• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川西滴痴山高分异花岗岩与辉钼矿的成因联系

    谭洪旗 吕丰强 李超 周雄 周玉 刘应冬 胡军亮 朱志敏

    谭洪旗, 吕丰强, 李超, 周雄, 周玉, 刘应冬, 胡军亮, 朱志敏, 2023. 川西滴痴山高分异花岗岩与辉钼矿的成因联系. 地球科学, 48(11): 3978-3994. doi: 10.3799/dqkx.2022.027
    引用本文: 谭洪旗, 吕丰强, 李超, 周雄, 周玉, 刘应冬, 胡军亮, 朱志敏, 2023. 川西滴痴山高分异花岗岩与辉钼矿的成因联系. 地球科学, 48(11): 3978-3994. doi: 10.3799/dqkx.2022.027
    Tan Hongqi, Lü Fengqiang, Li Chao, Zhou Xiong, Zhou Yu, Liu Yingdong, Hu Junliang, Zhu Zhimin, 2023. Genetic Linking between Pegmatite⁃Type Veined Molybdenum Deposit and Dichishan Highly Differentiated Granite in West Sichuan. Earth Science, 48(11): 3978-3994. doi: 10.3799/dqkx.2022.027
    Citation: Tan Hongqi, Lü Fengqiang, Li Chao, Zhou Xiong, Zhou Yu, Liu Yingdong, Hu Junliang, Zhu Zhimin, 2023. Genetic Linking between Pegmatite⁃Type Veined Molybdenum Deposit and Dichishan Highly Differentiated Granite in West Sichuan. Earth Science, 48(11): 3978-3994. doi: 10.3799/dqkx.2022.027

    川西滴痴山高分异花岗岩与辉钼矿的成因联系

    doi: 10.3799/dqkx.2022.027
    基金项目: 

    国家自然科学基金项目 41603034

    中国地质调查局项目 DD20190185

    中国地质调查局项目 DD20221697

    中国地质调查局项目 DD20230039

    详细信息
      作者简介:

      谭洪旗(1984-),男,高级工程师,博士,主要从事岩石学、矿床学、地球化学方面的研究. ORCID:0000-0001-9999-2158. E-mail:hongqitan@163.com

    • 中图分类号: P581;P611

    Genetic Linking between Pegmatite⁃Type Veined Molybdenum Deposit and Dichishan Highly Differentiated Granite in West Sichuan

    • 摘要: 为查明川西滴痴山高分异花岗岩与伟晶岩型脉状钼矿的成因联系,开展了岩石地球化学、锆石U-Pb及辉钼矿Re-Os同位素年龄研究.结果显示,滴痴山花岗岩体具高的SiO2(72.95%~75.44%)Al2O3(13.93%~14.99%)和A/CNK(1.11~1.25),为高钾钙碱性和过铝质系列,富集高场强元素Th、Ce、Zr、Sm及大离子亲石元素Rb,亏损高场强元素Hf、Yb及大离子亲石元素Ba.滴痴山花岗岩中锆石LA-ICP-MS U-Pb加权平均年龄为201.9±0.8 Ma,锆石log fO2=-15.40±2.89,△FMQ=-0.40±2.89,为低氧逸度环境;伟晶岩中辉钼矿Re-Os年龄为188.6±4.8 Ma.滴痴山花岗岩为燕山早期高分异S型花岗岩,形成于后碰撞环境,为松潘‒甘孜地块南缘岩石圈从挤压向伸展构造体制的转换期.松潘‒甘孜地区伟晶岩型脉状辉钼矿的发现,为川西九龙地区钨钼矿找矿勘探工作拓宽了思路.

       

    • 图  1  川西九龙及其邻区地质略图

      YZB.扬子地块;NCC.华北克拉通;TP.青藏高原;LYFTZ.龙门山‒盐源前陆逆冲带;SGOB.松潘‒甘孜地块;GLSZ.甘孜‒理塘蛇绿混杂岩带;JSZ.金沙江蛇绿混杂岩带;YPA.义敦岛弧;QCB.羌塘‒昌都陆块;XSF.鲜水河走滑断层(数据来源:万传辉等,2011袁静等,2011周家云等, 2013, 2014李同柱等,2016Dai et al.,2017Zhou et al.,2017谭洪旗,2019Zhan et al.,2020谭洪旗等, 2022a, 2022b, 2023)

      Fig.  1.  Geological sketch map of the Jiulong region and its adjacent areas in West Sichuan

      图  2  滴痴山花岗岩、伟晶岩及辉钼矿关系

      a.伟晶岩与扎尕山组(T3zg)地层呈侵入接触关系;b.伟晶岩中的团块状辉钼矿;c.滴痴山二长花岗岩,表面分布有石榴石;d.二长花岗岩显微镜下矿物组成;Kfs.钾长石;Qtz.石英;Pl.斜长石;Mus.白云母;γρ.花岗伟晶岩;Μοl.辉钼矿;Grt.石榴石;T3zg.扎尕山组

