Identification of Neoproterozoic Metabasic Rocks in Yaoshan Group, Yunnan Province and Its Geological Implications
-
摘要: 云南瑶山群处于扬子地块西南缘,带内零星出露一些呈透镜状、似层状或碎片状的变基性岩,目前对它们的分布特征、形成时代及其构造背景仍不明确.对采自瑶山群中的变基性岩进行了锆石U-Pb年代学和元素地球化学分析.年代学测试结果表明2个代表性变基性岩的形成年龄分别为766±3 Ma和771±4 Ma,为首次在瑶山群识别出了新元古代中期基性岩浆活动信息.元素地球化学分析结果显示,变基性岩的SiO2含量为48.41%~49.00%,Fe2O3T和MgO含量分别为10.30%~10.48%和10.05%~10.15%,具有较高的Mg指数(Mg#=69.3~69.5);样品相对富集轻稀土元素(LREE),轻、重稀土元素分馏程度相对较强((La/Yb)N=1.97~2.19),Eu异常不明显(δEu=0.90~0.94),Nb呈负异常,亏损Ti、P,其微量元素组成特征整体上与岛弧玄武岩的地球化学特征类似.综合分析认为该变基性岩形成于岛弧环境,表明扬子地块西南缘存在新元古代时期的洋壳俯冲作用事件,这一研究结果对约束哀牢山构造带甚至整个华南地区新元古代构造演化提供了新的资料.Abstract: Numerous Neoproterozoic igneous rocks were identified along the northwestern and southeastern Yangtze block, whereas the synchronous mafic rocks have been poorly reported along the southwestern Yangtze block so far. The Yaoshan Group, located at the southwestern Yangtze block, preserves small amounts of matabasic rocks and metagabbro which occurred as lens, layers and fragments. Their formation timing, petrogenesis and dynamic implication are still unclear. In this study, it presents zircon U-Pb geochronological, geochemical and petrological data for the metabasic rocks in the Yaoshan Group. The data show that the metabasic rocks have zircon U-Pb ages of 766±3 Ma and 771±4 Ma, for the first time to identify Neoproterozoic metabasic rocks in the Yaoshan Group. Geochemical data suggest that the metabasic rocks have SiO2 of 48.41%-49.00% and Fe2O3T, MgO range in 10.30%-10.48% and 10.05%-10.15%, respectively. They have relative high Mg-number (69.3-69.5). They are characterized by enrichment in LREE((La/Yb)N=1.97-2.19), no obvious Eu anomalies(δEu=0.90-0.94), negative Nb anomalies, and depletion in Ti-P on primitive mantle-normalized trace element diagrams. Such geochemical signatures are similar to those of arc volcanic rocks. Together with other geological observations, it is proposed that the tectonic setting of the metabasic rocks is island arc which is dynamically related to ocean subduction along the southwestern margin of the Yangtze block. These results provide new evidence to understand the Neoproterozoic tectonic evolution of the Ailaoshan tectonic belt and even the whole South China.
