• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    柴北缘锡铁山印支期热液活动:来自榴闪岩石榴子石和石英脉真空击碎40Ar/39Ar年代学证据

    胡荣国 白秀娟 刘希军 杨启军 赵义来 蔡永丰 邱华宁

    胡荣国, 白秀娟, 刘希军, 杨启军, 赵义来, 蔡永丰, 邱华宁, 2023. 柴北缘锡铁山印支期热液活动:来自榴闪岩石榴子石和石英脉真空击碎40Ar/39Ar年代学证据. 地球科学, 48(12): 4527-4539. doi: 10.3799/dqkx.2022.026
    引用本文: 胡荣国, 白秀娟, 刘希军, 杨启军, 赵义来, 蔡永丰, 邱华宁, 2023. 柴北缘锡铁山印支期热液活动:来自榴闪岩石榴子石和石英脉真空击碎40Ar/39Ar年代学证据. 地球科学, 48(12): 4527-4539. doi: 10.3799/dqkx.2022.026
    Hu Rongguo, Bai Xiujuan, Liu Xijun, Yang Qijun, Zhao Yilai, Cai Yongfeng, Qiu Huaning, 2023. Indosinian Hydrothermal Activities in Xitieshan Area, North Qaidam: Insight from 40Ar/39Ar Dating by In Vacuo Crushing of Eclogitic Garnet and Quartz Vein. Earth Science, 48(12): 4527-4539. doi: 10.3799/dqkx.2022.026
    Citation: Hu Rongguo, Bai Xiujuan, Liu Xijun, Yang Qijun, Zhao Yilai, Cai Yongfeng, Qiu Huaning, 2023. Indosinian Hydrothermal Activities in Xitieshan Area, North Qaidam: Insight from 40Ar/39Ar Dating by In Vacuo Crushing of Eclogitic Garnet and Quartz Vein. Earth Science, 48(12): 4527-4539. doi: 10.3799/dqkx.2022.026

    柴北缘锡铁山印支期热液活动:来自榴闪岩石榴子石和石英脉真空击碎40Ar/39Ar年代学证据

    doi: 10.3799/dqkx.2022.026
    基金项目: 

    国家自然科学基金项目 42073049

    国家自然科学基金项目 41703054

    广西自然科学基金项目 2020GXNSFAA297049

    广西自然科学基金项目 2017GXNSFBA198164

    详细信息
      作者简介:

      胡荣国(1982-),男,副教授,博士,主要从事同位素年代学和矿床学研究工作. ORCID: 0000-0003-4750-8541. E-mail: hurongguo@glut.edu.cn

    • 中图分类号: P597.3

    Indosinian Hydrothermal Activities in Xitieshan Area, North Qaidam: Insight from 40Ar/39Ar Dating by In Vacuo Crushing of Eclogitic Garnet and Quartz Vein

    • 摘要: 为了示踪锡铁山超高压变质岩折返到浅部地壳后遭受后期热液流体叠加的年代及流体来源,首次采用真空击碎提取流体包裹体和粉末阶段加热40Ar/39Ar测年技术,对区内强退变质榴辉岩中的石榴子石与围岩片麻岩中接触部位的石英脉进行直接定年.石榴子石和石英都形成了单调递减的阶梯状表观年龄图谱.石榴子石真空击碎19至25阶段(末阶段)数据点构成平坦的年龄坪,对应的数据点在36Ar/40Ar-39Ar/40Ar图解上形成相关性很好的反等时线,等时年龄(222.6±16.7 Ma)与坪年龄(226.3±3.9 Ma)在误差范围内一致.真空击碎后的粉末进一步进行了分步加热分析(450~950 ℃共6阶段),获得了相对平坦的表观年龄图谱,对应坪年龄(212.0±9.0 Ma)和反等时线年龄(212.1±8.1 Ma)非常一致.石英脉09NQ39B则由19~29阶段数据点构成年龄坪,对应的坪年龄为222.8±1.2 Ma.榴辉岩中的石榴子石和石英脉同时记录了锡铁山地区印支晚期一期重要热液流体和热液蚀变事件,推测流体来源为沿区域性韧性剪切和透入性片理带入的浅部流体.强烈的晚期流体活动可能是导致该地区榴辉岩发生强烈退化变质作用,以及超高压变质指示矿物(如柯石英、金刚石等)难以保存的原因之一.