      Fig.  2.  Field relationship of granite and pegmatite in Dichishan area

      图  3  九龙滴痴山花岗岩哈克图解

      Fig.  3.  Harker diagrams of Dichishan granite in Jiulong region

      图  4  滴痴山花岗岩的TAS、K2O‒SiO2和A/NK‒A/NCK图解

      a.TAS图解(Le Bas et al.,1986);b.K2O‒SiO2图解(Rollinson,1993);c.A/NK‒A/NCK图解(Maniar and Piccoli, 1989)

      Fig.  4.  TAS, K2O vs SiO2, A/NK vs. A/NCK diagrams of Dichishan granite

      图  5  滴痴山花岗岩球粒陨石标准化稀土配分图解(a)和微量元素配分图解(b)

      球粒陨石标准值引自Sun and McDonough(1989)

      Fig.  5.  Chondrite-normalized REE diagram (a) and trace element diagram (b) for Dichishan granite

      图  6  川西滴痴山花岗岩锆石U-Pb谐和图(a)及锆石稀土球粒陨石标准化配分图(b)

      球粒陨石标准值引自Sun and McDonough (1989)

      Fig.  6.  Zircon U-Pb concordia diagram (a) of the Dichishan granite and chondrite-normalized REE patterns of zircon (b)

      图  7  滴痴山岩体辉钼矿Re-Os等时线(a)及加权平均年龄图(b)

      Fig.  7.  Molybdenite Re-Os isochron age diagram (a) and weighted average dating of the Dichishan granite (b)

      图  8  滴痴山花岗岩岩浆氧逸度判别

      HM.磁铁矿‒赤铁矿;MNO.镍‒氧化镍;FMQ.铁橄榄石‒磁铁矿+石英;IW.自然铁‒方铁矿;QIF.石英‒自然铁‒铁橄榄石

      Fig.  8.  Magma oxygen fugacity discrimination diagram for the Dichishan granite

      图  9  滴痴山花岗岩的地球化学判别图解

      a.A=n(Al2O3‒Na2O‒K2O),C=n(Cao),F=n(FeOT) 图解(据Chappell and white, 1992);b.10 000Ga/Al‒Nb图解(据Whalen et al.,1987);c.10 000Ga/Al‒Y图解(据Whalen et al.,1987)

      Fig.  9.  Geochemical discrimination diagrams of Dichishan granite

      图  10  滴痴山花岗岩的构造判别图解(据Pearce et al., 1984)

      a. Y+Nb‒Rb图解;b. Yb+Ta‒Rb图解

      Fig.  10.  Tectonic setting discrimination diagrams (after Pearce et al., 1984)

      表  1  滴痴山花岗岩体的化学成分

      Table  1.   Major and trace element compositions of Dichishan granite

      编号 PM011-1-1 PM011-1-2 PM020-129 PM020-161 PM020-60 PM020-95
      二长花岗岩 二长花岗岩 二长花岗岩 二长花岗岩 二长花岗岩 二长花岗岩
      SiO2 75.44 75.35 75.34 73.14 72.95 74.24
      TiO2 0.02 0.02 0.02 0.03 0.09 0.02
      Al2O3 13.93 13.94 14.29 14.99 14.48 14.64
      Fe2O3 0.73 0.72 0.11 0.12 0.05 0.29
      FeO 0.58 0.63 1.24 0.48
      MnO 0.06 0.06 0.03 0.03 0.03 0.03
      MgO 0.06 0.07 0.20 0.22 0.34 0.18
      CaO 0.63 0.71 0.68 0.67 0.98 0.51
      Na2O 4.32 4.02 4.89 3.71 3.65 4.48
