Overpressure Mechanisms and Quantitative Evaluation of Relative Contribution for Yinggehai Formation in Ledong Area of Central Diapir Zone, Yinggehai Basin
-
摘要: 莺歌海盆地中央底辟带莺歌海组广泛发育超压,超压泥岩表现为异常高声波时差、低电阻率和低密度特征.在对莺歌海盆地中央底辟带莺歌海组超压成因机制综合分析基础之上,定量化评价不同成因类型超压贡献率.结果表明:莺歌海盆地中央底辟带莺歌海组泥岩超压成因机制包括欠压实、有机质生烃和超压传递作用,粘土矿物转化对超压贡献不明显.超压贡献率定量化评价结果揭示了底辟区流体压力传递和生烃作用对泥岩超压发育具有重要贡献.莺歌盆地中央底辟带乐东区莺歌海组泥岩欠压实超压贡献率为38%~100%,随着埋藏深度的增加,欠压实超压贡献率逐渐减小.莺一段地层埋深浅,生烃能力弱,以欠压实成因机制超压为主;莺二段泥岩生烃能力显著增强,生烃增压贡献率最大可达51.53%.底辟区微裂隙和断裂发育,使深部流体运移至浅层而发生压力传递,压力传递作用对莺歌海组超压贡献率最大超过50%.Abstract: Overpressure is widely developed of Yinggehai Formation in Ledong area of the central diapir zone. The overpressure mudstone is characterized by abnormally higher acoustic travel time, lower resistivity and density than that of the normal pressured mudstones.In this paper, the contribution rate of overpressure caused by different mechanisms is quantitatively evaluated based on the comprehensive analysis of the overpressure mechanisms of Yinggehai Formation in the central diapir zone of Yinggehai basin.The results indicate that the main causes of overpressure in Yinggehai Formation in Ledong area of the central diapir zone include undercompaction, hydrocarbon generation of organic matter and overpressure transfer. The contribution of clay mineral transformation to the overpressure is not obvious. The quantitative study of overpressure contribution rate reveals the contribution of fluid pressure transfer and hydrocarbon generation to mudstone overpressure in the diapir area of Yinggehai Basin. The contribution rate of overpressure caused by undercompaction in the Ledong Area of the Central Diapir Zone of Yinggehai Basin ranges from 38% to 100%. As the burial depth increases, the contribution rate of undercompaction-induced overpressure gradually decreases. The main overpressure mechanisms in the first member of Yinggehai Formation is undercompaction with the shallow buried depth and weak hydrocarbon generation capacity. While the hydrocarbon generation capacity of mudstone in the second member of Yinggehai Formation is significantly enhanced, the contribution caused by hydrocarbon generation is up to 51.53%. Microfractures and faults are developed in the diapir area, which make the deep fluid migrate to the shallow layer and produces pressure transfer. The maximum contribution rate of pressure transfer is more than 50% in Yinggehai Formation.
-
图 8 模拟温度和成熟度变化与实测值关系(a, d, g);莺歌海组成熟生烃史模拟结果(b, e, h);莺歌海组生烃增压演化(c, f, i)
Fig. 8. Profiles of modeled temperature and Easy% Ro versus measured temperature and vitrinite reflectance (Ro) (a, d, g); Modeling results of the hydrocarbon generation history of Yinggehai Formation (b, e, h); The evolution of overpressure caused by hydrocarbon generation of Yinggehai Formation (c, f, i)
-
Barker, C., 1990. Calculated Volume and Pressure Changes during the Thermal Cracking of Oil to Gas in Reservoirs, AAPG Bulletin, 74(8): 1254-1261. https://doi.org/10.1306/0c9b247f-1710-11d7-8645000102c1865d Bowers, G. L., 2002. Detecting High Overpressure. The Leading Edge, 21(2): 174-177. https://doi.org/10.1190/1.1452608 Bruce, C. H., 1984. Smectite Dehydration: Its Relation to Structural Development and Hydrocarbon Accumulation in Northern Gulf of Mexico Basin. AAPG Bulletin, 68(6): 673-683. https://doi.org/10.1306/ad461363-16f7-11d7-8645000102c1865d Du, X., Zheng, H. Y., Jiao, X. Q., 1995. Abnormal Pressure and Oil and Gas Distribution. Earth