       

    • 图  1  柴北缘超高压变质带中超高压变质岩的分布(a);锡铁山地区地质简图及样品位置(b)

      榴辉岩中长英质脉体年代学数据参考文献Chen et al.2012

      Fig.  1.  Sketch map showing distribution of UHP metamorphic terranes in the North Qaidam orogenic belt (a), sketch map of the Xitieshan terrane showing sample locations (b)

      图  2  柴北缘超高压变质带锡铁山地区强角闪石化石英榴辉岩(09NQ39A)以及与围岩片麻岩接触部位石英脉(09NQ39B)野外照片(a);强角闪石化石英榴辉岩显微照片(单偏光)(b);石榴子石裂纹被绿泥石填充(c);石榴子石中的原生流体包裹体显微照片(d~e);石英脉原生流体包裹体显微照片(f);石英脉次生流体包裹体显微照片(g~h)

      Grt.石榴子石;Amp.角闪石;Qz.石英;Chl.绿泥石;Ttn.榍石;L.液相;V.气相

      Fig.  2.  Field photograph of strong retrograde eclogite (09NQ39A) and quartz vein (09NQ39B) located at the boundary between the host gneiss and the eclogite lens from Xitieshan terrane, North Qaidam orogen (a); photomicrograph in plane-polarized light (PPL) showing paragenesis and texture of retrograde eclogite (b); garnet cracks filled by chlorite (c); primary fluid inclusions in garnet (d-e); primary fluid inclusion in quartz (f); secondary fluid inclusions in quartz (g-h)

      图  3  石榴子石真空击碎与粉末阶段加热40Ar/39Ar年龄谱(a)和反等时线(b)图

      Fig.  3.  Plots of the age spectrum (a) and inverse isochron (b) of garnet based on the 40Ar/39Ar results by progressive In vacuo crushing and crushed powders stepwise heating

      图  4  石榴子石真空击碎与粉末阶段加热40Ar/39Ar定年K/Ca图

      Fig.  4.  Plots of the K/Ca of garnet based on the 40Ar/39Ar results by progressive In vacuo crushing and crushed powders stepwise heating

      图  5  石英脉真空击碎40Ar/39Ar年龄谱(a和b)和反等时线(c)图

      Fig.  5.  Plots of the age and K/Ca spectrum (a, b) and inverse isochron (c) of quartz based on the 40Ar/39Ar results by progressive In vacuo crushing

      图  6  石榴子石和石英真空击碎Ar同位素释气图

      Fig.  6.  Argon release patterns during progressive crushing for garnet and quartz

      图  7  石榴子石和石英真空击碎提取流体包裹体40Ar*/38ArCl vs. 39ArK/38ArCl相关性图

      构成年龄坪的数据点(■)呈现出极好的相关性并给出了与坪年龄基本一致的K-Cl等时线年龄(分别为237.9 Ma和222.9 Ma)

      Fig.  7.  Plots of 40Ar*/38ArCl 39ArK/38ArCl vs. based on the 40Ar/39Ar data of garnet and quartz by progressive crushing

      表  1  锡铁山石榴子石和石英40Ar/39Ar分析结果

      Table  1.   40Ar/39Ar dating results for garnet and quartz from Xitieshan terrane