-
Key words:
- metabasic rock /
- subduction /
- Neoproterozoic /
- Ailaoshan tectonic belt /
- Yaoshan Group /
- petrology /
- geochemistry
-
图 1 哀牢山构造带及其邻区地质简图
据Cai et al.(2014)改编.G.花岗质岩石;B.基性岩类;S.云母石英片岩
Fig. 1. Simplified geotectonic map showing the Ailaoshan tectonic belt and its surrounding areas
图 6 哀牢山构造带瑶山群变基性岩球粒陨石标准化稀土配分模式图(a)和原始地幔标准化微量元素蛛网图(b)
原始地幔和球粒陨石标准化值以及N-MORB和E-MORB数据据Sun and McDonough(1989);Barren弧火山岩数据来自Luhr and Haldar(2006);新元古代时期的攀枝花、汉南和湘-赣基性岩数据分别来自Zhao and Zhou(2007)、Zhao and Zhou(2009)和Li et al.(2008)及其参考文献
Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spidergrams (b) of the metabasite from the Yaoshan Group in the Ailaoshan tectonic belt
表 1 哀牢山构造带瑶山群变基性岩锆石U-Pb同位素测试结果
Table 1. Zircon U-Pb isotopic analyses of the metabasite from the Yaoshan Group in the Ailaoshan tectonic belt
点号 元素(10-6) Th/U 同位素比值 年龄(Ma) 232Th 238U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 样品MH1606 MH160601 256 383 0.67 0.064 7 0.001 2 1.136 8 0.021 9 0.127 5 0.000 9 765 238 771 10 773 5 MH160602 466 486 0.96 0.067 3 0.001 5 1.049 8 0.022 3 0.113 5 0.001 1 856 - 729 11 693 7 MH160603 340 444 0.77 0.064 5 0.001 7 1.126 9 0.028 5 0.127 0 0.001 4 767 54 766 14 771 8 MH160604 308 440 0.70 0.065 0 0.002 0 1.137 5 0.045 8 0.126 0 0.001 4 774 67 771 22 765 8 MH160605 341 524 0.65 0.064 2 0.001 7 1.113 5 0.027 0 0.126 6 0.002 1 750 57 760 13 768 12 MH160606 237 290 0.82 0.064 1 0.001 4 1.107 4 0.023 9 0.125 8 0.001 1 746 46 757 12 764 6 MH160607 203 495 0.41 0.063 5 0.002 6 1.097 8 0.039 2 0.125 1 0.002 1 724 86 752 19 760 12 MH160608 500 653 0.77 0.062 3 0.001 4 1.071 5 0.025 5 0.124 5 0.001 3 687 55 739 12 756 7 MH160609 393 376 1.05 0.063 2 0.001 5 1.091 0 0.026 4 0.125 0 0.001 1 717 50 749 13 759 6 MH160610 235 281 0.84 0.063 9 0.001 5 1.109 2 0.024 8 0.126 2 0.001 0 739 44 758 12 766 6 MH160611 406 682 0.59 0.064 4 0.002 8 1.100 5 0.040 2 0.124 4 0.002 2 754 91 754 19 756 13 MH160612 456 760 0.60 0.065 2 0.002 5 1.149 9 0.045 2 0.127 5 0.001 4 789 80 777 21 774 8 MH160613 420 545 0.77 0.066 4 0.001 5 1.023 9 0.027 1 0.111 4 0.001 7 818 46 716 14 681 10 MH160614 340 369 0.92 0.063 1 0.001 4 1.102 8 0.024 7 0.126 5 0.001 2 722 51 755 12 768 7 MH160615 656 1 025 0.64 0.075 6 0.004 9 0.329 2 0.028 1 0.030 7 0.001 2 1 085 130 289 21 195 7 MH160616 411 623 0.66 0.063 4 0.001 1 1.100 1 0.019 2 0.125 4 0.001 0 724 40 753 9 762 6 MH160617 459 831 0.55 0.063 7 0.000 9 1.128 8 0.018 0 0.128 0 0.001 1 731 30 767 9 776 6 MH160618 274 334 0.82 0.065 4 0.001 4 1.125 9 0.022 5 0.125 4 0.001 0 787 46 766 11 762 6 MH160619 287 343 0.84 0.063 4 0.001 3 1.110 1 0.023 1 0.126 8 0.001 1 720 44 758 11 769 6 MH160620 364 505 0.72 0.065 2 0.001 0 1.128 5 0.016 2 0.125 4 0.000 9 789 30 767 8 761 5 样品MH1607 MH160701 195 478 0.41 0.063 6 