• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川西稻城岩体北部花岗岩年代学、地球化学和成岩构造环境

    程顺波 王晓地 崔森 赵武强 杨文强 刘浩 刘君豪 胥明

    程顺波, 王晓地, 崔森, 赵武强, 杨文强, 刘浩, 刘君豪, 胥明, 2024. 川西稻城岩体北部花岗岩年代学、地球化学和成岩构造环境. 地球科学, 49(6): 1966-1982. doi: 10.3799/dqkx.2022.057
    引用本文: 程顺波, 王晓地, 崔森, 赵武强, 杨文强, 刘浩, 刘君豪, 胥明, 2024. 川西稻城岩体北部花岗岩年代学、地球化学和成岩构造环境. 地球科学, 49(6): 1966-1982. doi: 10.3799/dqkx.2022.057
    Cheng Shunbo, Wang Xiaodi, Cui Sen, Zhao Wuqiang, Yang Wenqiang, Liu Hao, Liu Junhao, Xu Ming, 2024. Zircon U-Pb Chronology, Geochemistry, and Their Tectonic Setting of Granitic Rocks from Northern Daocheng Batholith in West Sichuan. Earth Science, 49(6): 1966-1982. doi: 10.3799/dqkx.2022.057
    Citation: Cheng Shunbo, Wang Xiaodi, Cui Sen, Zhao Wuqiang, Yang Wenqiang, Liu Hao, Liu Junhao, Xu Ming, 2024. Zircon U-Pb Chronology, Geochemistry, and Their Tectonic Setting of Granitic Rocks from Northern Daocheng Batholith in West Sichuan. Earth Science, 49(6): 1966-1982. doi: 10.3799/dqkx.2022.057

    川西稻城岩体北部花岗岩年代学、地球化学和成岩构造环境

    doi: 10.3799/dqkx.2022.057
    基金项目: 

    中国地质调查局项目 DD20190811

    详细信息
      作者简介:

      程顺波(1983-),男,高级工程师,从事华南地质过程与成矿作用研究. ORCID:0000-0002-1854-5952.E-mail:chsb2007@qq.com

      通讯作者:

      赵武强, 高级工程师,从事矿产地质调查工作. E-mail: 40581623@qq.com

    • 中图分类号: P597

    Zircon U-Pb Chronology, Geochemistry, and Their Tectonic Setting of Granitic Rocks from Northern Daocheng Batholith in West Sichuan

    • 摘要: 川西稻城岩体北部花岗岩成因和成岩构造环境争议较大.本次工作选择该岩基北部花岗岩为研究对象,进行了岩石学、锆石U-Pb年代学、地球化学和Hf同位素研究.LA-ICP-MS锆石U-Pb测年结果显示,岩体北部花岗岩形成时代213~212 Ma,略晚于南部.岩性以花岗闪长岩和二长花岗岩为主,前者含较多暗色微粒包体(mafic microgranular enclaves,MME).代表性样品地球化学上具有富钠、偏铝-弱过铝质、富大离子亲石元素的特征.εHft)值非常分散,介于-16.6~-2.4(均值-5.0),对应的t2DM为2.04~1.25 Ga(均值1.4).结合区域地质证据分析,稻城岩体为I型花岗岩,其源区以中元古代康定群变质玄武岩为主,酸性端元含较多变质杂砂岩.花岗岩的形成与后造山环境下俯冲板片断离导致的软流圈上涌、中下地壳受烘烤部分熔融关系密切.

       

    • 图  1  研究区区域地质简图(a)和地质图(b)

      1.古生界;2.三叠系;3.晚三叠世岛弧火山(沉积)岩;4.第四系;5.缝合带;6.后三叠纪花岗岩;7.三叠纪后花岗岩;8.玄武岩;9.海相流纹岩;10.取样点及编号. T3lm.喇嘛哑组;T3t.图姆沟组;JS.金沙江缝合带;GLS.甘孜-理塘缝合带;XGF.乡城-格咱断裂;CJM.措交玛;AJSD.阿吉森多;SCM.苏措玛;JDC.甲多措;HZS.稻城(海子山);DC.冬措;MXG.马雄沟;YJ.乡城-格咱断裂;年代数据据Reid et al.(2007)Weislogel(2008)He et al.(2013)Peng et al.(2014)Wu et al.(2017)秦蒙等(2019)及本文.图a据Wang et al.(2013)修改

      Fig.  1.  Simplified regional geological map (a) and geological map (b) of research area

      图  2  稻城岩体北部不同岩性样品野外、镜下照片

      a.粗中粒花岗闪长岩露头及其中MME;b.中粒花岗闪长岩露头及其中MME;c.细粒花岗闪长岩镜下照片(+);d.MME中捕获石英斑晶(+);e.MME中针状磷灰石(+);f.中细粒二长花岗岩露头;g.中细粒二长花岗岩镜下照片(+);g.中细粒二长花岗岩中的褐帘石(+).Pl.斜长石;Kfs.正长石;Qtz.石英;Hb.角闪石;Bt.黑云母;Ap.磷灰石;Aln.褐帘石