      阶段 击碎次数 36ArA 37ArCa 38ArCl 39ArK 40Ar* t±2σ(Ma) 40Ar*(%) 39ArK(%) K/Ca±2σ
      石榴子石(09NQ39A-Grt)真空击碎, J= 0.005 059 30, I0=295.5, 锡铁山
      1 4 83.39 570.71 4.91 132.50 255 424.31 4 285.0± 40.4 91.20 0.89 0.100± 0.007
      2 8 71.02 924.40 3.35 150.40 159 774.91 3 341.7± 31.1 88.39 1.01 0.070± 0.005
      3 12 37.38 1 144.03 2.32 167.01 91 082.96 2 389.0± 32.1 89.18 1.12 0.063± 0.004
      4 20 102.96 1 397.70 1.50 162.67 69 807.51 2 082.1± 28.0 69.65 1.09 0.050± 0.003
      5 30 132.95 1 811.20 1.80 214.71 78 378.14 1 887.5± 34.8 66.61 1.44 0.051± 0.003
      6 40 124.11 4 008.23 3.17 402.28 93 713.96 1 404.8± 15.6 71.87 2.70 0.043± 0.002
      7 60 184.48 5 878.43 3.80 469.85 77 101.75 1 090.5± 11.8 58.58 3.16 0.034± 0.002
      8 80 190.94 7 281.72 4.90 534.87 55 290.71 758.9± 15.5 49.49 3.60 0.032± 0.001
      9 110 275.60 8 854.34 6.93 644.64 62 624.45 721.2± 11.0 43.47 4.33 0.031± 0.001
      10 140 235.24 10 694.81 2.97 801.64 63 831.69 610.7± 9.6 47.87 5.39 0.032± 0.001
      11 170 248.97 13 147.79 3.30 940.25 64 386.70 536.7± 6.9 46.67 6.32 0.031± 0.001
      12 190 238.37 12 792.42 6.30 857.66 50 158.93 467.6± 9.0 41.59 5.77 0.029± 0.001
      13 190 235.66 12 515.59 5.68 789.54 38 547.95 398.3± 10.3 35.63 5.31 0.027± 0.001
      14 200 226.78 13 129.27 4.02 792.59 45 113.49 456.6± 8.8 40.23 5.33 0.026± 0.001
      15 200 205.03 12 582.73 4.52 780.90 32 511.80 344.8± 6.7 34.92 5.25 0.027± 0.001
      16 220 232.29 12 272.95 2.32 674.35 24 780.57 307.6± 10.1 26.53 4.53 0.024± 0.001
      17 240 286.22 14 112.43 6.40 740.00 23 615.79 270.0± 11.9 21.83 4.98 0.023± 0.001
      18 260 274.52 16 381.67 7.09 860.54 26 586.05 262.0± 7.3 24.68 5.79 0.023± 0.001
      19* 280 238.41 18 966.18 4.52 840.53 22 929.32 233.2± 8.5 24.55 5.65 0.019± 0.001
      20* 320 245.16 20 680.74 10.33 774.07 20 566.26 227.5± 10.6 22.11 5.20 0.016± 0.001
      21* 360 249.53 22 358.34 6.60 745.56 19 402.54 223.1± 8.9 20.83 5.01 0.014± 0.001
      22* 340 194.15 23 035.05 5.42 664.76 17 395.30 224.3± 9.0 23.27 4.47 0.012± 0.001
      23* 320 151.85 21 748.81 5.30 571.08 14 608.53 219.6± 10.4 24.56 3.84 0.011± 0.000
      24* 360 196.79 22 878.30 4.83 583.33 15 654.83 229.7± 15.2 21.21 3.92 0.011± 0.000
      25* 400 238.96 25 315.62 7.09 577.08 15 311.14 227.2± 15.6 17.82 3.88 0.010± 0.000
      石英(09NQ39B-Qz)真空击碎, J= 0.0058 101 81, I0=295.5, 锡铁山
      1 60 214.61 444.26 7.48 1 085.83 219 381.38 1 400.9± 21.8 77.57 1.50 1.05± 0.12
      2 80 175.68 466.14 2.26 1 171.97 13 8954.85 945.5± 8.1 72.80 1.61 1.08± 0.14
      3 120 284.10 735.41 9.14 2 177.22 201 583.44 776.6± 4.0 70.60 3.00 1.27± 0.14
      4 150 216.10 782.52 2.33 2 495.35 162 230.97 578.1± 3.8 71.75 3.44 1.37± 0.13
      5 180 265.57 925.14 7.05 2 736.14 162 960.64 536.1± 4.2 67.50 3.77 1.27± 0.10
      6 200 282.22 876.41 1.42 2 610.17 148 576.84 515.5± 4.0 64.05 3.60 1.28± 0.12
      7 220 239.12 977.65 8.21 2 618.07 139 527.44 486.7± 3.2 66.38 3.61 1.15± 0.11