0.011 8 1.105 2 0.196 2 0.125 6 0.006 4 729 400 756 95 763 37 MH160702 490 600 0.82 0.063 7 0.010 0 1.090 3 0.164 0 0.123 8 0.005 4 731 332 749 80 752 31 MH160703 366 473 0.78 0.066 1 0.008 6 1.162 4 0.144 2 0.127 2 0.004 6 811 269 783 68 772 26 MH160704 331 355 0.93 0.064 1 0.006 5 1.139 6 0.111 3 0.128 8 0.003 7 746 212 772 53 781 21 MH160705 397 390 1.02 0.063 0 0.001 9 1.072 4 0.029 6 0.125 2 0.001 4 706 64 740 14 761 8 MH160706 217 263 0.82 0.062 9 0.001 7 1.098 2 0.029 6 0.126 3 0.001 1 706 53 753 14 767 6 MH160707 346 523 0.66 0.064 9 0.001 8 1.129 3 0.029 6 0.126 6 0.002 3 772 61 767 14 769 13 MH160708 415 604 0.69 0.063 9 0.001 0 1.135 1 0.017 7 0.128 5 0.000 7 739 31 770 8 779 4 MH160709 285 425 0.67 0.062 5 0.001 5 1.098 5 0.027 9 0.126 7 0.001 2 694 50 753 14 769 7 MH160710 188 440 0.43 0.063 9 0.001 5 1.114 7 0.026 4 0.126 2 0.001 2 739 52 760 13 766 7 MH160711 347 681 0.51 0.062 5 0.000 9 1.100 3 0.016 6 0.127 4 0.001 0 700 30 753 8 773 6 MH160712 363 445 0.82 0.063 0 0.001 1 1.101 6 0.019 5 0.126 7 0.000 9 706 5 754 9 769 5 MH160713 284 398 0.71 0.065 8 0.001 6 0.978 5 0.025 1 0.107 5 0.001 1 1 200 50 693 13 658 7 MH160714 276 385 0.72 0.066 8 0.001 5 1.047 5 0.024 1 0.113 3 0.001 0 833 46 728 12 692 6 MH160715 431 987 0.44 0.100 2 0.001 0 3.907 7 0.043 6 0.281 9 0.001 9 1 628 19 1 615 9 1 601 10 MH160716 147 534 0.28 0.063 9 0.002 0 0.796 0 0.024 8 0.090 4 0.001 4 739 264 595 14 558 8 MH160717 268 547 0.49 0.065 7 0.002 2 0.908 6 0.031 9 0.100 2 0.001 4 794 70 656 17 615 8 表 2 哀牢山构造带瑶山群变基性岩的主量元素(%)和微量元素(10-6)分析结果
Table 2. Major oxide (%) and trace element (10-6) data of the metabasite from the Yaoshan Group in the Ailaoshan tectonic belt
样品号 MH1606 MH1607 MH1608 MH1609 MH1610 SiO2 49.00 48.41 48.88 48.97 48.85 TiO2 0.67 0.66 0.67 0.67 0.67 Al2O3 14.93 14.83 15.04 14.94 14.98 Fe2O3T 10.48 10.30 10.40 10.42 10.45 MgO 10.15 10.05 10.15 10.15 10.10 CaO 11.95 11.75 11.85 11.90 11.90 K2O 0.44 0.43 0.43 0.44 0.43 Na2O 1.77 1.72 1.72 1.76 1.72 MnO 0.18 0.17 0.17 0.18 0.18 P2O5 0.07 0.06 0.06 0.06 0.06 烧失量 0.75 0.77 0.89 0.82 0.74 总量 100.39 99.15 100.26 100.31 100.08 Mg# 69.3 69.5 69.5 69.4 69.3 La 6.10 6.60 6.90 6.40 6.50 Ce 13.4 13.4 14.1 13.4 13.4 Pr 1.69 1.84 1.88 1.81 1.74 Nd 7.10 7.90 8.00 7.80 8.00 Sm 1.90 2.10 2.26 2.07 2.10 Eu 0.68 0.71 0.76 0.69 0.73 Gd 2.60 2.69 2.78 2.66 2.68 Tb 0.47 0.48 0.49 0.49 0.49 Dy 3.13 3.20 3.25 3.20 3.28 Ho 0.70 0.74 0.73 0.73 0.71 Er 2.14 2.23 2.35 2.26 2.21 Tm 0.33 0.33 0.36 0.34 0.33 Yb 2.18 2.23 2.26 2.33 2.26 Lu 0.35 0.35 0.34 0.37 0.39 V 265 334 349 346 360 Cr 660 660 670 660 660 Ni 236 236 236 236 236 Ga 15.3 14.1 14.4 14.1 14.2 Rb 12.7 12.7 13.0 12.6 12.5 Sr 89 85 87 83 82 Y 20.3 18.7 19.8 19.1 18.6 Zr 118 118 122 119 116 Nb 3.70 3.90 3.90 3.90 3.70 Cs 0.45 0.54 0.55 0.52 0.53 Ba 39.3 43.5 44.5 43.6 42.6 Hf 3.10 3.10 3.30 3.10 3.10 Ta 0.40 0.50 0.50 0.40 0.40 Th 1.93 2.14 1.88 2.03 1.96 U 0.52 0.49 0.49 0.49 0.51 ∑REE 42.8 44.8 46.5 44.6 44.8 注:主量元素含量为质量百分含量(%). -