      Fig.  2.  Photographs and micrographs under microscope of different samples from northern Daocheng batholith

      图  3  稻城岩体北部不同岩性样品锆石LA-ICP-MS U-Pb年龄谐和图及代表性锆石阴极发光照片

      束斑大小32 μm

      Fig.  3.  LA-ICP-MS U-Pb zircon concordia age plots and cathodoluminescence (CL) images of different granitic samples from northern Daocheng batholith

      图  4  稻城岩体北部不同岩性样品SiO2-K2O图(a)和A/CNK-A/NK图(b)

      1.花岗闪长岩;2.MME;3.中细粒二长花岗岩;4.措交玛;5.阿吉松多;6.苏措玛;7.甲多措;8.稻城南部;9.马雄沟;10.冬措;11.勇杰;4~10数据引自Wu et al.(2017)

      Fig.  4.  SiO2-K2O (a) and A/CNK-A/NK (b) diagrams of different granitic samples from northern Daocheng batholith

      图  5  稻城岩体北部不同岩性样品微量元素蜘网图解(a)和稀土元素配分图解(b)

      原始地幔和球粒陨石标准值据Sun and McDonough(1989);1.中细粒二长花岗岩;2.粗中粒花岗闪长岩;3.花岗闪长岩中MME包体

      Fig.  5.  Primitive mantle-normalized spider diagram(a) and chondrite-normalized REE patterns(b) of different granitic samples from northern Daocheng batholith

      图  6  稻城岩体北部不同岩性样品εHf(t)-t图解

      1.花岗闪长岩;2.二长花岗岩;3.图姆沟火山岩;4.阿吉松多;5.松措玛;6.甲多措;7.稻城南部;8.康定杂岩.图姆沟组火山岩数据来自Leng et al.(20122014),措交玛花岗岩带数据来自Wu et al.(2017),康定杂岩数据来自Zhao et al.(2008);底图据Wu et al.(2017)

      Fig.  6.  Histograms of εHf(t) and Hf modal ages of zircons from granitic rocks of northern Daocheng batholith

      图  7  稻城岩体北部不同岩性样品Rb-P2O5(a)和Rb-Th(b)图解

      图例同图 4;底图据Chappell and White(1992)

      Fig.  7.  Rb-P2O5(a)和Rb-Th(b) diagrams of different granitic samples from northern Daocheng batholith

      图  8  稻城岩体北部不同岩性样品C/MF-A/MF(a)和(Na2O+K2O)/FeO+MgO+TiO2)-(Na2O+K2O+FeO+MgO +TiO2)(b)图解

      图例同图 4;底图据Altherr et al.(2000)

      Fig.  8.  C/MF-A/MF(a) and (Na2O+K2O)/FeO+MgO+TiO2)-(Na2O+K2O+FeO+MgO+TiO2) (b) diagram of different granitic samples from northern Daocheng batholith

      表  1  稻城岩体北部不同岩性样品锆石U-Th-Pb同位素分析结果

      Table  1.   U-Th-Pb isotopic result of zircons from different granitic samples from northern Daocheng batholith