      8 260 310.38 1 130.53 17.67 3 311.83 162 838.60 453.3± 3.6 63.97 4.56 1.26± 0.13
      9 300 263.90 1 162.60 1.56 2 797.86 126 921.90 422.1± 3.3 61.94 3.85 1.03± 0.10
      10 300 246.83 1 088.53 5.35 2 397.26 98 318.89 385.6± 4.6 57.41 3.30 0.95± 0.07
      11 320 280.79 1 107.70 5.16 2 436.73 101 327.56 390.4± 4.3 54.98 3.36 0.95± 0.08
      12 380 263.56 1 222.17 8.16 2 539.64 91 470.03 342.8± 9.7 54.01 3.50 0.89± 0.11
      石英(09NQ39B-Qz)真空击碎, J= 0.0058 101 81, I0=295.5, 锡铁山
      13 380 213.87 1 121.20 7.64 2 268.00 78 176.22 329.3± 3.8 55.30 3.12 0.87± 0.09
      14 300 163.43 895.76 9.94 1 780.88 57 946.82 312.4± 4.5 54.54 2.45 0.85± 0.08
      15 400 161.86 1 160.61 2.58 2 334.12 72 667.81 300.0± 3.1 60.31 3.22 0.86± 0.06
      16 450 203.53 1 408.19 9.72 2 536.16 77 800.81 295.9± 3.7 56.40 3.49 0.77± 0.06
      17 500 145.88 1 058.09 1.49 2 298.31 61 585.90 261.0± 5.2 58.82 3.17 0.93± 0.08
      18 400 207.53 1 147.96 9.95 2 572.42 64 610.11 245.7± 3.5 51.30 3.54 0.96± 0.10
      19* 450 203.02 1 075.26 18.50 2 204.71 49 947.68 223.1± 4.2 45.43 3.04 0.88± 0.05
      20* 500 200.88 1 095.46 18.00 2 358.43 52 510.18 219.5± 6.9 46.94 3.25 0.93± 0.14
      21* 400 185.70 1 157.96 20.73 2 485.43 56 719.35 224.6± 3.0 50.83 3.42 0.92± 0.07
      22* 450 142.85 919.56 10.11 2 134.43 48 053.53 221.8± 2.6 53.24 2.94 1.00± 0.11
      23* 500 186.23 1 079.64 14.98 2 654.99 59 728.32 221.6± 7.3 52.05 3.66 1.06± 0.07
      24* 550 332.16 1 141.52 10.63 2 410.65 54 775.56 223.7± 4.1 35.82 3.32 0.91± 0.09
      25* 600 281.17 1 311.38 18.23 2 946.83 66 896.29 223.5± 2.7 44.60 4.06 0.97± 0.12
      26* 700 303.24 1 351.12 5.65 3 270.57 74 196.83 223.4± 6.3 45.30 4.51 1.04± 0.07
      27* 800 473.83 1 537.39 10.33 3 282.68 73 448.16 220.5± 4.4 34.41 4.52 0.92± 0.09
      28* 900 469.04 1 649.78 13.24 3 840.74 86 091.43 220.9± 4.8 38.31 5.29 1.00± 0.08
      29* 1000 293.60 1 338.65 43.75 2 828.26 64 141.45 223.3± 3.2 42.50 3.90 0.91± 0.09
      阶段 T(℃) 36ArA 37ArCa 38ArCl 39ArK 40Ar* t±2σ(Ma) 40Ar*(%) 39ArK (%) K/Ca±2σ
      石榴子石(09NQ39A-Grt)残余粉末阶段加热, J= 0.005 059 30, I0=295.5, 锡铁山
      1 450 1 931.57 37 776.67 25.88 4 920.21 120 466.12 210.7± 7.6 17.43 41.90 0.056± 0.002
      2 550 1 221.18 18 797.03 8.12 1 074.02 26 276.88 210.5± 25.7 6.79 9.15 0.025± 0.001
      3 650 1 250.95 33 258.71 3.71 1 086.70 30 101.21 236.6± 22.0 7.53 9.25 0.014± 0.001
      4 750 3 183.42 136 776.74 7.57 1 843.83 43 006.56 201.2± 32.8 4.37 15.70 0.006± 0.000
      5 800 3 280.74 175 360.56 6.29 1 296.03 34 061.05 225.2± 45.0 3.39 11.04 0.003± 0.000
      6 950 3 292.72 175 116.41 7.77 1 521.44 30 272.27 173.0± 43.0 3.02 12.96 0.004± 0.000
      注:*用于计算坪年龄和等时年龄的数据;Ar同位素分析质谱型号为Quadrupole,Ar同位素单位为cps.Ar同位素下标说明:A表示大气Ar;Ca、Cl和K表示这些元素在中子活化过程中产生的干扰Ar同位素.40Ar* = 40Arm-295.5×36Arm,下标m表示测量值.
      下载: 导出CSV