      K2O 3.37 2.98 3.30 5.21 4.70 3.77
      P2O5 0.03 0.03 0.09 0.11 0.18 0.12
      LOI 1.42 1.14 0.39 0.41 0.48 0.52
      Total 100.01 99.04 99.99 99.33 99.10 99.34
      TFe2O3 0.73 0.72 0.75 0.82 1.22 0.82
      K2O+Na2O 7.69 7.00 8.19 8.92 8.35 8.25
      K2O/Na2O 0.78 0.74 0.67 1.40 1.29 0.84
      A/CNK 1.17 1.25 1.11 1.16 1.12 1.18
      A/NK 1.44 1.48 1.41 1.68 1.43 1.46
      Li 37.3 22.6 50.4 37.4
      Cs 5.87 5.99 4.08 2.10 4.52 3.56
      Rb 232 203 312 191 207 247
      Sr 39.6 42.2 16.1 68.5 147 16.1
      Ba 49.4 54.7 10.0 142 454 10.0
      Ga 14.3 14.2 27.4 17.7 22.7 21.7
      Nb 31.3 32.2 27.0 11.1 17.7 14.6
      Ta < 0.1 0.12 5.06 1.17 2.14 1.80
      Zr 33.8 24.1 31.9 19.6 73.0 29.5
      Hf 0.28 0.50 1.87 0.73 2.41 1.54
      Th 7.35 5.88 4.04 5.40 13.0 1.70
      U 7.91 7.50 6.77 2.13 7.14 4.76
      Sc 0.33 0.34 0.50 1.25 1.55 1.00
      La 7.71 5.37 3.79 7.64 25.0 1.61
      Ce 12.7 8.82 6.50 13.1 39.8 2.74
      Pr 1.27 0.88 0.76 1.52 4.45 0.32
      Nd 3.98 2.83 2.13 4.91 13.7 0.96
      Sm 1.28 0.96 0.93 1.58 3.05 0.35
      Eu 0.12 0.11 0.036 0.23 0.51 0.026
      Gd 1.20 1.30 1.05 1.75 3.38 0.38
      Tb 0.37 0.32 0.26 0.31 0.57 0.095
      Dy 2.16 1.88 1.54 1.58 2.90 0.52
      Ho 0.40 0.34 0.28 0.23 0.45 0.09
      Er 1.17 1.07 0.84 0.51 1.02 0.28
      Tm 0.16 0.16 0.14 0.075 0.14 0.045
      Yb 1.13 1.02 0.91 0.51 0.84 0.36
      Lu 0.17 0.15 0.13 0.064 0.12 0.043
      Y 9.84 8.25 12.8 8.80 12.0 6.20
      Cu < 0.01 < 0.01 1.8 0.80 2.00 1.50
      Pb 42.3 34.3 32.3 42.9 42.7 22.6
      Zn 35.7 33 61.8 25.9 44.1 29.1
      V 7.78 8.53 11.1 5.30 9.00 8.65
      Cr 6.3 6.36 8.70 5.70 7.60 9.05
      Co < 0.01 < 0.01 3.20 3.50 4.30 2.90
      Ni 0.085 < 0.01 1.00 1.10 2.90 1.00
      ΣREE 33.8 25.2 19.3 34.0 95.9 7.82
      LREE 27.1 19.0 14.2 29.0 86.5 6.01
      HREE 6.76 6.24 5.15 5.03 9.42 1.81
      LREE/HREE 4.00 3.04 2.75 5.76 9.18 3.31
      LaN/YbN 4.89 3.78 2.99 10.8 21.4 3.21
      δEu 0.29 0.30 0.11 0.42 0.48 0.22
      δCe 0.90 0.90 0.89 0.89 0.85 0.88
      T(℃) 621 603 609 575 677 609
      注:测试单位:中国地质科学院矿产综合利用研究所.T(℃)为锆石饱和温度,文献见Boehnke et al.(2013).主量元素单位为%,微量元素为10‒6.
      下载: 导出CSV