      序号 Pb*(10-6) Th(10-6) U(10-6) Th/U 207Pb/206Pb比值 207Pb/235U比值 206Pb/238U比值 207Pb/235U年龄(Ma) 206Pb/238U年龄(Ma)
      粗中粒花岗闪长岩(D303-1)(坐标99°53′13″E,30°13′19″N)
      1 11.17 145 318 0.46 0.051 8 9 0.239 0 51 0.033 5 5 218 4 212 3
      2 26.60 379 683 0.55 0.050 5 6 0.233 8 39 0.033 5 4 213 3 213 3
      4 17.52 198 490 0.40 0.052 0 8 0.239 4 7 0.033 4 5 218 4 212 3
      5 17.32 353 447 0.79 0.050 1 8 0.230 9 39 0.033 4 4 211 3 212 2
      6 31.19 457 810 0.56 0.051 4 7 0.240 2 48 0.033 9 7 219 4 215 4
      7 18.12 250 460 0.54 0.051 0 8 0.236 8 49 0.033 6 4 216 4 213 3
      9 28.27 307 775 0.40 0.051 6 6 0.238 3 37 0.033 5 5 217 3 213 3
      10 20.02 257 516 0.50 0.049 9 7 0.231 9 41 0.033 6 4 212 3 213 2
      11 16.30 230 431 0.53 0.049 8 9 0.229 3 50 0.033 4 5 210 4 212 3
      12 17.66 286 438 0.65 0.050 7 7 0.234 4 34 0.033 5 3 214 3 213 2
      13 13.49 198 336 0.59 0.051 0 8 0.236 1 45 0.033 5 5 215 4 213 3
      14 24.70 253 671 0.38 0.050 6 7 0.233 0 39 0.033 4 4 213 3 212 3
      15 10.16 95 280 0.34 0.049 9 9 0.230 5 46 0.033 5 5 211 4 213 3
      16 34.11 486 866 0.56 0.051 1 7 0.236 5 38 0.033 5 4 216 3 212 2
      17 15.02 166 395 0.42 0.048 8 9 0.226 4 45 0.033 7 5 207 4 213 3
      18 23.34 452 621 0.73 0.051 0 7 0.236 2 48 0.033 4 5 215 4 212 3
      19 12.71 160 363 0.44 0.050 0 8 0.230 6 45 0.033 5 5 211 4 212 3
      20 16.05 204 409 0.50 0.052 2 8 0.243 5 53 0.033 6 4 221 4 213 3
      21 12.89 144 356 0.40 0.049 4 7 0.229 1 43 0.033 6 4 209 4 213 3
      23 13.52 169 351 0.48 0.050 7 7 0.234 2 37 0.033 5 4 214 3 212 2
      24 16.25 204 454 0.45 0.049 9 7 0.230 5 37 0.033 4 4 211 3 212 2
      25 27.64 284 729 0.39 0.050 2 5 0.232 5 34 0.033 5 4 212 3 213 3
      粗中粒二长花岗岩(D304-1)(坐标100°00′07″E,30°09′52″N)
      2 47.94 626 1 218 0.51 0.052 9 6 0.244 4 42 0.033 5 5 222 3 212 3
      3 13.62 154 359 0.43 0.049 5 7 0.229 2 46 0.033 5 5 210 4 212 3
      4 17.86 265 476 0.56 0.051 7 7 0.239 5 45 0.033 5 4 218 4 212 3
      5 18.86 191 502 0.38 0.050 0 8 0.231 8 45 0.033 6 6 212 4 213 3
      6 45.08 554 1 239 0.45 0.051 2 6 0.237 7 41 0.033 6 5 217 3 213 3
      7 37.38 558 979 0.57 0.050 6 6 0.234 1 39 0.033 5 5 214 3 212 3
      9 26.82 430 692 0.62 0.050 7 7 0.234 9 39 0.033 5 5 214 3 213 3
      10 29.89 333 799 0.42 0.049 7 5 0.230 0 35 0.033 5 4 210 3 212 3
      11 23.20 270 613 0.44 0.051 3 7 0.237 0 44 0.033 4 4 216 4 212 3