    • Andersen, T., Austrheim, H., Burke, E. A. J., et al., 1993. N2 and CO2 in Deep Crustal Fluids: Evidence from the Caledonides of Norway. Chemical Geology, 108(4): 113-132. https://doi.org/10.1016/0009-2541(93)90320-i
      Bai, X. J., Hu, R. G., Jiang, Y. D., et al., 2019. Refined Insight into 40Ar/39Ar Progressive Crushing Technique from K-Cl-Ar Correlations in Fluid Inclusions. Chemical Geology, 515: 37-49. https://doi.org/10.1016/j.chemgeo.2019.03.037
      Chen, D. L., Liu, L., Sun, Y., et al., 2012. Felsic Veins within UHP Eclogite at Xitieshan in North Qaidam, NW China: Partial Melting during Exhumation. Lithos, 136-139: 187-200. https://doi.org/10.1016/j.lithos.2011.11.006
      Chen, R. X., Zheng, Y. F., Gong, B., et al., 2007. Origin of Retrograde Fluid in Ultrahigh-Pressure Metamorphic Rocks: Constraints from Mineral Hydrogen Isotope and Water Content Changes in Eclogite-Gneiss Transitions in the Sulu Orogen. Geochimica et Cosmochimica Acta, 71(9): 2299-2325. https://doi.org/10.1016/j.gca.2007.02.012
      Franz, L., Romer, R. L., Klemd, R., et al., 2001. Eclogite-Facies Quartz Veins within Metabasites of the Dabie Shan (Eastern China): Pressure-Temperature-Time-Deformation Path, Composition of the Fluid Phase and Fluid Flow during Exhumation of High-Pressure Rocks. Contributions to Mineralogy and Petrology, 141(3): 322-346. https://doi.org/10.1007/s004100000233
      Fu, B., Touret, J. L. R., Zheng, Y. F., et al., 2003. Fluid Inclusions in Granulites, Granulitized Eclogites and Garnet Clinopyroxenites from the Dabie-Sulu Terranes, Eastern China. Lithos, 70(3-4): 293-319. https://doi.org/10.1016/S0024-4937(03)00103-8
      Gao, T. S., Wang, S. S., Gong, B., et al., 2006. Postcollisional Flow of Aqueous Fluid within Ultrahigh-Pressure Eclogite in the Dabie Orogen. Journal of Geochemical Exploration, 89(1-3): 115-118. https://doi.org/10.1016/j.gexplo.2005.11.044
      Gou, Z. B., Liu, H., Duan, Y. Y., et al., 2020. Timescales of Partial Melting in Yadong Region of Higher Himalayan Crystalline Sequence: Constraints from Zircon U-Pb Geochronology of Naiduila Migmatites. Earth Science, 45(8): 2894-2904(in Chinese with English abstract).
      Hall, D. L., Sterner, S. M., Bodnar, R. J., 1988. Freezing Point Depression of NaCl-KCl-H2O Solutions. Economic Geology, 83(1): 197-202. https://doi.org/10.2113/gsecongeo.83.1.197
      Hu, R. G., Bai, X. J., Wijbrans, J., et al., 2018. Occurrence of Excess 40Ar in Amphibole: Implications of 40Ar/39Ar Dating by Laser Stepwise Heating and in Vacuo Crushing. Journal of Earth Science, 29(2): 416-426. https://doi.org/10.1007/s12583-017-0947-x
      Hu, R. G., Wang, M., Wijbrans, J. R., et al., 2013. 40Ar/39Ar Geochronology of Amphibole from the Amphibolite Rocks, Xitieshan Terrane, North Qaidam UHP Metamorphic Belt, Western China. Acta Petrologica Sinica, 29(9): 3031-3038(in Chinese with English abstract).