      表  2  滴痴山花岗岩岩体样品LA⁃ICP⁃MS锆石U⁃Pb年龄数据

      Table  2.   LA-ICP-MS zircon U-Pb isotopic age data of Dichishan granite

      分析点 Th(10-6) U(10-6) Th/U 同位素比值 同位素年龄(Ma) T(℃)
      207Pb/
      206Pb
      207Pb/
      235U
      206Pb/
      238U
      207Pb/
      206Pb
      207Pb/
      235U
      206Pb/
      238U
      1 510 1 408 0.36 0.053 22 0.001 39 0.230 78 0.005 56 0.031 43 0.000 24 338 58 211 5 200 2 789
      2 201 657 0.31 0.057 74 0.001 29 0.536 02 0.010 83 0.067 29 0.000 50 520 48 436 7 420 3 736
      3 502 3 875 0.13 0.059 35 0.001 23 0.262 49 0.004 85 0.032 06 0.000 22 580 44 237 4 203 1 770
      4 86 213 0.40 0.062 58 0.001 54 0.751 25 0.017 07 0.087 02 0.000 71 694 52 569 10 538 4 1 024
      5 125 610 0.21 0.049 91 0.001 39 0.219 10 0.005 68 0.031 82 0.000 25 191 63 201 5 202 2 728
      6 228 736 0.31 0.052 77 0.003 16 0.231 33 0.013 40 0.031 78 0.000 47 319 130 211 11 202 3 750
      7 102 798 0.13 0.066 70 0.001 07 0.915 48 0.012 29 0.099 51 0.000 64 828 33 660 7 612 4 841
      8 486 1 150 0.42 0.060 16 0.001 36 0.262 15 0.005 35 0.031 59 0.000 23 610 48 236 4 201 1 819
      9 493 939 0.53 0.051 77 0.001 13 0.228 83 0.004 52 0.032 05 0.000 22 275 49 209 4 203 1 775
      10 580 1 385 0.42 0.050 05 0.000 86 0.217 79 0.003 20 0.031 55 0.000 20 197 40 200 3 200 1 849
      11 657 2 262 0.29 0.052 52 0.000 92 0.230 64 0.003 48 0.031 84 0.000 20 308 40 211 3 202 1 839
      12 128 697 0.18 0.050 19 0.001 59 0.219 44 0.006 56 0.031 70 0.000 28 204 72 201 5 201 2 722
      13 269 881 0.31 0.052 07 0.001 36 0.229 38 0.005 55 0.031 95 0.000 25 288 59 210 5 203 2 795
      14 494 1 974 0.25 0.052 79 0.001 12 0.228 71 0.004 33 0.031 42 0.000 22 320 47 209 4 199 1 828
      15 219 434 0.50 0.052 34 0.002 21 0.231 23 0.009 36 0.032 04 0.000 35 300 94 211 8 203 2 783
      16 238 668 0.36 0.075 61 0.001 27 1.617 56 0.023 18 0.155 16 0.001 08 1 085 33 977 9 930 6 772
      17 213 1 091 0.20 0.051 23 0.002 05 0.223 27 0.008 53 0.031 61 0.000 33 251 89 205 7 201 2 786
      18 137 395 0.35 0.057 70 0.002 18 0.554 59 0.019 97 0.069 71 0.000 76 518 81 448 13 434 5 904
      19 144 550 0.26 0.051 64 0.001 40 0.228 32 0.005 77 0.032 07 0.000 25 269 61 209 5 204 2 721
      20 51 136 0.37 0.058 16 0.002 76 0.673 75 0.030 92 0.084 03 0.001 13 535 101 523 19 520 7 819
      21 72 191 0.38 0.062 76 0.001 79 0.758 13 0.020 30 0.087 63 0.000 80 700 60 573 12 542 5 806
      22 455 941 0.48 0.056 21 0.001 62 0.221 93 0.005 95 0.028 64 0.000 24 460 63 204 5 182 2 894
      23 524 1 112 0.47 0.050 04 0.000 91 0.220 22 0.003 49 0.031 92 0.000 20 197 42 202 3 203 1 829
      24 92 245 0.38 0.056 80 0.001 22 0.671 50 0.013 00 0.085 76 0.000 63 483 47 522 8 530 4 795
      25 74 204 0.36 0.057 96 0.002 13 0.678 30 0.023 82 0.084 90 0.000 92 528 79 526 14 525 5 796
      26 136 229 0.59 0.051 82 0.002 58 0.230 18 0.011 06 0.032 23 0.000 40 277 110 210 9 205 3 916
      27 378 992 0.38 0.051 13 0.000 95 0.225 38 0.003 66 0.031 98 0.000 21 247 42 206 3 203 1 825
      28 33 110 0.30 0.062 68 0.002 47 0.747 27 0.028 17 0.086 50 0.001 01 697 82 567 16 535 6 1 368
      29 294 1 099 0.27 0.052 08 0.001 18 0.229 43 0.004 71 0.031 96 0.000 23 289 51 210 4 203 1 802
      30 210 901 0.23 0.051 88 0.001 17 0.229 30 0.004 70 0.032 06 0.000 23 280 51 210 4 204 1 758
      注:测试单位:西北大学大陆动力学国家重点实验室,测试者弓化栋.
      下载: 导出CSV

