• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    利用水力连通储层进行地质储能的优势分析

    马建力 李琦 陈祥荣

    马建力, 李琦, 陈祥荣, 2023. 利用水力连通储层进行地质储能的优势分析. 地球科学, 48(11): 4175-4189. doi: 10.3799/dqkx.2022.051
    引用本文: 马建力, 李琦, 陈祥荣, 2023. 利用水力连通储层进行地质储能的优势分析. 地球科学, 48(11): 4175-4189. doi: 10.3799/dqkx.2022.051
    Ma Jianli, Li Qi, Chen Xiangrong, 2023. Analysis of Advantages of Carbon Neutral Geological Energy Storage in Hydraulically Connected Reservoirs. Earth Science, 48(11): 4175-4189. doi: 10.3799/dqkx.2022.051
    Citation: Ma Jianli, Li Qi, Chen Xiangrong, 2023. Analysis of Advantages of Carbon Neutral Geological Energy Storage in Hydraulically Connected Reservoirs. Earth Science, 48(11): 4175-4189. doi: 10.3799/dqkx.2022.051

    利用水力连通储层进行地质储能的优势分析

    doi: 10.3799/dqkx.2022.051
    基金项目: 

    中德1+1国际合作创新计划“CO2地质储能与碳中和技术” 1plus1-2018-01

    中国博士后科学基金第70批面上二等资助项目 2021M701186

    详细信息
      作者简介:

      马建力(1992-), 男, 博士, 主要从事碳中和地质储能与渗流力学方面的研究.E-mail: ma_jl2@hdec.com

      通讯作者:

      李琦, E-mail: qli@whrsm.ac.cn

    • 中图分类号: P54

    Analysis of Advantages of Carbon Neutral Geological Energy Storage in Hydraulically Connected Reservoirs

    • 摘要: 可再生能源发电的间歇性与低可控性时常导致电力供需不匹配,进而引发弃风现象.电转气(Power-to-gas,PtG)技术可利用多余电能电解水产生的氢气(H2),可与二氧化碳(CO2)人工合成甲烷(CH4),与地质储存技术相结合,有望成为未来有效储能技术选择之一.然而,将CO2与CH4两种流体储存于同一储层中,流体间的混合问题难以避免.若分别储存于不同储层,大量CH4用作垫层气将导致大量能源损失.因此,创新地提出了一种利用水力连通储层进行地质储能的新模式.利用油气藏软件MUFITS建立包含井筒-储层注采系统的三维多相流模型,研究利用水力连通储层进行地质储能的过程及储层中流体运移规律,并通过CO2与CH4生产井的采出量对该储能模式的优势进行量化分析.研究发现,在垫层气注入阶段,注入流体迅速上移,并沿上覆盖层横向运移,CO2饱和度空间分布范围处于可控范围.此外,按照既定的注采速率,CO2目标储层较CH4目标储层的压力响应更为缓和,可借助CO2的易压缩性削弱储层整体压力激增.利用水力连通储层间压力的相互作用,对CO2与CH4均有明显的增产效果.

       

    • 图  1  利用水力连通储层进行地质储能示意

      Fig.  1.  Schematic diagram of geological energy storage for hydraulic connected formations

      图  2  MUFITS模拟器内置模块

      Fig.  2.  Architecture of the MUFITS simulator

      图  3  GASSTORE模块(左)与BLACKOIL模块(右)转换示意

      Fig.  3.  GASSTORE model (left) can be converted to BLACKOIL model (right)

      图  4  水力连通地质储能数值模型

      Fig.  4.  Numerical model of energy storage for hydraulic connected formations

      图  5  每月人工合成CH4和发电消耗CH4的量及其差值变化

      Fig.  5.  Monthly development of synthesized CH4, combusted CH4 and their difference

      图  6  每月捕集的CO2和甲烷化所消耗CO2的量及其差值变化

      Fig.  6.  Monthly development of captured CO2, consumed CO2 for methanation and their difference