      Hu, R. G., Wijbrans, J. R., Brouwer, F. M., et al., 2015a. Retrograde Metamorphism of the Eclogite in North Qaidam, Western China: Constraints by Joint 40Ar/39Ar in Vacuo Crushing and Stepped Heating. Geoscience Frontiers, 6(5): 759-770. https://doi.org/10.1016/j.gsf.2014.09.005
      Hu, R. G., Wijbrans, J. R., Brouwer, F. M., et al., 2015b. Fluid Inclusions Study and Direct 40Ar/39Ar Dating by in Vacuo Crushing of Quartz Veins within UHP Metamorphic Rocks from Yuka Terrane, North Qaidam Orogen, China. Geochemical Journal, 49(2): 139-155. https://doi.org/10.2343/geochemj.2.0337
      Hu, R. G., Wijbrans, J. R., Brouwer, F. M., et al., 2016. 40Ar/39Ar Thermochronological Constraints on the Retrogression and Exhumation of Ultra-High Pressure (UHP) Metamorphic Rocks from Xitieshan Terrane, North Qaidam, China. Gondwana Research, 36: 157-175. https://doi.org/10.1016/j.gr.2016.04.009
      John, T., Klemd, R., Gao, J., et al., 2008. Trace-Element Mobilization in Slabs Due to Non Steady-State Fluid-Rock Interaction: Constraints from an Eclogite-Facies Transport Vein in Blueschist (Tianshan, China). Lithos, 103(1-2): 1-24. https://doi.org/10.1016/j.lithos.2007.09.005
      Kendrick, M. A., Miller, J. M., Phillips, D., 2006. Part Ⅱ. Evaluation of 40Ar-39Ar Quartz Ages: Implications for Fluid Inclusion Retentivity and Determination of Initial 40Ar/36Ar Values in Proterozoic Samples. Geochimica et Cosmochimica Acta, 70(10): 2562-2576. https://doi.org/10.1016/j.gca.2005.12.024
      Koppers, A. A. P., 2002. ArArCALC—Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605-619. https://doi.org/10.1016/s0098-3004(01)00095-4
      Li, H. B., Yang, J. S., Xu, Z. Q., et al., 2002. Geological and Chronological Evidence of Indo-Chinese Strike-Slip Movement in the Altyn Tagh Fault Zone. Chinese Science Bulletin, 47(1): 28-33. https://doi.org/10.1360/02tb9005
      Liu, P. H., Tian, Z. H., Wen, F., et al., 2020. Multiple High-Grade Metamorphic Events of the Jiaobei Terrane, North China Craton: New Evidences from Zircon U-Pb Ages and Trace Elements Compositions of Garnet Amphilbote and Granitic Leucosomes. Earth Science, 45(9): 3196-3216(in Chinese with English abstract).
      Liu, X., Wu, Y., Gao, S., et al., 2012. First Record and Timing of UHP Metamorphism from Zircon in the Xitieshan Terrane: Implications for the Evolution of the Entire North Qaidam Metamorphic Belt. American Mineralogist, 97(7): 1083-1093. https://doi.org/10.2138/am.2012.4048
      Meng, F. C., Zhang, J. X., Yang, J. S., 2005. Tectono-Thermal Event of Post-HP/UHP Metamorphism in the Xitieshan Area of the North Qaidam Mountains, Western China: Isotopic and Geochemical Evidence of Granite and Gneiss. Acta Petrologica Sinica, 21(1)45-56(in Chinese with English abstract).
      Qiu, H. N., Bai, X. J., 2019. Fluid Inclusion 40Ar/39Ar Dating Technique and Its Applications. Earth Science, 44(3): 685-697(in Chinese with English abstract).
