setting. Geochemistry, 71(3): 279-288. https://doi.org/10.1016/j.chemer.2010.10.001
      Mu, C. L., Zhou, K. K., Liang, W., et al., 2011. Early Paleozoic Sedimentary Environment of Hydrocarbon Source Rocks in the Middle-Upper Yangtze Region and Petroleum and Gas Exploration. Acta Geologica Sinica, 85(4): 526-532 (in Chinese with English abstract).
      Nesbitt, H. W., Fedo, C. M., Young, G. M., 1997. Quartz and Feldspar Stability, Steady and Non-Steady-State Weathering, and Petrogenesis of Siliciclastic Sands and Muds. The Journal of Geology, 105(2): 173-192. https://doi.org/10.1086/515908
      Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. Journal of Geology, 97(2): 129-147. https://doi.org/10.1086/629290
      Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      Roser, B. P., Korsch, R. J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67(1-2): 119-139. https://doi.org/10.1016/0009-2541(88)90010-1
      Roser, B. P., Korsch, R. J., 1986. Determination of Tectonic Setting of Sandstone Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. Journal of Geology, 94(5): 635-650. https://doi.org/10.1086/629071
      Roy, P. D., Smykatz-Kloss, W., 2007. REE Geochemistry of the Recent Playa Sediments from the Thar Desert, India: An Implication to Playa Sediment Provenance. Geochemistry, 67(1): 55-68. https://doi.org/10.1016/j.chemer.2005.01.006
      Shi, C. H., Cao, J. A., Hu, K., et al., 2014. New Understandings of Ni-Mo Mineralization in Early Cambrian Black Shales of South China: Constraints from Variations in Organic Matter in Metallic and Non-Metallic Intervals. Ore Geology Reviews, 59: 73-82. https://doi.org/10.1016/j.oregeorev.2013.12.007
      Suttner, L. J., Dutta, P. K., 1986. Alluvial Sandstone Composition and Paleoclimate, I. Framework Mineralogy. SEPM Journal of Sedimentary Research, 56(3): 329-345. https://doi.org/10.1306/212f8909-2b24-11d7-8648000102c1865d
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
      Tyson, B., 1987. The Petrography and Geochemistry of Komatiite Flows from the Abitibi Greenstone Belt and a Model for Their Formation-Comments. Lithos, 20(2): 181-182. https://doi.org/10.1016/0024-4937(87)90006-5
      Wang, J., 2000. Neoproterozoic Rifting History of South China: Significance to Rodinia Breakup. Geological Publishing House, Beijing (in Chinese).
      Wang, J., Duan, T. Z., Xie, Y., et al., 2012. The Tectonic Evolution and Its Oil and Gas Prospect of Southeast Margin of Yangtze Block. Geological Bulletin of China, 31(11): 1739-1749 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.11.001
      Wang, J., Qi, F. C., Li, Z. X., et al., 2020. Geological Features and Metallogenic Age of Unconventional Uranium Resources of Black-Rock Series in Northwestern Hunan. Uranium Geology, 36(1): 28-33 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2020.01.004
      Wang, P. W., Zou, C., Liu, Y. Z., et al., 2014. Shale Gas Exploration Prospect Evaluation in the Hefeng Block of the Western Hubei and Hunan Provinces. Geological Science and Technology Information, 33(6): 104-109 (in Chinese with English abstract).
      Wang, Q. C., Cai, L. G., 2007. Phanerozoic Tectonic Evolution of South China. Acta Geologica Sinica, 81(8): 1025-1040 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.08.002
      Wronkiewicz, D. J., Condie, K. C., 1987. Geochemistry of Archean Shales from the Witwatersrand Supergroup, South Africa: Source-Area Weathering and Provenance. Geochimica et Cosmochimica Acta, 51(9): 2401-2416. https://doi.org/10.1016/0016-7037(87)90293-6