Bromiley, G. D., Redfern, S. A. T., 2008. The Role of TiO2 Phases during Melting of Subduction-Modified Crust: Implications for Deep Mantle Melting. Earth and Planetary Science Letters, 267(1-2): 301-308. https://doi.org/10.1016/j.epsl.2007.11.033 Cai, Y. F., Wang, Y. J., Cawood, P. A., et al., 2014. Neoproterozoic Subduction along the Ailaoshan Zone, South China: Geochronological and Geochemical Evidence from Amphibolite. Precambrian Research, 245: 13-28. https://doi.org/10.1016/j.precamres.2014.01.009 Cai, Y. F., Wang, Y. J., Cawood, P. A., et al., 2015. Neoproterozoic Crustal Growth of the Southern Yangtze Block: Geochemical and Zircon U-Pb Geochronological and Lu-Hf Isotopic Evidence of Neoproterozoic Diorite from the Ailaoshan Zone. Precambrian Research, 266: 137-149. https://doi.org/10.1016/j.precamres.2015.05.008 Condie, K. C., 1999. Mafic Crustal Xenoliths and the Origin of the Lower Continental Crust. Lithos, 46(1): 95-101. https://doi.org/10.1016/s0024-4937(98)00056-5 Du, L. L., Guo, J. H., Geng, Y. S., et al., 2013. Age and Tectonic Setting of the Yanbian Group in the Southwestern Yangtze Block: Constraints from Clastic Sedimentary Rocks. Acta Petrologica Sinica, 29(2): 641-672(in Chinese with English abstract). Jian, P., Liu, D. Y., Kröner, A., et al., 2009. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (Ⅰ): Geochemistry of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks. Lithos, 113(3-4): 748-766. https://doi.org/10.1016/j.lithos.2009.04.004 Leloup, P. H., Lacassin, R., Tapponnier, P., et al., 1995. The Ailao Shan-Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina. Tectonophysics, 251(1-4): 3-84. https://doi.org/10.1016/0040-1951(95)00070-4 Li, B. L., Ji, J. Q., Wang, D. D., et al., 2012. Neoproterozoic Magmatism in South Yunnan: Evidence from SHRIMP Zircon U-Pb Geochrological Results of High-Grade Metamorphic Rocks in the Yaoshan Group. Acta Geologica Sinica, 86(10): 1584-1591(in Chinese with English abstract). Li, W. X., Li, X. H., Li, Z. X., et al., 2008. Obduction-Type Granites within the NE Jiangxi Ophiolite: Implications for the Final Amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research, 13(3): 288-301. https://doi.org/10.1016/j.gr.2007.12.010 Li, X. H., Li, Z. X., Zhou, H. W., et al., 2002. U-Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China: Implications for the Initial Rifting of Rodinia. Precambrian Research, 113(1-2): 135-154. https://doi.org/10.1016/s0301-9268(01)00207-8 Li, X. H., Qi, C. S., Liu, Y., et al., 2005. Petrogenesis of the Neoproterozoic Bimodal