      Qiu, H. N., Wijbrans, J. R., 2006. Paleozoic Ages and Excess 40Ar in Garnets from the Bixiling Eclogite in Dabieshan, China: New Insights from 40Ar/39Ar Dating by Stepwise Crushing. Geochimica et Cosmochimica Acta, 70(9): 2354-2370. https://doi.org/10.1016/j.gca.2005.11.030
      Qiu, H. N., Wijbrans, J. R., Brouwer, F. M., et al., 2010. Amphibolite Facies Retrograde Metamorphism of the Zhujiachong Eclogite, SE Dabieshan: 40Ar/39Ar Age Constraints from Argon Extraction Using UV-Laser Microprobe, In Vacuo Crushing and Stepwise Heating. Journal of Metamorphic Geology, 28(5): 477-487. https://doi.org/10.1111/j.1525-1314.2010.00875.x
      Selverstone, J., Franz, G., Thomas, S., et al., 1992. Fluid Variability in 2 GPa Eclogites as an Indicator of Fluid Behavior during Subduction. Contributions to Mineralogy and Petrology, 112(2): 341-357. https://doi.org/10.1007/bf00310465
      Sheng, Y. M., Zheng, Y. F., Wu, Y. B., 2011. Studies of Metamorphic Vein in Ultrahigh-Pressure Rocks. Acta Petrologica Sinica, 27(2): 490-500(in Chinese with English abstract).
      Song, S. G., Niu, Y. L., Su, L., et al., 2014. Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling: The Example of the North Qaidam UHPM Belt, NW China. Earth-Science Reviews, 129: 59-84. https://doi.org/10.1016/j.earscirev.2013.11.010
      Svensen, H., Jamtveit, B., Banks, D. A., et al., 2001. Halogen Contents of Eclogite Facies Fluid Inclusions and Minerals: Caledonides, Western Norway. Journal of Metamorphic Geology, 19(2): 165-178. https://doi.org/10.1046/j.0263-4929.2000.00301.x
      Uunk, B., Postma, O., Wijbrans, J., et al., 2017. Direct 40Ar/39Ar Age Determination of Fluid Inclusions Using In Vacuo Stepwise Crushing: Example of Garnet from the Cycladic Blueschist Unit on Syros. EGU General Assembly Conference, Vienna, Austria.
      Wijbrans, J., Pringle, M., Koppers, A., et al., 1995. Argon Geochronology of Small Samples Using the Vulkaan Argon Laserprobe. Proceedings Kon. Ned. Akaed. v. Wetensch, 98(2): 185-218. http://www.researchgate.net/publication/230563039_Argon_geochronology_of_small_samples_using_the_Vulkaan_argon_laserprobe_P
      Wu, Y. B., Gao, S., Zhang, H. F., et al., 2009. U-Pb Age, Trace-Element, and Hf-Isotope Compositions of Zircon in a Quartz Vein from Eclogite in the Western Dabie Mountains: Constraints on Fluid Flow during Early Exhumation of Ultrahigh-Pressure Rocks. American Mineralogist, 94(2-3): 303-312. https://doi.org/10.2138/am.2009.3042
      Xiao, M., Jiang, Y. D., Qiu, H. N., et al., 2022. An Improved Gas Extraction Model during Stepwise Crushing: New Perspectives on Fluid Geochronology and Geochemistry. Ore Geology Reviews, 140: 104588. https://doi.org/10.1016/j.oregeorev.2021.104588
      Yang, J. S., Xu, Z. Q., Song, S. G., et al., 2001. Discovery of Coesite in the North Qaidam Early Palaeozoic Ultrahigh Pressure (UHP) Metamorphic Belt, NW China. Comptes Rendus De L'Académie Des Sciences-Series IIA-Earth and Planetary Science, 333(11): 719-724. https://doi.org/10.1016/s1251-8050(01)01718-9