      Xu, Z. Y., Yao, G. S., Huang, L., et al., 2013. Risk Analysis and Play Evaluation of Marine Residual Basins in South China. Petroleum Geology & Experiment, 35(1): 9-16, 23 (in Chinese with English abstract).
      You, X. J., 2010. Research on the Ni-Mo-V Deposits in Lower Cambrian Black Series in Western Hunan (Dissertation). Central South University, Changsha (in Chinese with English abstract).
      Zhang, T. S., Wu, K. Y., Yang, Y., et al., 2015. Evidence of Microbial Origin of Organic Matters of Niutitang Shale Gas Reservoir. Journal of Southwest Petroleum University (Science & Technology Edition), 37(2): 1-10 (in Chinese with English abstract).
      Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1-2): 127-150. https://doi.org/10.1016/j.lithos.2006.10.003
      曹亮, 段其发, 彭三国, 等, 2013. 扬子型铅锌矿的成矿特征及找矿进展. 华南地质与矿产, 29(4): 308-317. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201304007.htm
      段太忠, 曾允孚, 高振中, 1988. 根据沉积历史分析华南古大陆边缘的构造演化. 石油与天然气地质, 9(4): 410-420. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198804013.htm
      范德廉, 1988. 地质事件与成矿. 中国地质, 15(11): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202201010.htm
      何谋惷, 丁振举, 魏连喜, 等, 2021. 黑龙江省太平岭地区下二叠统双桥子组岩石地球化学特征及其成矿意义. 地球科学, 46(5): 1537-1553. doi: 10.3799/dqkx.2020.105
      何庆, 何生, 董田, 等, 2019. 鄂西下寒武统牛蹄塘组页岩孔隙结构特征及影响因素. 石油实验地质, 41(4): 530-539. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201904010.htm
      姜月华, 岳文浙, 业治铮, 1994. 华南下古生界缺氧事件与黑色页岩及有关矿产. 有色金属矿产与勘查, 3(5): 272-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS405.002.htm
      李海, 刘安, 危凯, 等, 2016. 鄂西地区寒武系黑色页岩地质特征及页岩气远景预测. 华南地质与矿产, 32(2): 117-125. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201602003.htm
      李军, 高军波, 魏怀瑞, 等, 2019. 贵州寒武系底部黑色岩系成矿序列划分与对比. 地质与勘探, 55(2): 508-518. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201902006.htm
      李琪琪, 蓝宝锋, 李刚权, 等, 2021. 黔中隆起北缘五峰‒龙马溪组页岩元素地球化学特征及其地质意义. 地球科学, 46(9): 3172-3188. doi: 10.3799/dqkx.2020.354
      李艳霞, 林娟华, 龙幼康, 等, 2011. 中扬子地区下古生界海相泥‒页岩含气勘探远景. 地质通报, 30(S1): 349-356. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1022.htm
      刘安, 李旭兵, 王传尚, 等, 2013. 湘鄂西寒武系烃源岩地球化学特征与沉积环境分析. 沉积学报, 31(6): 1122-1132. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306020.htm
      刘宝珺, 许效松, 1994. 中国南方岩相古地理图集: 震旦纪‒三叠纪. 北京: 科学出版社.
      牟传龙, 周恳恳, 梁薇, 等, 2011. 中上扬子地区早古生代烃源岩沉积环境与油气勘探. 地质学报, 85(4): 526-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104009.htm
      王剑, 2000. 华南新元古代裂谷盆地演化: 兼论与Rodinia解体的关系. 北京: 地质出版社.
      王剑, 段太忠, 谢渊, 等, 2012. 扬子地块东南缘大地构造演化及其油气地质意义. 地质通报, 31(11): 1739-1749. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201211002.htm
      王健, 漆富成, 李治兴, 等, 2020. 湘西北黑色岩系非常规铀资源成矿地质特征及成矿时代. 铀矿地质, 36(1): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202001004.htm
      王鹏万, 邹辰, 刘月早, 等, 2014. 湘鄂西地区鹤峰区块页岩气勘探前景评价. 地质科技情报, 33(6): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406015.htm
      王清晨, 蔡立国, 2007. 中国南方显生宙大地构造演化简史. 地质学报, 81(8): 1025-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200708002.htm
      徐政语, 姚根顺, 黄羚, 等, 2013. 中国南方海相残留盆地勘探风险分析与选区评价. 石油实验地质, 35(1): 9-16, 23. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201301002.htm
      游先军, 2010. 湘西下寒武统黑色岩系中的镍钥钒矿研究(博士学位论文). 长沙: 中南大学.
      张廷山, 伍坤宇, 杨洋, 等, 2015. 牛蹄塘组页岩气储层有机质微生物来源的证据. 西南石油大学学报(自然科学版), 37(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201502001.htm
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  489
    • HTML全文浏览量:  642
    • PDF下载量:  75
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-11-17
    • 网络出版日期:  2023-10-07
    • 刊出日期:  2023-09-25

    目录

      /

      返回文章
      返回