      13 20.60 233 579 0.40 0.051 1 7 0.236 5 44 0.033 5 4 216 4 212 3
      14 9.62 146 250 0.58 0.049 5 11 0.228 8 49 0.033 6 5 209 4 213 3
      15 28.18 457 704 0.65 0.050 6 7 0.234 0 44 0.033 4 4 213 4 212 3
      16 30.71 492 762 0.65 0.051 7 7 0.239 3 43 0.033 5 4 218 4 212 3
      17 10.27 105 277 0.38 0.050 3 12 0.232 5 62 0.033 5 6 212 5 212 4
      19 29.01 312 766 0.41 0.050 3 7 0.231 7 38 0.033 4 5 212 3 212 3
      20 10.67 130 276 0.47 0.050 2 8 0.232 4 43 0.033 6 4 212 4 213 3
      22 21.34 286 544 0.53 0.051 1 6 0.235 2 39 0.033 4 4 214 3 212 3
      23 14.19 114 379 0.30 0.051 9 9 0.240 8 54 0.033 6 5 219 4 213 3
      24 28.17 369 784 0.47 0.050 1 9 0.231 0 54 0.033 5 6 211 4 212 4
      中细粒二长花岗岩(D002-1)(坐标99°59′53″E,30°08′27″N)
      1 23.48 275 600 0.46 0.050 4 6 0.230 1 41 0.033 0 4 210 3 209 2
      2 19.11 319 483 0.66 0.050 4 7 0.232 4 37 0.033 4 3 212 3 212 2
      3 14.67 183 394 0.46 0.048 8 8 0.227 3 52 0.033 7 5 208 4 214 3
      5 10.58 136 270 0.50 0.049 2 10 0.225 5 43 0.033 3 4 206 4 211 3
      6 24.55 305 631 0.48 0.050 4 6 0.230 7 36 0.033 1 4 211 3 210 2
      7 9.65 105.0 264 0.40 0.049 6 13 0.236 4 65 0.033 6 7 215 5 213 4
      8 18.46 224 473 0.47 0.050 9 8 0.235 3 40 0.033 5 5 215 3 213 3
      9 7.29 79.3 188 0.42 0.050 5 10 0.233 6 48 0.033 6 4 213 4 213 3
      10 76.98 819 2008 0.41 0.052 4 5 0.244 3 40 0.033 7 5 222 3 214 3
      11 13.51 173 382 0.45 0.050 5 7 0.235 0 53 0.033 6 6 214 4 213 4
      12 13.79 181 348 0.52 0.052 4 8 0.243 1 42 0.033 6 4 221 3 213 2
      15 17.24 294 454 0.65 0.052 8 9 0.245 6 50 0.033 6 4 223 4 213 2
      16 13.41 162 366 0.44 0.051 4 8 0.236 6 41 0.033 5 4 216 3 212 3
      17 24.75 475 596 0.80 0.051 5 9 0.236 2 46 0.033 3 5 215 4 211 3
      18 10.96 193 285 0.68 0.052 0 8 0.238 5 46 0.033 2 4 217 4 211 2
      19 34.59 434 888 0.49 0.052 4 6 0.241 7 33 0.033 4 4 220 3 212 2
      20 12.79 205 316 0.65 0.050 5 8 0.232 2 42 0.033 3 4 212 3 211 2
      21 21.52 435 512 0.85 0.051 2 6 0.234 3 37 0.033 1 4 214 3 210 2
      22 10.45 153 267 0.57 0.051 5 8 0.238 0 46 0.033 5 4 217 4 213 3
      23 11.46 140 309 0.45 0.050 4 9 0.232 6 45 0.033 5 5 212 4 212 3
      24 9.94 136 279 0.49 0.050 2 10 0.232 5 52 0.033 5 5 212 4 213 3
      25 37.35 491 979 0.50 0.051 4 6 0.237 3 43 0.033 5 5 216 4 212 3
      注:Pb*代表放射性成因铅.
      下载: 导出CSV

