• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于Pilot Point方法反演裂隙岩体参数化渗透结构

    赵敬波 潘跃龙 李杰彪 吴群 刘羽 季瑞利 周志超

    赵敬波, 潘跃龙, 李杰彪, 吴群, 刘羽, 季瑞利, 周志超, 2023. 基于Pilot Point方法反演裂隙岩体参数化渗透结构. 地球科学, 48(10): 3878-3895. doi: 10.3799/dqkx.2022.031
    引用本文: 赵敬波, 潘跃龙, 李杰彪, 吴群, 刘羽, 季瑞利, 周志超, 2023. 基于Pilot Point方法反演裂隙岩体参数化渗透结构. 地球科学, 48(10): 3878-3895. doi: 10.3799/dqkx.2022.031
    Zhao Jingbo, Pan Yuelong, Li Jiebiao, Wu Qun, Liu Yu, Ji Ruili, Zhou Zhichao, 2023. Inverse Modeling of Parameterized Hydraulic Conductivity Field in a Fractured Medium Based on Pilot Point Method. Earth Science, 48(10): 3878-3895. doi: 10.3799/dqkx.2022.031
    Citation: Zhao Jingbo, Pan Yuelong, Li Jiebiao, Wu Qun, Liu Yu, Ji Ruili, Zhou Zhichao, 2023. Inverse Modeling of Parameterized Hydraulic Conductivity Field in a Fractured Medium Based on Pilot Point Method. Earth Science, 48(10): 3878-3895. doi: 10.3799/dqkx.2022.031

    基于Pilot Point方法反演裂隙岩体参数化渗透结构

    doi: 10.3799/dqkx.2022.031
    基金项目: 

    核设施退役及放射性废物治理专项项目 科工二司[2019]1496号

    详细信息
      作者简介:

      赵敬波(1988—),男,高级工程师,博士,主要水文地质与高放废物地质处置相关研究.ORCID:0000-0002-7076-9865.E-mail:zhaojingbobriug@outlook.com

      通讯作者:

      周志超,ORCID: 0000-0001-6235-4320.E-mail: zhouzhichao2006@163.com

    • 中图分类号: P641

    Inverse Modeling of Parameterized Hydraulic Conductivity Field in a Fractured Medium Based on Pilot Point Method

    • 摘要: 在裂隙岩体地下工程中,渗透性能是工程场地水文地质条件最为关注的关键因素之一,对工程场地最终安全性能评价起着至关重要的作用.以我国沿海某核设施花岗岩场地为研究对象,采用Pilot Point调参方法、PEST并行反演程序及3D克里金插值方式,表征裂隙岩体的渗透空间结构.研究表明:该方法可较好地拟合稳定条件下钻孔水位,验证地下水位动态演化趋势;建立的参数化渗透结构模型在实测数据分布的区域反演结果更为精细,模型参数的综合灵敏度程度受观测水位的位置、数量及变程等影响.Pilot Point方法一定程度上可以识别裂隙介质渗透结构的空间差异性,有助于进一步提升裂隙介质渗流模拟预测能力.

       

    • 图  1  研究区地形图

      Fig.  1.  Topographic map of the study area

      图  2  研究区地质图与剖面图

      Fig.  2.  Geological map and profile of the study area

      图  3  PEST程序参数识别流程图与相应原理方程编号

      Fig.  3.  Diagram of the PEST code workflow and the number points to the equation of the corresponding step

      图  4  钻孔ZK11中地下水电导率与TDS的监测结果

      Fig.  4.  Recorded data for conductivity and TDS in borehole ZK11

      图  5  渗透系数随深度的变化

      Fig.  5.  Variation of hydraulic conductivity with depth

      图  6  研究区渗透参数垂向方向(a)和水平NE45°方向(b)实验变异函数拟合曲线

      Fig.  6.  Semi-variogram and correlation length of log-transformed K data along the vertical direction (a) and the NE45° direction (b) in the study area