Science Frontiers, 2(4): 137-148 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1995.04.002 Eaton, B. A., 1972. The Effect of Overburden Stress on Geopressure Prediction from Well Logs. Journal of Petroleum Technology, 24(8): 929-934. https://doi.org/10.2118/3719-pa Feng, C., Huang, Z. L., Tong, C. X., et al., 2013. OverPressure Evolution and Its Relationship with Migration and Accumulation of Gas in Yinggehai Basin. Journal of Jilin University (Earth Science Edition), 43(5): 1341-1350 (in Chinese with English abstract). Gong, Y. J., Zhang, K. H., Zeng, Z. P., et al., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600 (in Chinese with English abstract). Gong, Z. S., 1997. Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea. Science Press, Beijing (in Chinese). Guo, X. W., He, S., Liu, K. Y., et al., 2013. A Quantitative Estimation Model for the Overpressure Caused by Natural Gas Generation and Its Influential Factors. Earth Science, 38(6): 1263-1270 (in Chinese with English abstract). Guo, X. W., He, S., Song, G. Q., et al., 2011. Evidences of Overpressure Caused by Oil Generation in Dongying Depression. Earth Science, 36(6): 1085-1094 (in Chinese with English abstract). Guo, X. W., He, S., Yang, Z., 2016. Quantitative Evaluation of Hydrocarbon Generation Pressurization in Petroliferous Basins—Two Cases Studies from Dongying Depression and the Central Part of Junggar Basin. Science Press, Beijing (in Chinese). Guo, X. W., Liu, K. Y., Jia, C. Z., et al., 2016. Constraining Tectonic Compression Processes by Reservoir Pressure Evolution: Overpressure Generation and Evolution in the Kelasu Thrust Belt of Kuqa Foreland Basin, NW China. Marine and Petroleum Geology, 72: 30-44. https://doi.org/10.1016/j.marpetgeo.2016.01.015 Han, G. M., Zhou, J. X., Pei, J. X., et al., 2012. Essence of Diapir and Its Relationship with Natural Gas Accumulation in Yinggehai Basin. Lithologic Reservoirs, 24(5): 27-31 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2012.05.005 Hao, F., 2005. Kinetics of Hydrocarbon Generation and Hydrocarbon Accumulation Mechanism in Overpressure Basin. Science Press, Beijing (in Chinese). He, J. X., Xia, B., Zhang, S. L., et al., 2006. Origin and Distribution of Mud Diapirs in the Yinggehai Basin and Their Relation to the Migration and Accumulation of Natural Gas. Geology in China, 33(6): 1336-1344 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.06.017 He, S., He, Z. L., Yang, Z., et al., 2009. Characteristics, Well-Log Responses and Mechanisms of Overpressures within the Jurassic Formation in the Central Part of Junggar Basin. Earth Science, 34(3): 457-470 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2009.03.010 Hermanrud, C., Wensaas, L., Teige, G. M. G., et al., 1998. Shale Porosities from Well Logs on Haltenbanken (Offshore Mid-Norway) Show no Influence of Overpressuring. AAPG Memoir, 70: 65-85. https://doi.org/10.1306/m70615c4 Hou, Z. Q., Zhang, S. P., Li, J., et al., 2019. Genetic Mechanism of Overpressures in the West Slope of Central Xihu Sag. Acta Petrolei Sinica, 40(9): 1059-1068, 1124 (in Chinese with English abstract). Hua, Y. Q., Guo, X. W., Tao, Z., et al., 2021. Mechanisms for Overpressure Generation in the Bonan Sag of Zhanhua Depression, Bohai Bay Basin, China. Marine and Petroleum Geology, 128: 105032. https://doi.org/10.1016/j.marpetgeo.2021.105032 Huang, B. J., Xiao, X. M., Hu, Z. L., et al., 2005. Geochemistry and Episodic