      表  2  稻城岩体北部不同岩性样品主量和微量元素分析结果

      Table  2.   Major elements and trace elements result of different granitic samples from northern Daocheng batholith

      送样号 花岗闪长岩 MME 二长花岗岩
      D011-1 D301-1 D302-1 D303-1 D011-3 D011-4 D001-1 D002-1 D009-1 D304-1 D305-1
      SiO2(10-2) 70.58 69.27 65.10 69.56 66.80 64.40 74.53 75.09 76.26 75.31 74.66
      TiO2 0.308 0.478 0.594 0.392 0.551 0.773 0.091 0.113 0.064 0.173 0.173
      Al2O3 13.44 14.21 14.70 13.91 14.63 14.85 12.51 12.55 11.96 12.31 12.44
      Fe2O3 0.222 0.222 0.692 0.241 0.667 0.753 0.220 0.152 0.080 0.011 0.111
      FeO 4.10 4.33 5.05 4.00 5.72 6.72 2.17 2.31 2.43 2.70 1.99
      MnO 0.073 0.075 0.101 0.070 0.105 0.141 0.034 0.045 0.039 0.044 0.035
      MgO 0.653 1.03 2.04 0.859 0.938 1.66 0.136 0.171 0.088 0.264 0.338
      CaO 2.46 3.48 4.50 3.00 3.09 3.76 0.896 1.18 0.640 1.69 1.58
      K2O 3.45 2.20 2.58 3.17 1.98 1.89 4.78 4.21 4.60 3.38 4.40
      Na2O 3.02 3.30 3.11 3.08 3.84 3.40 3.10 3.09 3.22 3.25 2.65
      P2O5 0.070 0.093 0.115 0.076 0.154 0.168 0.018 0.022 0.012 0.032 0.034
      灼失 0.201 0.188 0.408 0.230 0.932 0.740 0.384 0.284 0.272 0.117 0.514
      Σ 98.58 98.88 98.99 98.59 99.41 99.26 98.87 99.22 99.67 99.28 98.93
      FeOT 4.30 4.53 5.67 4.22 6.32 7.40 2.37 2.45 2.50 2.71 2.09
      F/(F+M) 0.87 0.81 0.74 0.83 0.87 0.82 0.95 0.93 0.97 0.91 0.86
      ALK 6.47 5.50 5.69 6.25 5.82 5.29 7.88 7.30 7.82 6.63 7.05
      A/CNK 1.02 1.00 0.91 1.00 1.04 1.02 1.05 1.06 1.04 1.02 1.04
      A/NK 1.54 1.82 1.86 1.64 1.73 1.94 1.22 1.30 1.16 1.37 1.36
      Rb(µg/g) 110 77.3 82.0 103 141 123 184 153 215 114 127
      Sr 104 144 166 116 104 91.6 20.2 39.8 8.73 58.8 56.4
      Ba 522 400 424 546 290 516 223 386 89.0 835 427
      Th 12.1 15.1 7.70 13.5 13.9 8.95 18.8 15.5 12.4 14.9 12.8
      U 1.71 2.84 2.52 2.29 3.69 1.81 6.42 4.00 4.24 3.24 2.73
      Nb 9.86 11.5 12.4 11.4 20.8 15.3 11.8 11.3 12.4 9.59 7.02
      Ta 1.21 1.57 1.30 1.16 2.48 1.62 1.99 2.03 1.64 1.12 0.78
      Zr 170 156 178 177 143 170 102 109 109 135 133
      Hf 4.61 4.25 4.80 4.85 4.43 4.66 4.21 4.14 4.51 4.18 3.85
      Y 21.1 23.7 36.4 23.5 40.6 32.6 33.9 24.0 29.0 24.1 12.6
      Cr 36.8 34.2 73.0 23.5 43.1 13.2 24.8 28.4 45.0 18.8 15.8
      Ni 5.42 6.32 16.8 6.10 8.95 6.20 3.22 4.07 5.93 3.45 3.11
      Co 4.93 7.37 12.9 6.69 8.35 11.8 1.33 1.73 1.56 2.60 2.68
      Rb/Sr 1.06 0.54 0.49 0.89 1.36 1.34 9.11 3.84 24.63 1.94 2.25
      Nb/Ta 8.15 7.32 9.54 9.83 8.39 9.44 5.93 5.57 7.56 8.56 9.00
      Zr/Hf 36.88 36.71 37.08 36.49 32.28 36.48 24.23 26.33 24.17 32.30 34.55
      Th/U 7.08 5.32 3.06 5.90 3.77 4.94 2.93 3.88 2.92 4.60 4.69
      La(µg/g) 33.8 50.7 25.2 36.8 12.7 25.2 16.9 21.6 16.6 41.4 26.8
      Ce 60.8 92.3 57.4 65.7 28.3 52.5 50.6 49.8 44.4 76.8 53.0
      Pr 6.56 9.74 7.73 7.38 4.1 6.09 4.16 4.94 4.08 8.05 5.46
      Nd 23.0 32.2 31.3 26.6 18.1 23.8 15.4 17.9 14.7 28.1 19.0
      Sm 4.34 5.01 6.78 5.20 5.37 5.64 4.07 4.01 3.78 5.31 3.50
      Eu 0.79 1.09 1.15 0.90 0.67 0.76 0.30 0.44 0.18 0.62 0.60
      Gd 4.17 4.98 6.13 4.97 5.48 5.49 4.24 3.77 3.82 4.98 3.23
      Tb 0.66 0.71 1.07 0.79 1.12 0.97 0.87 0.69 0.80 0.77 0.46
      Dy 3.88 4.13 6.71 4.75 7.45 6.08 6.10 4.56 5.61 4.57 2.65
      Ho 0.8 0.89 1.41 0.96 1.57 1.26 1.33 0.94 1.26 0.96 0.53
      Er 2.21 2.61 3.98 2.6 4.57 3.52 3.86 2.72 3.72 2.7 1.48
      Tm 0.36 0.43 0.65 0.41 0.79 0.56 0.68 0.47 0.66 0.44 0.23
      Yb 2.44 2.85 4.38 2.64 5.36 3.64 4.78 3.33 4.66 3.05 1.46
      Lu 0.34 0.39 0.6 0.36 0.73 0.5 0.66 0.48 0.64 0.41 0.21
      ΣREE 144.15 208.03 154.49 160.06 96.31 136.01 113.95 115.65 104.91 178.16 118.61
      (La/Yb)N 9.94 12.76 4.13 10.00 1.70 4.97 2.54 4.65 2.56 9.74 13.17
      δEu 0.56 0.66 0.53 0.53 0.37 0.41 0.22 0.34 0.14 0.36 0.54
      下载: 导出CSV