      图  7  每月CH4的注入速率与采出速率

      Fig.  7.  Monthly injection and production mass rate of CH4

      图  8  每月CO2的注入速率与采出速率

      Fig.  8.  Monthly injection and production mass rate of CO2

      图  9  CH4与水的两相相对渗透率曲线

      Fig.  9.  Relative permeability curve of CH4 and water

      图  10  CO2与水的两相相对渗透率曲线

      Fig.  10.  Relative permeability curve of CO2 and water

      图  11  垫层气注入阶段CH4与CO2饱和度分布

      Fig.  11.  Saturation distribution of CH4 and CO2 during cushion gas injection

      图  12  CH4单独循环注采10年(a)与20年(b)储层饱和度分布

      Fig.  12.  Saturation distribution in the reservoir after 10 years (a) and 20 years (b) cycling injection and production of CH4

      图  13  CO2单独循环注采10年(a)与20年(b)储层饱和度分布

      Fig.  13.  Saturation distribution in the reservoir after 10 years (a) and 20 years (b) cycling injection and production of CO2

      图  14  CH4参与循环注采时对CO2采出量的影响

      Fig.  14.  Effects of CH4 on the production of CO2

      图  15  CO2参与循环注采时对CH4采出量的影响

      Fig.  15.  Effects of CO2 on the production of CH4

      图  16  层间流体相互作用下CO2与CH4采出井井底压力变化

      Fig.  16.  Bottom hole pressure evolution of CO2 and CH4 during the interaction storage