      图  7  Pilot Point调参点空间分布(a)和平面布设与参数分区(b)

      Fig.  7.  Pilot Point locations in the numerical model (a) and planar graphs of Pilot Point locations and parameter zones (b)

      图  8  研究区地下水流模型网格剖分

      Fig.  8.  Mesh grids of the groundwater flow model in the study area

      图  9  钻孔CCZK05分层监测水位埋深结果

      Fig.  9.  Recorded data of groundwater depth from borehole CCZK05 utilizing the multi-layer monitoring system

      图  10  稳定条件下的钻孔观测水位与模拟水位对比

      Fig.  10.  Comparison of the numerical and recorded hydraulic head of different boreholes in the steady-state condition

      图  11  研究区地下水位稳定流模拟结果

      Fig.  11.  Groundwater level distribution in the steady-state condition

      图  12  研究区降雨量随时间的变化

      Fig.  12.  Variation of precipitation with time in the study area

      图  13  不同钻孔模拟水位与观测水位随时间对比

      Fig.  13.  Comparison of the numerical and recorded hydraulic head with time in different boreholes

      图  14  不同深度渗透系数模拟结果

      Fig.  14.  Hydraulic conductivity distribution at different depths

      图  15  不同剖面图的渗透系数模拟结果

      Fig.  15.  Hydraulic conductivity distribution of different profiles

      图  16  模型中PilotPoint参数点的反演结果

      Fig.  16.  Numerical results of hydraulic conductivity of Pilot Points in the model

      图  17  模型中各个参数分区的综合灵敏度分析结果

      Fig.  17.  Comprehensive sensitivities for hydrogeological zones in the model

      图  18  PilotPoint点渗透系数的综合灵敏度分析结果

      Fig.  18.  Comprehensive sensitivities for hydraulic conductivity of Pilot Points in the model

      图  19  观测水位对微风化层渗透结构灵敏度分析结果

      Fig.  19.  Sensitivities of different boreholes for hydraulic conductivity field in weakly weathered granite zone

      表  1  van Genuchten-Mualem模型经验参数

      Table  1.   Empirical parameters of van Genuchten-Mualem model

      岩性 残余含水率θr 饱和含水率θs 经验参数
      α(cm-1
      经验参数n
      砂土 0.065 0.410 0.075 000 1.89
      粉质粘土 0.131 0.396 0.004 230 2.06
      花岗岩 0.000 0.008 0.000 064 1.34
      下载: 导出CSV

      表  2  模型不同岩性净入渗量反演结果(m/d)

      Table  2.   Numerical results of net infiltration mass for hydrogeological zones in the model (unit: m/d)

      岩性 最小值 最大值 初始值 反演结果
      中细粒花岗岩 1.0×10-8 9.65×10-5 1.0×10-5 1.21×10-4
      斑状花岗岩 1.0×10-8 9.65×10-5 1.0×10-5 7.69×10-4
      花岗斑岩 1.0×10-8 9.65×10-5 1.0×10-5 5.67×10-4
      二长花岗岩 1.0×10-8 9.65×10-5 1.0×10-5 2.87×10-7
      海相砂层 1.0×10-8 9.65×10-5 1.0×10-5 4.80×10-6
      人工堆积层 1.0×10-8 9.65×10-5 1.0×10-5 7.41×10-8
      下载: 导出CSV

      表  3  模型参数分区渗透系数的反演结果(m/d)

      Table  3.   Numerical results of hydraulic conductivity for hydrogeological zones in the model (unit: m/d)