      表  3  稻城岩体北部不同岩性样品锆石Hf同位素分析结果

      Table  3.   MC-ICP-MS Hf isotopic analysis of zircons from different granitic samples of northern Daocheng batholith

      176Hf/177Hf比值 2σ(10-6) 176Lu/177Hf比值 176Yb/177Hf比值 t(Ma) εHf(t) t2DM(Ga) fLu/Hf
      粗中粒花岗闪长岩(D303-1)
      1 0.282 486 7 0.000 617 0.023 954 212 -5.6 0.6 1.42 -0.98
      2 0.282 523 11 0.001 303 0.051 818 213 -4.3 0.6 1.35 -0.96
      3 0.282 530 8 0.001 405 0.054 736 210 -4.1 0.6 1.34 -0.96
      4 0.282 537 8 0.001 104 0.042 480 212 -3.8 0.6 1.33 -0.97
      5 0.282 500 8 0.001 412 0.056 501 212 -5.2 0.6 1.40 -0.96
      6 0.282 577 8 0.001 708 0.068 432 215 -2.4 0.6 1.25 -0.95
      7 0.282 388 12 0.001 373 0.054 363 213 -9.1 0.7 1.62 -0.96
      8 0.282 494 9 0.001 951 0.076 979 219 -5.3 0.6 1.42 -0.94
      9 0.282 485 8 0.000 908 0.035 153 213 -5.6 0.6 1.43 -0.97
      10 0.282 546 10 0.003 885 0.149 862 213 -3.8 0.6 1.33 -0.88
      11 0.282 507 10 0.001 604 0.063 689 212 -4.9 0.6 1.39 -0.95
      12 0.282 474 11 0.001 500 0.059 366 213 -6.1 0.6 1.46 -0.95
      13 0.282 561 8 0.001 712 0.066 584 213 -3.0 0.6 1.29 -0.95
      14 0.282 559 8 0.001 506 0.056 987 212 -3.1 0.6 1.29 -0.95
      15 0.282 517 8 0.000 856 0.033 164 213 -4.5 0.6 1.37 -0.97
      16 0.282 557 8 0.001 783 0.069 076 212 -3.2 0.6 1.29 -0.95
      17 0.282 503 7 0.001 154 0.045 323 213 -5.0 0.6 1.39 -0.97
      18 0.282 508 8 0.001 291 0.049 965 212 -4.9 0.6 1.39 -0.96
      19 0.282 521 8 0.000 971 0.036 611 212 -4.4 0.6 1.36 -0.97
      20 0.282 485 9 0.001 275 0.049 565 213 -5.7 0.6 1.43 -0.96
      中细粒二长花岗岩(D002-1)
      1 0.282 500 8 0.000 996 0.037 689 209 -5.2 0.6 1.40 -0.97
      2 0.282 460 8 0.001 482 0.058 774 212 -6.6 0.6 1.48 -0.96
      3 0.282 564 8 0.001 328 0.052 141 214 -2.8 0.6 1.276 -0.96
      4 0.282 472 9 0.001 161 0.046 063 203 -6.3 0.6 1.46 -0.97
      5 0.282 468 9 0.001138 0.044 043 211 -6.3 0.6 1.46 -0.97
      中细粒二长花岗岩(D002-1)
      6 0.282 557 8 0.001 448 0.056 974 210 -3.2 0.6 1.29 -0.96
      7 0.282 502 8 0.001 251 0.049 385 213 -5.1 0.6 1.40 -0.96
      8 0.282 562 10 0.001 905 0.076 482 213 -3.0 0.6 1.28 -0.94
      9 0.282 494 7 0.000 829 0.031 951 213 -5.3 0.6 1.41 -0.98
      10 0.282 517 9 0.002 484 0.095 912 214 -4.7 0.6 1.38 -0.93
      11 0.282 531 9 0.001 184 0.046 944 213 -4.0 0.6 1.34 -0.96
      12 0.282 335 10 0.001 272 0.051 647 213 -11.0 0.6 1.72 -0.96
      13 0.282 561 10 0.001 698 0.065 904 241 -2.5 0.6 1.28 -0.95
      14 0.282 507 8 0.001 256 0.050 827 223 -4.6 0.6 1.38 -0.96
      15 0.282 551 9 0.001 906 0.077 389 213 -3.4 0.6 1.31 -0.94
      16 0.282 491 8 0.001 213 0.048 164 212 -5.5 0.6 1.42 -0.96
      17 0.282 512 13 0.001 488 0.059 192 211 -4.8 0.7 1.381 -0.96
      18 0.282 495 9 0.001 096 0.044 464 211 -5.3 0.6 1.41 -0.97
      19 0.282 556 8 0.001 744 0.069 151 212 -3.2 0.6 1.30 -0.95
      20 0.282505 7 0.000 890 0.035 199 211 -4.9 0.6 1.39 -0.97
      粗中粒二长花岗岩(D304-1)
      1 0.282 526 8 0.001 263 0.049 546 221 -4.0 0.6 1.35 -0.96
      2 0.282 496 9 0.001 567 0.062 141 212 -5.3 0.6 1.41 -0.95
      3 0.282 171 7 0.000 363 0.015 558 212 -16.6 0.6 2.04 -0.99
      4 0.282 318 10 0.000 985 0.037 896 212 -11.6 0.6 1.76 -0.97
      5 0.282 471 7 0.000 997 0.039 120 213 -6.1 0.6 1.46 -0.97
      6 0.282 529 8 0.001 365 0.054 205 213 -4.1 0.6 1.35 -0.96
      7 0.282 503 9 0.001 903 0.074 723 212 -5.1 0.6 1.40 -0.94
      8 0.282 497 10 0.001 468 0.055 522 216 -5.2 0.6 1.41 -0.96
      9 0.282 476 11 0.002 015 0.079190 213 -6.1 0.7 1.45 -0.94
      10 0.282 508 7 0.001 372 0.053510 212 -4.9 0.6 1.39 -0.96
      11 0.282 530 7 0.001 189 0.044 667 212 -4.1 0.6 1.34 -0.96
      12 0.282 499 10 0.002 246 0.088 169 219 -5.2 0.6 1.41 -0.93
      13 0.282 507 13 0.002 003 0.080 743 212 -5.0 0.7 1.39 -0.94
      14 0.282 515 8 0.001 207 0.049 080 213 -4.6 0.6 1.37 -0.96
      15 0.282 521 7 0.001 573 0.062 852 212 -4.4 0.6 1.36 -0.95
      16 0.282 535 9 0.001 738 0.066 873 212 -4.0 0.6 1.34 -0.95
      17 0.282 523 9 0.001 452 0.056 514 212 -4.3 0.6 1.36 -0.96
      18 0.282 509 10 0.001 605 0.060 664 215 -4.8 0.6 1.39 -0.95
      19 0.282 483 9 0.001 149 0.043 637 212 -5.7 0.6 1.44 -0.97
      20 0.282 506 10 0.001 554 0.059 575 213 -5.0 0.6 1.39 -0.95
      下载: 导出CSV
    • Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. https://doi.org/10.1016/s0024-4937(99)00052-3
      Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/s0024-4937(98)00085-1
      Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x
      Castro, A., Moreno-Ventas, I., de la Rosa, J. D., 1991. H-Type (Hybrid) Granitoids: A Proposed Revision of the Granite-Type Classification and Nomenclature. Earth-Science Reviews, 31(3-4): 237-253. https://doi.org/10.1016/0012-8252(91)90020-g
      Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/s0263593300007720
      Cheng, S. B., Fu, J. M., Ma, L. Y., et al., 2013. Geochemical Characteristics, Petrogenesis and Ore Potential Evaluation of Caledonian Granitoids in Nanling Range, South China. Geology and Mineral Resources of South China, 29(1): 1-11(in Chinese with English abstract).
      Corfu, F., John, M. H., Hoskin, P.W.O., et al., 2003. Atlas of Zircon Textures. In: Hanachar, J.M., Hoskin, P.W.O., eds.. Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 469-500.
      Deng, J., Wang, Q. F., Li, G. J., et al., 2014. Tethys Tectonic Evolution and Its Bearing on the Distribution of Important Mineral Deposits in the Sanjiang Region, SW China. Gondwana Research, 26(2): 419-437. https://doi.org/10.1016/j.gr.2013.08.002
      Deng, J., Yang, L. Q., Wang, C. M., 2011. Research Advances of Superimposed Orogenesis and Metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501-2509(in Chinese with English abstract).
      Gao, X., Yang, L. Q., Orovan, E. A., 2018. The Lithospheric Architecture of Two Subterranes in the Eastern Yidun Terrane, East Tethys: Insights from Hf-Nd Isotopic Mapping. Gondwana Research, 62: 127-143. https://doi.org/10.1016/j.gr.2018.02.010
      Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
      He, D. F., Zhu, W. G., Zhong, H., et al., 2013. Zircon U-Pb Geochronology and Elemental and Sr-Nd-Hf Isotopic Geochemistry of the Daocheng Granitic Pluton from the Yidun Arc, SW China. Journal of Asian Earth Sciences, 67: 1-17. https://doi.org/10.1016/j.jseaes.2013.02.002
      Hou, Z. Q., Mo, X. X., 1991. The Evolution of Yidun Island-Arc and Implications in the Exploration of Kuroko-Type Volcanogenic Massive Sulphide Deposits in Sanjiang Area, China. Earth Science, 16(2): 153-164(in Chinese with English abstract).
      Hou, Z. Q., Qu, X. M., Zhou, J. R., et al., 2001. Collision-Orogenic Processes of the Yidun Arc in the Sanjiang Region: Record of Granites. Acta Geologica Sinica, 75(4): 484-497(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2001.04.008
      Hou, Z. Q., Yang, Y. Q., Qu, X. M., et al., 2004. Tectonic Evolution and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region, China. Acta Geologica Sinica, 78(1): 109-120(in Chinese with English abstract).
      Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341. https://doi.org/10.2113/0530327
      Jiang, L. L., Xue, C. D., Li, W. C., et al., 2020. Geological and Geochemical Constraints on the Genesis of the Bengge Gold Deposit in the Yidun Terrane, SE Tibet. Journal of Asian Earth Sciences, 195: 104338. https://doi.org/10.1016/j.jseaes.2020.104338
      Leake, B. E., 1990. Granite Magmas: Their Sources, Initiation and Consequences of Emplacement. Journal of the Geological Society, 147(4): 579-589. https://doi.org/10.1144/gsjgs.147.4.0579
      Leng, C. B., Huang, Q. Y., Zhang, X. C., et al., 2014. Petrogenesis of the Late Triassic Volcanic Rocks in the Southern Yidun Arc, SW China: Constraints from the Geochronology, Geochemistry, and Sr-Nd-Pb-Hf isotopes. Lithos, 190-191, 363-382. http://doi.org/10.1016/j.lithos.2013.12.018
      Leng, C. B., Zhang, X. C., Hu, R. Z., et al., 2012. Zircon U-Pb and Molybdenite Re-Os Geochronology and Sr-Nd-Pb-Hf Isotopic Constraints on the Genesis of the Xuejiping Porphyry Copper Deposit in Zhongdian, Northwest Yunnan, China. Journal of Asian Earth Sciences, 60: 31-48. https://doi.org/10.1016/j.jseaes.2012.07.019
      Li, W. C., Yu, H. J., Gao, X., et al., 2017. Review of Mesozoic Multiple Magmatism and Porphyry Cu-Mo (W) Mineralization in the Yidun Arc, Eastern Tibet Plateau. Ore Geology Reviews, 90: 795-812. https://doi.org/10.1016/j.oregeorev.2017.03.009
      Li, W. C., Yu, H. J., Yin, G. H., 2013. Porphyry Metallogenic System of Geza Arc in the Sanjiang Region, Southwestern China. Acta Petrologica Sinica, 29(4): 1129-1144(in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California, 39.