      表  3  滴痴山花岗岩锆石的微量元素数据

      Table  3.   Zircon trace element data of Dichishan granite in Jiulong region

      样品 P Ti Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Hf ΣREE L/H δEu δCe T(℃)
      1 548 7.80 6.50 0.037 13.35 0.140 2.98 7.48 1.78 41.21 13.98 153.3 49.7 201.3 40.8 399.3 74.0 1 705 7 841 999 0.03 0.25 26.8 789
      2 377 4.50 3.40 < 0.025 11.37 0.064 1.10 2.69 0.08 21.15 8.59 112.1 43.2 200.7 40.9 383.7 69.0 1 322 12 299 894 0.02 0.02 55.2 736
      3 674 6.40 24.3 3.13 12.07 0.580 4.31 9.54 1.51 58.92 25.49 277.4 82.0 295.7 52.3 442.7 67.6 2 661 11 153 1 333 0.02 0.15 2.0 770
      4 359 51.1 1.60 2.05 7.75 0.672 4.02 3.19 < 0.061 13.05 4.78 60.6 22.2 97.6 19.8 185.1 33.5 681 8 557 454 0.04 0.86 1.6 1 024
      5 326 4.10 4.90 < 0.031 2.85 0.060 0.90 3.16 0.53 18.81 6.30 66.9 21.9 91.1 18.1 170.9 31.7 749 8 162 433 0.02 0.16 14.7 728
      6 377 5.20 5.30 < 0.032 6.64 0.088 1.90 3.88 0.64 21.60 7.27 78.6 27.9 127.6 25.7 266.7 50.1 969 7 860 619 0.02 0.17 23.4 750
      7 413 12.6 4.80 0.109 8.28 0.143 1.34 2.61 0.47 14.86 5.95 78.3 30.9 150.9 35.7 380.7 73.9 968 10 982 784 0.02 0.18 13.8 841
      8 333 10.3 10.9 0.078 14.90 0.200 3.18 7.90 1.61 36.59 12.48 129.8 43.4 177.7 35.6 337.4 61.9 1 471 7 410 863 0.03 0.24 20.0 819
      9 298 6.80 6.40 0.073 12.23 0.507 6.99 10.16 1.96 40.00 11.80 114.5 36.0 135.8 25.2 224.8 38.8 1 197 7 174 659 0.05 0.26 7.1 775
      10 406 13.5 14.8 < 0.031 19.78 0.219 4.50 8.88 1.95 50.08 16.25 165.2 52.3 204.1 39.0 361.8 64.4 1 763 7 746 988 0.04 0.22 28.0 849
      11 603 12.4 20.3 0.112 10.57 0.196 3.29 9.29 1.41 56.01 20.43 217.7 71.0 281.0 52.6 474.2 81.5 2 334 8 311 1 279 0.02 0.15 13.6 839
      12 243 3.90 4.10 < 0.044 2.66 0.032 1.01 2.20 0.31 11.50 4.09 45.1 14.8 61.1 11.7 108.9 19.0 506 10 198 282 0.02 0.15 25.8 722
      13 234 8.20 6.70 0.020 7.36 0.163 2.80 5.10 0.89 24.12 6.63 62.4 18.5 72.2 14.1 135.9 25.2 650 8 299 375 0.05 0.20 13.4 795
      14 464 11.2 21.8 0.475 15.58 0.450 5.04 8.34 1.95 43.70 16.40 177.5 59.1 241.7 48.3 459.0 83.6 2 003 8 379 1 161 0.03 0.25 7.6 828
      15 1 054 7.30 6.20 20.97 62.21 4.370 18.62 6.13 1.79 17.40 5.94 66.7 26.0 114.9 25.2 255.0 49.3 883 6 048 675 0.20 0.49 1.5 783
      16 300 6.50 5.9 < 0.033 23.68 0.045 1.27 2.49 0.21 16.69 6.66 87.7 34.4 166.7 36.7 374.0 69.5 1 063 10 759 820 0.03 0.07 163.4 772
      17 453 7.60 6.70 < 0.033 3.71 0.066 0.96 5.15 0.65 31.39 10.80 116.5 35.4 135.1 25.2 225.6 39.2 1 207 9 088 630 0.02 0.12 17.5 786
      18 227 21.5 2.10 < 0.037 3.91 < 0.031 0.84 2.06 0.06 13.47 5.39 66.9 26.6 121.1 25.0 238.7 42.0 814 12 022 546 0.01 0.02 3.8 904
      19 288 3.80 5.30 < 0.040 4.82 0.057 0.92 2.04 0.53 12.73 4.71 55.9 21.3 97.9 21.2 216.9 41.9 727 8 147 481 0.02 0.24 26.3 721
      20 606 10.3 1.10 5.20 14.62 1.600 10.04 5.22 0.18 21.64 7.33 83.9 31.6 136.3 27.1 250.8 46.0 956 8 279 642 0.06 0.04 1.2 819
      21 364 9.10 1.50 < 0.056 3.15 0.047 0.79 2.61 0.08 15.62 6.16 78.9 30.7 138.8 28.4 270.9 49.4 927 9 102 626 0.01 0.03 20.8 806
      22 342 19.8 8.20 0.593 19.70 0.259 5.00 10.47 2.67 50.51 14.48 130.6 39.9 155.1 29.5 272.9 48.8 1 338 8 565 781 0.05 0.29 12.3 894
      23 340 11.3 10.6 0.909 16.94 0.405 4.20 6.54 1.39 32.54 10.88 116.3 39.0 155.1 29.5 275.1 49.2 1 312 7 654 738 0.04 0.24 6.8 829
      24 347 8.30 1.30 1.98 7.38 0.597 3.71 3.50 0.10 17.10 6.84 79.4 29.7 129.4 25.9 242.6 43.1 894 9 603 591 0.03 0.03 1.6 795
      25 384 8.30 2.00 0.199 5.04 0.106 1.45 2.40 0.07 14.52 5.57 67.1 25.9 117.1 24.2 223.0 39.5 798 9 843 526 0.02 0.03 8.4 796
      26 178 23.6 1.10 0.309 4.25 0.168 1.45 1.93 0.49 6.64 2.22 24.0 8.0 36.6 7.90 80.0 15.0 259 7 680 189 0.05 0.37 4.5 916
      27 261 10.9 10.9 < 0.042 13.33 0.187 2.88 5.53 1.27 25.37 8.52 97.9 35.6 152.5 30.5 289.1 53.8 1 217 7 299 716 0.03 0.27 22.1 825
      28 218 305 4.50 < 0.040 1.36 0.037 0.49 1.19 < 0.061 7.66 3.00 38.8 14.9 68.8 14.1 136.5 25.4 451 7 042 312 0.01 0.76 11.4 1 368
      29 387 8.80 10.5 < 0.043 6.60 0.131 2.17 5.16 0.92 30.43 10.57 112.6 38.2 154.1 30.9 286.9 52.1 1 295 8 164 731 0.02 0.17 15.6 802
      30 295 5.70 8.00 < 0.037 4.89 0.066 1.18 3.41 0.55 19.77 7.01 75.5 25.5 104.2 21.1 200.6 36.9 878 9 288 501 0.02 0.16 23.0 758
      注:测试单位:西北大学大陆动力学国家重点实验室,测试者弓化栋,数据单位为10-6.
      下载: 导出CSV