      岩性 最小值 最大值 初始值 反演结果
      全风化层 中细粒花岗岩 0.1 5.0 0.1 0.500
      斑状花岗岩 0.1 5.0 0.1 0.116
      花岗斑岩 0.1 5.0 0.1 0.100
      二长花岗岩 0.1 5.0 0.1 0.132
      强风化层 中细粒花岗岩 0.05 0.5 0.1 0.100
      斑状花岗岩 0.05 0.5 0.1 0.061
      花岗斑岩 0.05 0.5 0.1 0.056
      二长花岗岩 0.05 0.5 0.1 0.077
      中风化层 中细粒花岗岩 0.001 0.1 0.01 0.003
      斑状花岗岩 0.001 0.1 0.01 0.001
      花岗斑岩 0.001 0.1 0.01 0.024
      二长花岗岩 0.001 0.1 0.01 0.006
      第四系 海相砂层 10.0 25.0 15.0 11.170
      人工堆积层 1.0 20.0 10.0 5.162
      下载: 导出CSV
    • Anderson, M. P., Woessner, W. W., Hunt, R. J., 2015. Applied Groundwater Modeling: Simulation of Flow and Advective Transport. Academic Press, San Diego.
      Blessent, D., Therrien, R., Lemieux, J. M., 2011. Inverse Modeling of Hydraulic Tests in Fractured Crystalline Rock Based on a Transition Probability Geostatistical Approach. Water Resources Research, 47(12): W12530. https://doi.org/10.1029/2011wr011037
      Carle, S. F., Fogg, G. E., 1996. Transition Probability-Based Indicator Geostatistics. Mathematical Geology, 28(4): 453-476. https://doi.org/10.1007/BF02083656
      Carniato, L., Schoups, G., Giesen, N., et al., 2015. Highly Parameterized Inversion of Groundwater Reactive Transport for a Complex Field Site. Journal of Contaminant Hydrology, 173: 38-58. https://doi.org/10.1016/j.jconhyd.2014.12.001
      Chen, Y. F., Ling, X. M., Liu, M. M., et al., 2018. Statistical Distribution of Hydraulic Conductivity of Rocks in Deep-Incised Valleys, Southwest China. Journal of Hydrology, 566: 216-226. https://doi.org/10.1016/j.jhydrol.2018.09.016
      China Geological Survey, 2012. Hydrogeological Manual (2nd Edition). Geological Publishing House, Beijing, 680-684 (in Chinese).
      Clifton, P. M., Neuman, S. P., 1982. Effects of Kriging and Inverse Modeling on Conditional Simulation of the Avra Valley Aquifer in Southern Arizona. Water Resources Research, 18(4): 1215-1234. https://doi.org/10.1029/wr018i004p01215
      De Marsily, G., Lavedan, G., Boucher, M., et al., 1984. Interpretation of Interference Tests in a Well Field Using Geostatistical Techniques to Fit the Permeability Distribution in a Reservoir Model. Geostatistics for Natural Resources Characterization. Springer Netherlands, Dordrecht, 831-849. https://doi.org/10.1007/978-94-009-3701-7_16
      Deutsch, C. V., Journel, A. G., 1998. GSLIB: Geostatistical Software and User's Guide (Second Edition). Oxford University Press, New York.
      Doherty, J., 2015. Calibration and Uncertainty Analysis for Complex Environmental Models. Watermark Numerical Computing, Brisbane, Australia.
      El Idrysy, E. H., Smedt, F., 2007. A Comparative Study of Hydraulic Conductivity Estimations Using Geostatistics. Hydrogeology Journal, 15(3): 459-470. https://doi.org/10.1007/s10040-007-0166-0
      Fang, K., Ji, X., Shen, C., et al., 2019. Combining a Land Surface Model with Groundwater Model Calibration to Assess the Impacts of Groundwater Pumping in a Mountainous Desert Basin. Advances in Water Resources, 130: 12-28. https://doi.org/10.1016/j.advwatres.2019.05.008
      Finsterle, S., 2006. Demonstration of Optimization Techniques for Groundwater Plume Remediation Using iTOUGH2. Environmental Modelling & Software, 21(5): 665-680. https://doi.org/10.1016/j.envsoft.2004.11.012