Accumulation of Natural Gases from the Ledong Gas Field in the Yinggehai Basin, Offshore South China Sea. Organic Geochemistry, 36(12): 1689-1702. https://doi.org/10.1016/j.orggeochem.2005.08.011 Huang, B. J., Xiao, X. M., Li, X. X., 2003. Geochemistry and Origins of Natural Gases in the Yinggehai and Qiongdongnan Basins, Offshore South China Sea. Organic Geochemistry, 34(7): 1009-1025. https://doi.org/10.1016/s0146-6380(03)00036-6 Huang, B. J., Huang, H. T., Li, L., et al., 2010. Characteristics of Marine Source Rocks and Effect of High Temperature and Overpressure to Organic Matter Maturation in Yinggehai-Qiongdongnan Basins. Marine Origin Petroleum Geology, 15(3): 11-18 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2010.03.002 Hunt, J. M., 1990. Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. AAPG Bulletin, 74(1): 1-12. https://doi.org/10.1306/0c9b21eb-1710-11d7-8645000102c1865d Jin, Y. J., Fan, C. W., Fu, X. F., et al., 2021. Risk Analysis of Natural Hydraulic Fracturing in an Overpressured Basin with Mud Diapirs: A Case Study from the Yinggehai Basin, South China Sea. Journal of Petroleum Science and Engineering, 196: 107621. https://doi.org/10.1016/j.petrol.2020.107621 Li, C., Luo, X. R., Zhang, L. K., et al., 2019. Overpressure Generation Mechanisms and Its Distribution in the Paleocene Shahejie Formation in the Linnan Sag, Huimin Depression, Eastern China. Energies, 12(16): 3183. https://doi.org/10.3390/en12163183 Li, X. S., Yang, J. H., Fan, C. W., et al., 2020. New Progress and Key Technologies for High Temperature and Overpressure Natural Gas Exploration in the Northern Part of South China Sea: Taking the Ledong Slope Belt of Yinggehai Basin as an Example. China Offshore Oil and Gas, 32(1): 23-31 (in Chinese with English abstract). Liu, H., Jiang, Z. Y., Hao, X. F., et al., 2020. The Relationship between the Paleo-Pressure Gradient and Hydrocarbon Containing of Paleogene Strata in the Bonan Sag. Earth Science, 45(2): 547-558 (in Chinese with English abstract). Liu, X. Y., Chen, H. H., Xiao, X. W., et al., 2022. Overpressure Evolution Recorded in Fluid Inclusions in the Dongpu Depression, Bohai Bay Basin, North China. Journal of Earth Science, 33(4): 916-932. https://doi.org/10.1007/s12583-020-1375-x Luo, X. R., Dong, W. L., Yang, J. H., et al., 2003. Overpressuring Mechanisms in the Yinggehai Basin, South China Sea. AAPG Bulletin, 87(4): 629-642. https://doi.org/10.1306/10170201045 Luo, X. R., Vasseur, G., 1992. Contributions of Compaction and Aquathermal Pressuring to Geopressure and the Influence of Environmental Conditions. AAPG Bulletin, 76(10): 1550-1559. https://doi.org/10.1306/bdff8a42-1718-11d7-8645000102c1865d Osborne, M. J., Swarbrick, R. E., 1997. Mechanisms for Generating Overpressure in Sedimentary Basins: A Reevaluation. AAPG Bulletin, 81(6): 1023-1041. https://doi.org/10.1306/522b49c9-1727-11d7-8645000102c1865d Powley, D. E., 1990. Pressures and Hydrogeology in Petroleum Basins. Earth-Science Reviews, 29(1-4): 215-226. https://doi.org/10.1016/0012-8252(0)90038-w Teige, G. M. G., Hermanrud, C., Wensaas, L., et al., 1999. The Lack of Relationship between Overpressure and Porosity in North Sea and Haltenbanken Shales. Marine and Petroleum Geology, 16(4): 321-335. https://doi.org/10.1016/s0264-8172(98)00035-x Tingay, M. R. P., Hillis, R. R., Swarbrick, R. E., et al., 2009. Origin of Overpressure and Pore-Pressure Prediction in the Baram Province, Brunei. AAPG