Volcanic Rocks along the Western Margin of the Yangtze Block: New Constraints from Hf Isotopes and Fe/Mn Ratios. Chinese Science Bulletin, 50(21): 2481-2486. https://doi.org/10.1360/982005-287 Li, Z. X., Li, X. H., Kinny, P. D., et al., 1999. The Breakup of Rodinia: Did it Start with a Mantle Plume beneath South China? Earth and Planetary Science Letters, 173(3): 171-181. https://doi.org/10.1016/s0012-821x(99)00240-x Liao, Z., Liu, Y. P., Li, Z. X., et al., 2014. Zircon SHRIMP U-Pb Geochronology of the Yaoshan Group, Southeastern Yunnan, China and Its Geological Significance. Bulletin of Mineralogy, Petrology and Geochemistry, 33(2): 154-162(in Chinese with English abstract). Liu, G. C., Chen, G. Y., Li, J., et al., 2020. Petrogenesis of Xiangshui Granite from Xiangyun, in the West Margin of Yangtze Block: Zircon U-Pb Geochronology, Geochemical and Sr-Nd Isotope Constraints. Earth Science, 45(7): 2426-2440(in Chinese with English abstract). Liu, G. C., Li, J., Hu, S. B., et al., 2018. Characteristics and Geological Significance of Early Proterozoic Turbidite in Yuanjiang of Central Yunnan Province. Geological Bulletin of China, 37(11): 2007-2014(in Chinese with English abstract). Liu, H. C., Zi, J. W., Cawood, P. A., et al., 2020. Reconstructing South China in the Mesoproterozoic and Its Role in the Nuna and Rodinia Supercontinents. Precambrian Research, 337: 105558. https://doi.org/10.1016/j.precamres.2019.105558 Liu, J. L., Wang, A. J., Cao, S. Y., et al., 2008. Geochronology and Tectonic Implication of Migmatites from Diancangshan, Western Yunnan, China. Acta Petrologica Sinica, 24(3): 413-420(in Chinese with English abstract). Liu, S. D., Zeng, Z. X., Guo, R. L., et al., 2021. Huashan Group in Northern Margin of Yangtze Block: A Suite of Back-Arc-Basin Volcanic-Sedimentary Strata But not Ophiolite Mélange. Earth Science, 46(8): 2751-2767(in Chinese with English abstract). Liu, Y., Liu, H. C., Li, X. H., 1996. Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS. Geochimica, 25(6): 552-558(in Chinese with English abstract). Luhr, J. F., Haldar, D., 2006. Barren Island Volcano (NE Indian Ocean): Island-Arc High-Alumina Basalts Produced by Troctolite Contamination. Journal of Volcanology and Geothermal Research, 149(3-4): 177-212. https://doi.org/10.1016/j.jvolgeores.2005.06.003 Ma, Y. C., Cai, Y. F., Ma, L. Y., et al., 2021. Genesis of Neoproterozoic Amphibolite in Diancangshan, West Yunnan: Evidence from Zircon U-Pb Age and Whole-Rock Geochemistry. Earth Science, 46(8): 2860-2872(in Chinese with English abstract). Qi, X. X., Zeng, L. S., Zhu, L. H., et al., 2012. Zircon U-Pb and Lu-Hf Isotopic Systematics of the Daping Plutonic Rocks: Implications for the Neoproterozoic Tectonic Evolution of the Northeastern Margin of