      Follin, S., Hartley, L., Rhén, I., et al., 2014. A Methodology to Constrain the Parameters of a Hydrogeological Discrete Fracture Network Model for Sparsely Fractured Crystalline Rock, Exemplified by Data from the Proposed High-Level Nuclear Waste Repository Site at Forsmark, Sweden. Hydrogeology Journal, 22(2): 313-331. https://doi.org/10.1007/s10040-013-1080-2
      Gu, W. Z., Pang, Z. H., Wang, Q. J., et al., 2011. Isotope Hydrology. Science Press, Beijing, 432(in Chinese).
      Guo, Y. H., Wang, J., Jin, Y. X., 2001. The General Situation of Geological Disposal Repository Siting in the World and Research Progress in China. Earth Science Frontiers, 8(2): 327-332(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2001.02.017
      Hartley, L., Joyce, S., 2013. Approaches and Algorithms for Groundwater Flow Modeling in Support of Site Investigations and Safety Assessment of the Forsmark Site, Sweden. Journal of Hydrology, 500: 200-216. https://doi.org/10.1016/j.jhydrol.2013.07.031
      Huo, S. Y., Jin, M. G., 2017. Effect of Parameter Sensitivity of van Genuchten Model on Numerical Simulation of Rainfall Recharge. Earth Science, 42(3): 447-452 (in Chinese with English abstract).
      Jiang, L. Q., Sun, R. L., Liang, X., 2021. Predicting Groundwater Flow and Transport in the Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150-4160 (in Chinese with English abstract).
      Kapoor, A., Kashyap, D., 2021. Parameterization of Pilot Point Methodology for Supplementing Sparse Transmissivity Data. Water, 13(15): 2082. https://doi.org/10.3390/w13152082
      Keller, J., Franssen, H., Nowak, W., 2021. Investigating the Pilot Point Ensemble Kalman Filter for Geostatistical Inversion and Data Assimilation. Advances in Water Resources, 155: 104010. https://doi.org/10.1016/j.advwatres.2021.104010
      Li, Y. G., Lan, J. K., Li, R. L., et al., 2016. Permeability Coefficients of Weathering Zones in Huashan Granite of Guangxi. Journal of Guilin University of Technology, 36(4): 681-687(in Chinese with English abstract). doi: 10.3969/j.issn.1674-9057.2016.04.006
      Maji, R., Sudicky, E. A., Panday, S., et al., 2006. Transition Probability/Markov Chain Analyses of DNAPL Source Zones and Plumes. Ground Water, 44(6): 853-863. https://doi.org/10.1111/j.1745-6584.2005.00194.x
      Park, Y. J., Sudicky, E. A., McLaren, R. G., et al., 2004. Analysis of Hydraulic and Tracer Response Tests within Moderately Fractured Rock Based on a Transition Probability Geostatistical Approach. Water Resources Research, 40(12): W12404. https://doi.org/10.1029/2004wr003188
      Poeter, E. P., Hill, M. C., 1999. UCODE, a Computer Code for Universal Inverse Modeling. Computers & Geosciences, 25(4): 457-462. https://doi.org/10.1016/s0098-3004(98)00149-6
      Rubin, Y., Gómez-Hernández, J. J., 1990. A Stochastic Approach to the Problem of Upscaling of Conductivity in Disordered Media: Theory and Unconditional Numerical Simulations. Water Resources Research, 26(4): 691-701. https://doi.org/10.1029/wr026i004p00691
      Sivakumar, B., Halter, T., Zhang, H., 2005. A Fractal Investigation of Solute Travel Time in a Heterogeneous Aquifer: Transition Probability/Markov Chain Representation. Ecological Modelling, 182(3/4): 355-370. https://doi.org/10.1016/j.ecolmodel.2004.04.010