      表  4  滴痴山岩体北侧辉钼矿Re⁃Os同位素数据

      Table  4.   Re-Os isotopic data for molybdenite from the Dichishan granite

      编号 样重
      (g)
      Re(10‒6) 普Os(10‒9) Re187(10‒6) Os187(10‒9) 模式年龄(Ma)
      测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度
      D1 0.05 33.705 0.737 2.638 3 0.026 5 21.184 0.463 66.01 0.41 186.8 4.6
      D2 0.05 50.188 1.134 2.137 3 0.017 7 31.544 0.713 98.86 0.57 187.8 4.8
      D3 0.05 25.589 0.399 2.243 3 0.023 5 16.083 0.251 51.04 0.30 190.2 3.7
      下载: 导出CSV

      表  5  滴痴山花岗岩体锆石氧逸度参数

      Table  5.   Oxygen fugacity parameter of zircon in Dichishan granite

      项目 误差
      NBO/T 0.089
      xH2O 0.019
      T (K) 1 069 28
      DCezircon/melt 1.692 0.164
      Ce4+/CeMelt3+ 0.002 92 0.004 38
      log fO2 ‒15.24 2.89
      △FMQ ‒0.40 2.89
      D(Ce-III) 0.037 8 0.025 0
      D(Ce-IV) 897 107
      D(∑Ce) 1.692 0.637
      [Ce4+/Ce3+]锆石 4 108
      下载: 导出CSV
    • Boehnke, P., Watson, E. B., Trail, D., et al., 2013. Zircon Saturation Rerevisited. Chemical Geology, 351: 324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028
      Cai, H. M., Zhang, H. F., Xu, W. C., et al., 2010. Petrogenesis of Indosinian Volcanic Rocks in Songpan-Garze Fold Belt of the Northeastern Tibetan Plateau: New Evidence for Lithospheric Delamination. Science China Earth Sciences, 53(9): 1316-1328. https://doi.org/10.1007/s11430-010-4033-9
      Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granite in the Lachlan Fold Belt. Trans. R. Soci. Edinburgh: Earth Environ. Sci., 83: 1-26. https://doi.org/10.1017/S0263593300007720
      Chen, Q., Sun, M., Zhao, G. C., et al., 2017. Origin of the Mafic Microgranular Enclaves (MMEs) and Their Host Granitoids from the Tagong Pluton in Songpan-Ganze Terrane: An Igneous Response to the Closure of the Paleo-Tethys Ocean. Lithos, 290/291: 1-17. https://doi.org/10.1016/j.lithos.2017.07.019
      Dai, Y. P., Zhu, Y. D., Li, T. Z., et al., 2017. A Crustal Source for ca. 165 Ma Post-Collisional Granites Related to Mineralization in the Jianglang Dome of the Songpan-Ganzi Orogen, Eastern Tiebtan Plateau. Geochemistry, 77(4): 573-586. https://doi.org/10.1016/j.chemer.2017.10.004
      de Sigoyer, J., Vanderhaeghe, O., Duchêne, S., et al., 2014. Generation and Emplacement of Triassic Granitoids within the Songpan-Ganze Accretionary-Orogenic Wedge in a Context of Slab Retreat Accommodated by Tear Faulting, Eastern Tibetan Plateau, China. Journal of Asian Earth Sciences, 88: 192-216. https://doi.org/10.1016/j.jseaes.2014.01.010
      Deng, H., Tang, Y., Luo, Z. H., et al., 2021. Petrology and Isotopic Chronology of Tagong Granite in Eastern Songpan-Ganzi Fold Belt and Its Tectonic Significance. Earth Science, 46(2): 527-539 (in Chinese with English abstract).
      Du, A. D., Qu, W. J., Wang, D. H., et al., 2012. Re-Os Method and Its Application in Science of Deposit. Geological Publishing House, Beijing, 1-182 (in Chinese).
      Fan, W. B., Jiang N., Zhai, M. G., et., 2021. Origin of the Low δ18O Signals in Zircons from the Early Cretaceous A-Type Granites in Eastern China: Evidence from the Kulongshan Pluton. Journal of Earth Science, 32(6): 1415-1427. https://doi.org/10.1007/s12583-021-1515-y
      Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      Hu, J. L., Tan, H. Q., Zhou, X., et al., 2020. A Study of Mineralogy and Mineral Chemistry of Ore-Bearing Pegmatites in the Daqianggou Lithium-Beryllium Deposit, Western Sichuan. Geological Bulletin of China, 39(12): 2013-2028 (in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2020.12.015
      Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745
      Li, A. B., Huang, Q., Feng, C., et al., 2021. Genesis of Mufushan Pegmatite Deposits Constrained by U-Pb Ages and Trace Elements of Zircon from Complex Granitic Batholith. Earth Science, 46(12): 4517-4532 (in Chinese with English abstract).
      Li, T. Z., Dai, Y. P., Ma, G. T., et al., 2016. SHRIMP Zircon U-Pb Dating of the Wulaxi Granite in the Western Margin of the Yangtze Block and Its Geological Significance. Bulletin of Mineralogy, Petrology and Geochemistry, 35(4): 743-749 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2016.04.014