      图  17  层间流体相互作用下的储层压力变化

      Fig.  17.  Reservoir pressure evolution during the interaction storage

      表  1  水力连通地质储能数值模型参数对照

      Table  1.   Parameter setting of energy storage in different formations models

      参数 数值 单位
      储层尺寸 2 000×2 000×100 m
      网格 25×25×20 -
      储层渗透率 X, Y方向:2×10‒13 m2
      Z方向:2×10‒14 m2
      储层孔隙率 0.25 -
      CH4注入速率 图 3~图 9 t/d
      CH4采出速率 图 3~图 9 t/d
      CH4注入井深度 ‒540 m
      CH4采出井深度 ‒505 m
      CO2注入速率 图 3~图 10 t/d
      CO2注入速率 图 3~图 10 t/d
      CO2注入井深度 ‒595 m
      CO2采出井深度 ‒555 m
      储层初始水饱和度 1.0 -
      储层初始气饱和度 0.0 -
      注入井初始水饱和度 0.0 -
      残余水饱和度 0.2 -
      注入井初始气饱和度 1.0 -
      水‒气接触深度 ‒200 m
      储层温度 308.15~311.15 K
      储层初始压力 5~6 MPa
      CH4垫层气注入速率 65 t/d
      CO2垫层气注入速率 308 t/d
      初始井头压力 0.1 MPa
      下载: 导出CSV
    • Afanasyev, A., 2020. MUFITS Reservoir Simulation Software. https://www.mufits.imec.msu.ru/
      Afanasyev, A., Kempka, T., Kühn, M., et al., 2016. Validation of the MUFITS Reservoir Simulator against Standard CO2 Storage Benchmarks and History-Matched Models of the Ketzin Pilot Site. Energy Procedia, 97: 395-402. doi: 10.1016/j.egypro.2016.10.032
      Chandler, H., 2008. Empowering Variable Renewables Options for Flexible Electricity Systems. International Energy Agency, Paris.
      Ediger, V., Kentel, E., 1999. Renewable Energy Potential as an Alternative to Fossil Fuels in Turkey. Energy Conversion & Management, 40(7): 743-755.
      Feng, Y. W., Chen, Y., Zhao, Z. Y., et al., 2021. Migration of Natural Gas Controlled by Faults of Majiagou Formation in Central Ordos Basin: Evidence from Fluid Inclusions. Earth Science, 46(10): 3601-3614 (in Chinese with English abstract).
      Honari, A., Hughes, T. J., Fridjonsson, E. O., et al., 2013. Dispersion of Supercritical CO2 and CH4 in Consolidated Porous Media for Enhanced Gas Recovery Simulations. International Journal of Greenhouse Gas Control, 19: 234-242. doi: 10.1016/j.ijggc.2013.08.016
      Hughes, T. J., Honari, A., Graham, B. F., et al., 2012. CO2 Sequestration for Enhanced Gas Recovery: New Measurements of Supercritical CO2-CH4 Dispersion in Porous Media and a Review of Recent Research. International Journal of Greenhouse Gas Control, 9: 457-468. doi: 10.1016/j.ijggc.2012.05.011
      Huisingh, D., Zhang, Z., Moore, J., et al., 2015. Recent Advances in Carbon Emissions Reduction: Policies, Technologies, Monitoring, Assessment and Modeling. Journal of Cleaner Production, 103: 1-12. doi: 10.1016/j.jclepro.2015.04.098
      Kim, J., Han, S., Sung, G., et al., 2016. Underground Gas Storage with CO2 Sequestration in a Depleted Gas Field. ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, Busan. https://doi.org/10.1115/OMAE2016-54224
      Kongsjorden, H., Karstad, O., Torp, T., 1998. Saline Aquifer Storage of Carbon Dioxide in the Sleipner Project. Waste Management, 17(5-6): 303-308. doi: 10.1016/S0956-053X(97)10037-X
      Kühn, M., Nakaten, N., Streibel, M., et al., 2014a. CO2 Geological Storage and Utilization for a Carbon Neutral "Power-to-Gas-to-Power" Cycle to Even out Fluctuations of Renewable Energy Provision. Energy Procedia, 63: 8044-9. doi: 10.1016/j.egypro.2014.11.841
      Kühn, M., Streibel, M., Nakaten, N., et al., 2014b. Integrated Underground Gas Storage of CO2 and CH4 to Decarbonize the "Power-to-Gas-to-Gas-to-Power" Technology. Energy Procedia, 59(5): 9-15.
      Li, H., 2017. Discussion on Carbon Emission Reduction in China after Paris Climate Conference. Modern Business, Paris, 163-164.
      Li, Q., Wei, Y., Liu, G., et al., 2014. Combination of CO2 Geological Storage with Deep Saline Water Recovery in Western China: Insights from Numerical Analyses. Applied Energy, 116: 101-110. doi: 10.1016/j.apenergy.2013.11.050
      Liang, J.S., Kong, L.W., Qiu, C.G., et al., 2021. Gas Accumulation Mechanism in East Africa Coastal Key Basins. Earth Science, 46(8): 2919-2933 (in Chinese with English abstract).
      Lu, Z., 2016. Major Progress in China's Underground Gas Storage Construction. Obstacles and Countermeasures, 21: 15-19.
      Ma, J., Li, Q., Kempka, T., et al., 2019. Hydromechanical Response and Impact of Gas Mixing Behavior in Subsurface CH4 Storage with CO2-Based Cushion Gas. Energy & Fuels, 33(7): 6527-6541.
      Ma, J., Li, Q., Kühn, M., et al., 2018. Power-to-Gas based Subsurface Energy Storage: A Review. Renewable and Sustainable Energy Reviews, 97: 478-496. doi: 10.1016/j.rser.2018.08.056