      Usman, M., Qamar, M. U., Becker R., et al., 2020. Numerical Modelling and Remote Sensing Based Approaches for Investigating Groundwater Dynamics under Changing Land-Use and Climate in the Agricultural Region of Pakistan. Journal of Hydrology, 581: 124408. https://doi.org/10.1016/j.jhydrol.2019.124408
      van Genuchten, M. T., 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5): 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
      Wang, J. Zhang, T. L., Zheng, H. L., 1999. Geological Disposal of Radioactive Waste in the World. Atomic Energy Press, Beijing(in Chinese).
      Wen, X. H., Capilla, J. E., Deutsch, C. V., et al., 1999. A Program to Create Permeability Fields That Honor Single-Phase Flow Rate and Pressure Data. Computers & Geosciences, 25(3): 217-230. https://doi.org/10.1016/S0098-3004(98)00126-5
      Xue, Y. Q., 1986. Principles of Groundwater Dynamics. Geological Publishing House, Beijing (in Chinese).
      Yang, J. Z., Cai, S. Y., Huang, G. H., et al., 2000. Stochastic Theory of Groundwater and Solute Transport in Porous Media. Science Press, Beijing, 21-48 (in Chinese).
      Yeh, T. C., Liu, S. Y., 2000. Hydraulic Tomography: Development of a New Aquifer Test Method. Water Resources Research, 36(8): 2095-2105. https://doi.org/10.1029/2000WR900114
      Zhang, H., Harter, T., Sivakumar, B., 2006. Nonpoint Source Solute Transport Normal to Aquifer Bedding in Heterogeneous, Markov Chain Random Fields. Water Resources Research, 42(6): W06403. https://doi.org /10.1029/2004WR003808
      Zhao, P., Liu, J., Chen, L., et al., 2017. Experimental Study on Gas Relative Permeability of Unsaturated Granite. Chinese Journal of Underground Space and Engineering, 13(1): 57-62, 70(in Chinese with English abstract).
      Zhou, H. Y., 2011. Parameter Identification of Non-Gaussian Aquifer Based on Ensemble Kalman Filter Method (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      顾慰祖, 庞忠和, 王全九, 等, 2011. 同位素水文学. 北京: 科学出版社, 432.
      郭永海, 王驹, 金远新, 2001. 世界高放废物地质处置库选址研究概况及国内进展. 地学前缘, 8(2): 327-332. doi: 10.3321/j.issn:1005-2321.2001.02.017
      霍思远, 靳孟贵, 2017. Van Genuchten模型参数对降水入渗数值模拟的敏感性. 地球科学, 42(3): 447-452. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXG201707008.htm
      蒋立群, 孙蓉琳, 梁杏. 2021. 含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响. 地球科学, 46(11): 4150-4160. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111027.htm
      李有光, 蓝俊康, 黎容伶, 等, 2016. 广西花山花岗岩体风化带的渗透系数. 桂林理工大学学报, 36(4): 681-687. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201604006.htm
      王驹, 张铁岭, 郑华铃, 1999. 世界放射性废物地质处置. 北京: 原子能出版社.
      薛禹群, 1986. 地下水动力学原理. 北京: 地质出版社.
      杨金忠, 蔡树英, 黄冠华, 等, 2000. 多孔介质中水分及溶质运移的随机理论. 北京: 科学出版社, 21-48.
      赵鹏, 刘健, 陈亮, 等, 2017. 非饱和花岗岩气体相对渗透率试验研究. 地下空间与工程学报, 13(1): 57-62, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701009.htm
      中国地质调查局, 2012. 水文地质手册. 第2版. 北京: 地质出版社, 680-684.
      周海燕, 2011. 基于集合卡尔曼滤波法的非高斯含水层参数识别(博士学位论文). 北京:中国地质大学 .
    • 加载中
    图(19) / 表(3)
    计量
    • 文章访问数:  278
    • HTML全文浏览量:  467
    • PDF下载量:  26
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-05
    • 网络出版日期:  2023-10-31
    • 刊出日期:  2023-10-25

    目录

      /

      返回文章
      返回