      Liu, Y. D., Xie, H. F., Xu, L., et al., 2020. Sulfur Isotopic Geochemistry of the Zigangping Pb-Zn Deposit, Jiulong County, Sichuan Province. Geological Bulletin of China, 39(12): 2029-2036 (in Chinese with English abstract).
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Roger, F., Malavieille, J., Leloup, P. H., et al., 2004. Timing of Granite Emplacement and Cooling in the Songpan-Garzê Fold Belt (Eastern Tibetan Plateau) with Tectonic Implications. Journal of Asian Earth Sciences, 22(5): 465-481. https://doi.org/10.1016/S1367-9120(03)00089-0
      Rollision, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical, New York, 1-352.
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust. Elsevier-Pergamon, Oxford, 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4
      Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5): 751-767. https://doi.org/10.1107/s0567739476001551
      Shen, P., Hattori, K., Pan, H. D., et al., 2015. Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt. Economic Geology, 110(7): 1861-1878. https://doi.org/10.2113/econgeo.110.7.1861
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Suzuki, K., Shimizu, H., Masuda, A., 1996. Re-Os Dating of Molybdenites from Ore Deposits in Japan: Implication for the Closure Temperature of the Re-Os System for Molybdenite and the Cooling History of Molybdenum Ore Deposits. Geochimica et Cosmochimica Acta, 60(16): 3151-3159. https://doi.org/10.1016/0016-7037(96)00164-0
      Tan, H. Q., 2019. The Composition, Deformation- Metamorphic Characteristics and Metallogenic Response of the Dome Geological Bodies on the South Margin of Songpan-Garze Block(Dissertation). Chengdu University of Technology, Chengdu, 195-199 (in Chinese with English abstract).
      Tan, H. Q., Zhu, Z. M., Luo, L. H., et al., 2023. Distribution of Early Yanshanian Granite and Its Constraints on the Mineralization of Rare Metals in Luomo Area, Western Sichuan. Acta Geologica Sinica, 97(2): 396-416 (in Chinese with English abstract).
      Tan, H. Q., Zhu, Z. M., Zhou, J. Y., et al., 2022a. Early Yanshanian Skarn W-Mo Deposit in the Southern Margin of Songpan-Ganze Terrane: Evidence from Diagenetic and Metallogenic Chronology, Zircon Hf Isotopes in Daniuchang Area. Mineral Deposits, 41(1): 53-68 (in Chinese with English abstract).
      Tan, H. Q., Zhu, Z. M., Zhou, X., et al., 2022b. Two Periods Rare Metal Mineralization of the Pegmatite in Jiulong Area, Western Sichuan. Multipurpose Utilization of Mineral Resources, (1): 15-24 (in Chinese with English abstract).
      Trail, D., Bruce Watson, E., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70-87. https://doi.org/10.1016/j.gca.2012.08.032
      Wan, C. H., Yuan, J., Li, F. X., et al., 2011. Late Triassic Granitoids in the Southern Part of the Songpan-Garze Fold Belt: Petrology, Geochemical Composition and Petrogenesis. Acta Petrologica et Mineralogica, 30(2): 185-198 (in Chinese with English abstract).
      Wang, D. H., Dai, H. Z., Liu, S. B., et al., 2020. Research and Exploration Progress on Lithium Deposits in China. China Geology, 3(1): 137-152. https://doi.org/10.31035/cg2020018
      Wang, W., Hou, K. J., Wang, D. H., et al., 2020. Columbite-Tantalite U-Pb Dating of Yanshanian Rare Metal Mineralization in Western Sichuan. Geology in China, 47(3): 890-891 (in Chinese with English abstract).
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Xiao, L., Zhang, H. F., Clemens, J. D., et al., 2007. Late Triassic Granitoids of the Eastern Margin of the Tibetan Plateau: Geochronology, Petrogenesis and Implications for Tectonic Evolution. Lithos, 96(3/4): 436-452. https://doi.org/10.1016/j.lithos.2006.11.011
      Yuan, C., Zhou, M. F., Sun, M., et al., 2010. Triassic Granitoids in the Eastern Songpan-Ganzi Fold Belt, SW China: Magmatic Response to Geodynamics of the Deep Lithosphere. Earth and Planetary Science Letters, 290(3/4): 481-492. https://doi.org/10.1016/j.epsl.2010.01.005
      Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x