the Indochina Block, Southwest China. Gondwana Research, 21(1): 180-193. https://doi.org/10.1016/j.gr.2011.06.004 Stern, R. A., Hanson, G. N., 1991. Archean High-Mg Granodiorite: A Derivative of Light Rare Earth Element-Enriched Monzodiorite of Mantle Origin. Journal of Petrology, 32(1): 201-238. https://doi.org/10.1093/petrology/32.1.201 Sun, C. B., Li, Z. Q., Wang, D. Y., et al., 2019. Petrogeochemistry and Zircon U-Pb Age of the Mayu Granodiorite in the Southern Section of Ailaoshan Tectonic Belt. Geological Bulletin of China, 38(Suppl. 1): 223-230(in Chinese with English abstract). Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Wang, H. B., Cao, S. Y., Li, J. Y., et al., 2019. Cenozoic Multi-Metamorphism, Shear Deformation and Geological Significance of Ailaoshan High-Grade Metamorphic Complex, Western Yunnan, China. Acta Petrologica Sinica, 35(8): 2573-2596(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.08.15 Wang, J., Li, X. H., Duan, T. Z., et al., 2003. Zircon SHRIMP U-Pb Dating for the Cangshuipu Volcanic Rocks and Its Implications for the Lower Boundary Age of the Nanhua Strata in South China. Chinese Science Bulletin, 48(16): 1663-1669. https://doi.org/10.1360/03wd0168 Wang, X. L., Shu, L. S., Xing, G. F., et al., 2012. Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from ca. 800-760 Ma Volcanic Rocks. Precambrian Research, 222-223: 404-423. https://doi.org/10.1016/j.precamres.2011.07.003 Wang, Y. Z., Ding, J., 1996. Structural Deformation and Evolution of the Medium to High Grade Metamorphic Rock Series in the Ailao Mountains, Yunnan. Sedimentary Geology and Tethyan Geology, 16(20): 52-69(in Chinese with English abstract). Woodhead, J., Eggins, S., Gamble, J., 1993. High Field Strength and Transition Element Systematics in Island Arc and Back-Arc Basin Basalts: Evidence for Multi-Phase Melt Extraction and a Depleted Mantle Wedge. Earth and Planetary Science Letters, 114(4): 491-504. https://doi.org/10.1016/0012-821x(93)90078-n Xu, X. Y., Xia, L. Q., Chen, J. L., et al., 2009. Zircon U-Pb Dating and Geochemical Study of Volcanic Rocks from Sunjiahe Formation of Xixiang Group in Northern Margin of Yangtze Plate. Acta Petrologica Sinica, 25(12): 3309-3326(in Chinese with English abstract). Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x Zhai, M. G., Cong, B. L., Qiao, G. S., et al., 1990. Sm-Nd and Rb-Sr Geochronology of Metamorphic Rocks from SW Yunnan Orogenic Zones, China. Acta Petrologica Sinica, 6(4): 1-11(in Chinese with English abstract). Zhao, F. Q., Zhao, W. P., Zuo, Y. C., et al., 2006. Geochronology of Neoproterozoic Magmatic Rocks in Hanzhong, Southern Shaanxi, China. Geological Bulletin of China, 25(3): 383-388(in Chinese with English abstract). Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1-2): 27-47. https://doi.org/10.1016/j.precamres.2006.09.002 Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3-4): 152-168. https://doi.org/10.1016/j.lithos.2008.09.017 Zhang, Y. Y., Zhang, D., Chen, X. H., et al., 2021. U-Pb Chronology, Lithogeochemistry and Tectonic Significance of Late Permain Granite Porphyry in Zhenyuan Gold Deposit, the Middle Section of Ailaoshan. Acta Petrologica Sinica, 37(6): 1674-1690(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.06.03 Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004 Zhou, H. W., Li, X. H., Wang, H. R., et al., 2002. U-Pb Zircon Geochronology of Basic Volcanic Rocks of the Yingyangguan Group in Hezhou, Guangxi, and Its Tectonic Implications. Geological Review, 48(S1): 22-25(in Chinese with English abstract). Zhou, M. F., Kennedy, A. K., Sun, M., et al., 2002. Neoproterozoic Arc-Related Mafic Intrusions along the Northern Margin of South China: Implications for the Accretion of Rodinia. The Journal of Geology, 110(5): 611-618. https://doi.org/10.1086/341762 Zou, R., Zhu, B. Q., Sun, D. Z., et al., 1997. Geochronology Studies of Crust-Mantle Interaction and Mineralization in the Honghe Ore Deposit Zone. Geochimica, 26(2): 46-56(in Chinese with English abstract). 杜利林, 郭敬辉, 耿元生, 等, 2013. 扬子西南缘盐边群时代及构造环境: 来自碎屑沉积岩的约束. 岩石学报, 29(2): 641-672. 李宝龙, 季建清, 王丹丹, 等, 2012. 滇南新元古代的岩浆作用: 来自瑶山群深变质岩SHRIMP锆石U-Pb年代学证据. 地质学报, 86(10): 1584-1591. 廖震, 刘玉平, 李正祥, 等, 2014. 滇东南瑶山群SHRIMP锆石U-Pb年代学及其地质意义. 矿物岩石地球化学通报, 33(2): 154-162. 刘桂春, 陈光艳, 李静, 等, 2020. 扬子西缘祥云响水花岗岩体的成因: 锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素制约. 地球科学, 45(7): 2426-2440. doi: 10.3799/dqkx.2020.041 刘桂春, 李静, 胡绍斌, 等, 2018. 滇中元江古元古代浊积岩特征及其地质意义. 地质通报, 37(11): 2007-2014. 刘俊来, 王安建, 曹淑云, 等, 2008. 滇西点苍山杂岩中混合岩的地质年代学分析及其区域构造内涵. 岩石学报, 24(3): 413-420. 刘述德, 曾佐勋, 郭瑞禄, 等, 2021. 扬子陆块北缘花山群: 弧后盆地火山-沉积岩系而非蛇绿混杂岩. 地球科学, 46(8): 2751-2767. doi: 10.3799/dqkx.2020.266 刘颖, 刘海臣, 李献华, 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004 麻艺超, 蔡永丰, 马莉燕, 等, 2021. 滇西点苍山新元古代斜长角闪岩的成因: 来自锆石U-Pb年龄和全岩地球化学的证据. 地球科学, 46(8): 2860-2872. doi: 10.3799/dqkx.2020.288 孙崇波, 李忠权, 王道永, 等, 2019. 哀牢山构造带南段马玉花岗闪长岩地球化学特征及其锆石U-Pb年龄. 地质通报, 38(Suppl. 1): 223-230. 王浩博, 曹淑云, 李俊瑜, 等, 2019. 滇西哀牢山深变质杂岩新生代多期变质、剪切变形及地质意义. 岩石学报, 35(8): 2573-2596. 王义昭, 丁俊, 1996. 云南哀牢山中深变质岩系构造变形特征及演变. 特提斯地质, 16(20): 52-69. 徐学义, 夏林圻, 陈隽璐, 等, 2009. 扬子地块北缘西乡群孙家河组火山岩形成时代及元素地球化学研究. 岩石学报, 25(12): 3309-3326. 翟明国, 从柏林, 乔广生, 等, 1990. 中国滇西南造山带变质岩的Sm-Nd和Rb-Sr同位素年代学. 岩石学报, 6(4): 1-11. 张垚垚, 张达, 陈宣华, 等, 2021. 哀牢山中段镇沅金矿晚二叠世花岗斑岩U-Pb年代学、岩石地球化学及其构造意义. 岩石学报, 37(6): 1674-1690. 赵凤清, 赵文平, 左义成, 等, 2006. 陕南汉中地区新元古代岩浆岩U-Pb年代学. 地质通报, 25(3): 383-388. 周汉文, 李献华, 王汉荣, 等, 2002. 广西鹰扬关群基性火山岩的锆石U-Pb年龄及其地质意义. 地质论评, 48(增刊1): 22-25. 邹日, 朱炳泉, 孙大中, 等, 1997. 红河成矿带壳幔演化与成矿作用的年代学研究. 地球化学, 26(2): 46-56. -