      Zhang, C., Bader, T., Zhang, L. F., et al., 2017. The Multi-Stage Tectonic Evolution of the Xitieshan Terrane, North Qaidam Orogen, Western China: From Grenville-Age Orogeny to Early-Paleozoic Ultrahigh-Pressure Metamorphism. Gondwana Research, 41: 290-300. https://doi.org/10.1016/j.gr.2015.04.011
      Zhang, C., Zhang, L. F., Van Roermund, H., et al., 2011. Petrology and SHRIMP U-Pb Dating of Xitieshan Eclogite, North Qaidam UHP Metamorphic Belt, NW China. Journal of Asian Earth Sciences, 42(4): 752-767. https://doi.org/10.1016/j.jseaes.2011.04.002
      Zhang, C., Zhang, L. F., Zhang, G. B., et al., 2009. Petrology and Calculation of Retrograde PT Path of Eciogites from Xitieshan, North Qaidam, China. Acta Petrologica Sinica, 25(9): 2247-2259(in Chinese with English abstract).
      Zhang, J., Mattinson, C. G., Meng, F., et al., 2008a. Polyphase Tectonothermal History Recorded in Granulitized Gneisses from the North Qaidam HP/UHP Metamorphic Terrane, Western China: Evidence from Zircon U-Pb Geochronology. Geological Society of America Bulletin, 120(5-6): 732-749. https://doi.org/10.1130/b26093.1
      Zhang, J. X., Yang, J. S., Mattinson, C. G., et al., 2005. Two Contrasting Eclogite Cooling Histories, North Qaidam HP/UHP Terrane, Western China: Petrological and Isotopic Constraints. Lithos, 84(1-2): 51-76. https://doi.org/10.1016/j.lithos.2005.02.002
      Zhang, Z. M., Shen, K., Sun, W. D., et al., 2008b. Fluids in Deeply Subducted Continental Crust: Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China. Geochimica et Cosmochimica Acta, 72(13): 3200-3228. https://doi.org/10.1016/j.gca.2008.04.014
      Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1-2): 105-161. https://doi.org/10.1016/s0012-8252(02)00133-2
      Zong, K. Q., Liu, Y. S., Hu, Z. C., et al., 2010. Melting-Induced Fluid Flow during Exhumation of Gneisses of the Sulu Ultrahigh-Pressure Terrane. Lithos, 120(3-4): 490-510. https://doi.org/10.1016/j.lithos.2010.09.013
      苟正彬, 刘函, 段瑶瑶, 等, 2020. 亚东地区高喜马拉雅结晶岩系部分熔融的时限: 来自乃堆拉混合岩锆石U-Pb年代学的约束. 地球科学, 45(8): 2894-2904. doi: 10.3799/dqkx.2020.110
      胡荣国, 王敏, Wijbrans, J. R., 等, 2013. 柴北缘锡铁山榴辉岩退变质成因角闪石40Ar/39Ar年代学研究. 岩石学报, 29(9): 3031-3038.
      刘平华, 田忠华, 文飞, 等, 2020. 华北克拉通胶北地体多期高级变质事件: 来自石榴斜长角闪岩与花岗质浅色体锆石U-Pb定年与稀土元素的新证据. 地球科学, 45(9): 3196-3216. doi: 10.3799/dqkx.2020.228
      孟繁聪, 张建新, 杨经绥, 2005. 柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件: 花岗岩和片麻岩的同位素与岩石地球化学证据. 岩石学报, 21(1): 45-56.
      邱华宁, 白秀娟, 2019. 流体包裹体40Ar/39Ar定年技术与应用. 地球科学, 44(3): 685-697. doi: 10.3799/dqkx.2019.007
      盛英明, 郑永飞, 吴元保, 2011. 超高压岩石中变质脉的研究. 岩石学报, 27(2): 490-500.
      张聪, 张立飞, 张贵宾, 等, 2009. 柴北缘锡铁山一带榴辉岩的岩石学特征及其退变PT轨迹. 岩石学报, 25(9): 2247-2259.
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  203
    • HTML全文浏览量:  424
    • PDF下载量:  48
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-12-12
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回