      Monastersky, R., 2013. Global Carbon Dioxide Levels near Worrisome Milestone. Nature, 497(7447): 13-14. doi: 10.1038/497013a
      Niu, C., Tan, Y., 2014. Numerical Simulation and Analysis of Migration Law of Gas Mixture Using Carbon Dioxide as Cushion Gas in Underground Gas Storage Reservoir. Journal of Harbin Institute of Technology (New Series), 21(3): 121-128.
      Niu, S.W., Wang, Y.P., Qu, W., et al., 2017. Wind Power Industry in West China: Difficulties and Solutions―Reflections on "Abandonment of Wind Power". Science & Technology Review, (10): 11-12 (in Chinese with English abstract).
      Niu, X., He, Y.L., Zhuang, X.G., 2021. Distribution and Major Controlling Factors of CO2 Reservoirs in Lishui Sag, East China Sea Basin. Earth Science, 46(10): 3549-3559 (in Chinese with English abstract).
      Oldenburg, C. M., 2003. Carbon Dioxide as Cushion Gas for Natural Gas Storage. Energy & Fuels, 17(1): 240-246.
      Pruess, K., Bielinski, A., Ennis-King, J., et al., 2003. Code Intercomparison Builds Confidence in Numerical Simulation Models for Geologic Disposal of CO2. Energy, 29(9-10): 1431-1444.
      Pruess, K., Garcia, J., Kovscek, T., et al., 2002. Intercomparison of Numerical Simulation Codes for Geologic Disposal of CO2. Lawrence Berkeley National Lab, Berkeley.
      Rahman, F., Aziz, M., Saidur, R., et al., 2017. Pollution to Solution: Capture and Sequestration of Carbon Dioxide and Its Utilization as a Renewable Energy Source for a Sustainable Future. Renewable & Sustainable Energy Reviews, 71: 112-126.
      Streibel, M., Nakaten, N., Kempka, T., et al., 2013. Analysis of an Integrated Carbon Cycle for Storage of Renewables. Energy Procedia, 40(2): 202-211.
      Su, J., Liang, Y.B., Ding, L., et al., 2021. Research on China's Energy Development Strategy under Carbon Neutrality. Bulletin of Chinese Academy of Sciences, 36(9): 1001-1009 (in Chinese with English abstract).
      Suebsiri, J., Wilson, M., Tontiwachwuthikul, P., 2006. Life-Cycle Analysis of CO2 EOR on EOR and Geological Storage through Economic Optimization and Sensitivity Analysis Using the Weyburn Unit as a Case Study. Industrial & Engineering Chemistry Research, 45(8): 2483-2488. https://doi.org/10.1021/ie050909w
      Sun, P., Lou, R.P., Li, Q.L., 2017. Research on Energy Substitution, Renewable Energy Power Generation Industry Development and Government Regulation Policy. Energy Research and Management, (2): 1-7 (in Chinese with English abstract).
      Tan, Y., Lin, C., 2005. Gas Mixing Mechanism Tanking CO2 as Cushion Gas and Feasibility of Operation Control. Natural Gas Industry, 25(12): 105-107.
      Tek, M., 1989. Underground Storage of Natural Gas. Series E: Applied Sciences, 171: 15-21.
      Wei, N., Li, X., Fang, Z., et al., 2015. Regional Resource Distribution of Onshore Carbon Geological Utilization in China. Journal of CO2 Utilization, 11: 20-30. doi: 10.1016/j.jcou.2014.12.005
      Wu, S.T., Li, S.X., Yuan, X.J., et al., 2021. Fluid Mobility Evaluation of Tight Sandstones in Chang 7 Member of Yanchang Formation, Ordos Basin. Journal of Earth Science, 32(4): 850-862. https://doi.org/10.1007/s12583-020-1050-2
      Xu, C., Dowd, P., Li, Q., 2016. Carbon Sequestration Potential of the Habanero Reservoir when Carbon Dioxide is Used as the Heat Exchange Fluid. Journal of Rock Mechanics and Geotechnical Engineering, 8(1): 50-59. doi: 10.1016/j.jrmge.2015.05.003
      冯艳伟, 陈勇, 赵振宇, 等, 2021. 鄂尔多斯盆地中部地区马家沟组断裂控制天然气运移方向的流体包裹体证据. 地球科学, 46(10): 3601-3614. doi: 10.3799/dqkx.2020.384
      梁建设, 孔令武, 邱春光, 等, 2021. 东非海岸坦桑尼亚和鲁伍马盆地天然气成藏机理. 地球科学, 46(8): 2919-2933. doi: 10.3799/dqkx.2020.264
      牛叔文, 王义鹏, 曲玮, 等, 2017. 西部地区风电产业的困境与出路——关于"弃风限电"的思考. 科技导报, (10): 11-12. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201710008.htm
      牛杏, 何云龙, 庄新国, 2021. 东海盆地丽水凹陷CO2分布特征及成藏主控因素. 地球科学, 46(10): 3549-3559. doi: 10.3799/dqkx.2021.021
      苏健, 梁英波, 丁麟, 等, 2021. 碳中和目标下我国能源发展战略探讨. 中国科学院院刊, 36(9): 1001-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX202109002.htm
      孙鹏, 楼润平, 李清玲, 2017. 能源替代、可再生能源发电产业发展与政府规制政策研究. 能源研究与管理, (2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HXLY201702001.htm
    • 加载中
    图(17) / 表(1)
    计量
    • 文章访问数:  217
    • HTML全文浏览量:  766
    • PDF下载量:  28
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-12-11
    • 网络出版日期:  2023-11-30
    • 刊出日期:  2023-11-25

    目录

      /

      返回文章
      返回