Bulletin, 93(1): 51-74. https://doi.org/10.1306/08080808016 Tong, C. X., Xie, Y. H., Huang, Z. L., et al., 2015. Geochemical Behaviors of HPHT Gas Reservoirs in the Yinggehai Basin and the Efficient Gas Accumulation Mode in Its Diapir Flanks. Natural Gas Industry B, 2(2-3): 144-154. https://doi.org/10.1016/j.ngib.2015.07.003 Xu, X. D., Yang, J. H., Liu, H. Y., et al., 2019. Formation Mechanism of Organic Matter in Source Rocks under Marine Environment in Yinggehai Basin. Earth Science, 44(8): 2643-2653 (in Chinese with English abstract). Yang, J. H., Huang, B. J., 2019. Origin and Migration Model of Natural Gas in L Gas Field, Eastern Slope of Yinggehai Sag, China. Petroleum Exploration and Development, 46(3): 471-481. https://doi.org/10.1016/s1876-3804(19)60028-5 Yin, X. L., Li, S. T., 2000. Overpressure System in Yinggehai Basin and Its Relationship with Oil/Gas Pools. Journal of Geomechanics, 6(3): 69-77 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6616.2000.03.008 Zhao, J. Z., Li, J., Xu, Z. Y., 2017. Advances in the Origin of Overpressures in Sedimentary Basins. Acta Petrolei Sinica, 38(9): 973-998 (in Chinese with English abstract). Zhou, W., Xie, Y. H., Li, X. S., et al., 2014. Exploration of Relationship between Formation and Evolution of Pressure Compartment and Accumulation in Yinggehai Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(6): 760-767 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2014.06.11 Zhu, F. B., 2000. Characteristics of Geopressure in Yinggehai Basin and Its Significance in Petroleum Geology. China Offshore Oil and Gas, 12(4): 248-252 (in Chinese with English abstract). 杜栩, 郑洪印, 焦秀琼, 1995. 异常压力与油气分布. 地学前缘, 2(4): 137-148. doi: 10.3321/j.issn:1005-2321.1995.04.002 冯冲, 黄志龙, 童传新, 等, 2013. 莺歌海盆地地层压力演化特征及其与天然气运聚成藏的关系. 吉林大学学报(地球科学版), 43(5): 1341-1350. 宫亚军, 张奎华, 曾治平, 等, 2021. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏. 地球科学, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366 龚再升, 李思田, 谢泰俊, 等, 1997. 南海北部大陆边缘盆地分析与油气聚集. 北京: 科学出版社. 郭小文, 何生, 刘可禹, 等, 2013. 烃源岩生气增压定量评价模型及影响因素. 地球科学, 38(6): 1263-1270. doi: 10.3799/dqkx.2013.123 郭小文, 何生, 宋国奇, 等, 2011. 东营凹陷生油增压成因证据. 地球科学, 36(6): 1085-1094. doi: 10.3799/dqkx.2011.114 郭小文, 何生, 杨智, 2016, 含油气盆地生烃增压定量化评价——以东营凹陷和准噶尔盆地腹部为例. 北京: 科学出版社. 韩光明, 周家雄, 裴健翔, 等, 2012. 莺歌海盆地底辟本质及其与天然气成藏关系. 岩性油气藏, 24(5): 27-31. doi: 10.3969/j.issn.1673-8926.2012.05.005 郝芳, 2005. 超压盆地生烃作用动力学与油气成藏机理. 北京: 科学出版社. 何家雄, 夏斌, 张树林, 等, 2006. 莺歌海盆地泥底辟成因、展布特征及其与天然气运聚成藏关系. 中国地质, 33(6): 1336-1344. doi: 10.3969/j.issn.1000-3657.2006.06.017 何生, 何治亮, 杨智, 等, 2009. 准噶尔盆地腹部侏罗系超压特征和测井响应以及成因. 地球科学, 34(3): 457-470. doi: 10.3321/j.issn:1000-2383.2009.03.010 侯志强, 张书平, 李军, 等, 2019. 西湖凹陷中部西斜坡地区超压成因机制. 石油学报, 40(9): 1059-1068, 1124. 黄保家, 黄合庭, 李里, 等, 2010. 莺-琼盆地海相烃源岩特征及高温高压环境有机质热演化. 海相油气地质, 15(3): 11-18. doi: 10.3969/j.issn.1672-9854.2010.03.002 李绪深, 杨计海, 范彩伟, 等, 2020. 南海北部海域高温超压天然气勘探新进展与关键技术: 以莺歌海盆地乐东斜坡带为例. 中国海上油气, 32(1): 23-31. 刘华, 蒋子月, 郝雪峰, 等, 2020. 渤南洼陷古近系古压力梯度与含油气性关系. 地球科学, 45(2): 547-558. doi: 10.3799/dqkx.2018.359 徐新德, 杨计海, 刘海钰, 等, 2019. 莺歌海盆地浅海环境下烃源岩有机质形成机制. 地球科学, 44(8): 2643-2653. doi: 10.3799/dqkx.2019.091 殷秀兰, 李思田, 2000. 莺歌海盆地超压体系的成因及与油气的关系. 地质力学学报, 6(3): 69-77. doi: 10.3969/j.issn.1006-6616.2000.03.008 赵靖舟, 李军, 徐泽阳, 2017. 沉积盆地超压成因研究进展. 石油学报, 38(9): 973-998. 周文, 谢玉洪, 李绪深, 等, 2014. 莺歌海盆地压力封存箱的形成、演化及与成藏关系. 成都理工大学学报(自然科学版), 41(6): 760-767. doi: 10.3969/j.issn.1671-9727.2014.06.11 朱芳冰, 2000. 莺歌海盆地地层压力特征及其石油地质意义. 中国海上油气地质, 12(4): 248-252. -