      Yuan, J., Xiao, L., Wan, C. H., et al., 2011. Petrogenesis of Fangmaping-Sanyanlong Granites in Southern Songpan-Garzê Fold Belt and Its Tectonic Implication. Acta Geologica Sinica, 85(2): 195-206 (in Chinese with English abstract).
      Zhan, Q. Y., Zhu, D. C., Wang, Q., et al., 2020. Source and Pressure Effects in the Genesis of the Late Triassic High Sr/Y Granites from the Songpan-Ganzi Fold Belt, Eastern Tibetan Plateau. Lithos, 368/369: 105584. https://doi.org/10.1016/j.lithos.2020.105584
      Zhang, H. F., Parrish, R., Zhang, L., et al., 2007. A-Type Granite and Adakitic Magmatism Association in Songpan-Garze Fold Belt, Eastern Tibetan Plateau: Implication for Lithospheric Delamination. Lithos, 97(3/4): 323-335. https://doi.org/10.1016/j.lithos.2007.01.002
      Zhang, H. F., Zhang, L., Harris, N., et al., 2006. U-Pb Zircon Ages, Geochemical and Isotopic Compositions of Granitoids in Songpan-Garze Fold Belt, Eastern Tibetan Plateau: Constraints on Petrogenesis and Tectonic Evolution of the Basement. Contributions to Mineralogy and Petrology, 152(1): 75-88. https://doi.org/10.1007/s00410-006-0095-2.
      Zhou, J. Y., Tan, H. Q., Gong, D. X., et al., 2013. Zircon LA-ICP-MS U-Pb Dating and Hf Isotopic Composition of Xinhuoshan Granite in the Core of Jianglang Dome, Western Sichuan, China. Journal of Mineralogy and Petrology, 33(4): 42-52 (in Chinese with English abstract).
      Zhou, J. Y., Tan, H. Q., Gong, D. X., et al., 2014. Wulaxi Aluminous A-Type Granite in Western Sichuan, China: Recording Early Yanshanian Lithospheric Thermo-Upwelling Extension of Songpan-Garze Orogenic Belt. Geological Review, 60(2): 348-362 (in Chinese with English abstract).
      Zhou, Q., Li, W. C., Zhang, H. H., et al., 2017. Post- Magmatic Hydrothermal Origin of Late Jurassic Liwu Copper Polymetallic Deposits, Western China: Direct Chalcopyrite Re-Os Dating and Pb-B Isotopic Constraints. Ore Geology Reviews, 89: 526-543. https://doi.org/10.1016/j.oregeorev.2017.07.008
      邓红, 唐渊, 骆志红, 等, 2021. 松潘‒甘孜造山带东缘塔公岩体岩石学、同位素年代学特征及其构造意义. 地球科学, 46(2): 527-539. doi: 10.3799/dqkx.2020.219
      杜安道, 屈文俊, 王登红, 等, 2012. 铼‒锇法及其在矿床学中的应用. 北京: 地质出版社, 1-182.
      胡军亮, 谭洪旗, 周雄, 等, 2020. 川西九龙打枪沟锂铍矿床赋矿伟晶岩矿物学和矿物化学特征. 地质通报, 39(12): 2013-2028. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012017.htm
      李安邦, 黄勤, 冯超, 等, 2021. 幕阜山复式花岗岩体锆石年代与微量元素对伟晶岩矿床成因的限定. 地球科学, 46(12): 4517-4532. doi: 10.3799/dqkx.2021.065
      李同柱, 代堰锫, 马国桃, 等, 2016. 扬子陆块西缘乌拉溪花岗岩体SHRIMP锆石U-Pb定年及地质意义. 矿物岩石地球化学通报, 35(4): 743-749. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201604021.htm
      刘应冬, 谢海峰, 徐力, 等, 2020. 四川九龙县子杠坪铅锌矿床硫同位素地球化学特征. 地质通报, 39(12): 2029-2036. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012018.htm
      谭洪旗, 2019. 松潘‒甘孜地块南缘穹隆体物质组成、变形‒变质特征及成矿响应(博士学位论文). 成都: 成都理工大学, 195-199.
      谭洪旗, 朱志敏, 罗林洪, 等, 2023. 川西洛莫地区燕山早期花岗岩对稀有金属成矿的制约. 地质学报, 97(2): 396-416. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202302007.htm
      谭洪旗, 朱志敏, 周家云, 等, 2022a. 松潘‒甘孜地块南缘燕山早期矽卡岩型钨钼矿床——来自大牛场成岩成矿年代学及锆石Hf同位素证据. 矿床地质, 41(1): 53-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202201004.htm
      谭洪旗, 朱志敏, 周雄, 等, 2022b. 川西九龙地区两期伟晶岩型稀有金属成矿作用. 矿产综合利用, (1) : 15-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202201001.htm
      万传辉, 袁静, 李芬香, 等, 2011. 松潘‒甘孜造山带南段晚三叠世兰尼巴和羊房沟花岗岩岩石学、地球化学特征及成因. 岩石矿物学杂志, 30(2): 185-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201102005.htm
      王伟, 侯可军, 王登红, 等, 2020. 川西燕山期稀有金属铌钽铁矿U-Pb年龄报道. 中国地质, 47(3): 890-891. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003029.htm
      袁静, 肖龙, 万传辉, 等, 2011. 松潘‒甘孜南部放马坪‒三岩龙花岗岩的成因及其构造意义. 地质学报, 85(2): 195-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102006.htm
      周家云, 谭洪旗, 龚大兴, 等, 2013. 川西江浪穹窿核部新火山花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素研究. 矿物岩石, 33(4): 42-52. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201304005.htm
      周家云, 谭洪旗, 龚大兴, 等, 2014. 乌拉溪铝质A型花岗岩: 松潘‒甘孜造山带早燕山期热隆伸展的岩石记录. 地质论评, 60(2): 348-362. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201402012.htm
    • 加载中
    图(10) / 表(5)
    计量
    • 文章访问数:  479
    • HTML全文浏览量:  426
    • PDF下载量:  71
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-08-16
    • 网络出版日期:  2023-11-30
    • 刊出日期:  2023-11-25

    目录

      /

      返回文章
      返回