      Peng, T. P., Zhao, G. C., Fan, W. M., et al., 2014. Zircon Geochronology and Hf Isotopes of Mesozoic Intrusive Rocks from the Yidun Terrane, Eastern Tibetan Plateau: Petrogenesis and Their Bearings with Cu Mineralization. Journal of Asian Earth Sciences, 80: 18-33. https://doi.org/10.1016/j.jseaes.2013.10.028
      Qin, M., Yan, S. T., Wen, L., et al., 2019. The Tectonic Evolution of the Garze-Litang Ophiolite Mélange Zone in the Late Triassic: Constraints from Geochronology and Geochemistry of the Yongjie Batholith in the Garze-Litang Area. Geological Bulletin of China, 38(10): 1615-1625(in Chinese with English abstract).
      Reid, A., Wilson, C. J. L., Shun, L., et al., 2007. Mesozoic Plutons of the Yidun Arc, SW China: U-Pb Geochronology and Hf Isotopic Signature. Ore Geology Reviews, 31(1-4): 88-106. https://doi.org/10.1016/j.oregeorev.2004.11.003
      Roger, F., Jolivet, M., Malavieille, J., 2010. The Tectonic Evolution of the Songpan-Garzê (North Tibet) and Adjacent Areas from Proterozoic to Present: A Synthesis. Journal of Asian Earth Sciences, 39(4): 254-269. https://doi.org/10.1016/j.jseaes.2010.03.008
      Shi, Z. L., Zhang, H. F., Cai, H. M., 2009. Petrogenesis of Strongly Peraluminous Granites in Markan Area, Songpan Fold Belt and Its Tectonic Implication. Earth Science, 34(4): 569-584 (in Chinese with English abstract).
      Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
      Wang, B. Q., Zhou, M. F., Chen, W. T., et al., 2013. Petrogenesis and Tectonic Implications of the Triassic Volcanic Rocks in the Northern Yidun Terrane, Eastern Tibet. Lithos, 175: 285-301. https://doi.org/10.1016/j.lithos.2013.05.013
      Wang, B. Q., Zhou, M. F., Li, J. W., et al., 2011. Late Triassic Porphyritic Intrusions and Associated Volcanic Rocks from the Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Adakitic Magmatism and Porphyry Copper Mineralization. Lithos, 127(1-2): 24-38. https://doi.org/10.1016/j.lithos.2011.07.028
      Wang, N., Wu, C. L., Qin, H. P., et al., 2016. Zircon U-Pb Geochronology and Hf Isotopic Characteristics of the Daocheng Granite and Haizishan Granite in the Yidun Arc, Western Sichuan, and Their Geological Significance. Acta Geologica Sinica, 90(11): 3227-3245(in Chinese with English abstract).
      Wang, P., Dong, G. C., Zhao, G. C., et al., 2018. Petrogenesis of the Pulang Porphyry Complex, Southwestern China: Implications for Porphyry Copper Metallogenesis and Subduction of the Paleo-Tethys Oceanic Lithosphere. Lithos, 304: 280-297. https://doi.org/10.1016/j.lithos.2018.02.009
      Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
      Weislogel, A. L., 2008. Tectonostratigraphic and Geochronologic Constraints on Evolution of the Northeast Paleotethys from the Songpan-Ganzi Complex, Central China. Tectonophysics, 451(1-4): 331-345. https://doi.org/10.1016/j.tecto.2007.11.053
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      Wu, T., Xiao, L., Wilde, S. A., et al., 2017. A Mixed Source for the Late Triassic Garzê-Daocheng Granitic Belt and Its Implications for the Tectonic Evolution of the Yidun Arc Belt, Eastern Tibetan Plateau. Lithos, 288: 214-230. https://doi.org/10.1016/j.lithos.2017.07.002
      Wu, Y. B., Zheng, Y. F., 2004. Zircon Mineralogy and Its Restriction on Interpretion of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese).
      Yuan, C., Zhou, M. F., Sun, M., et al., 2010. Triassic Granitoids in the Eastern Songpan-Ganzi Fold Belt, SW China: Magmatic Response to Geodynamics of the Deep Lithosphere. Earth and Planetary Science Letters, 290(3-4): 481-492. https://doi.org/10.1016/j.epsl.2010.01.005
      Zhang, R. G., He, W. Y., Gao, X., et al., 2018. Magma Mixing of the Daocheng Batholith of Western Sichuan: Mineralogical Evidences. Earth Science Frontiers, 25(6): 226-239(in Chinese with English abstract).
      Zhang, H. F., Zhang, L., Harris, N., et al., 2006. U-Pb Zircon Ages, Geochemical and Isotopic Compositions of Granitoids in Songpan-Garze Fold Belt, Eastern Tibetan Plateau: Constraints on Petrogenesis and Tectonic Evolution of the Basement. Contributions to Mineralogy and Petrology, 152(1): 75-88. https://doi.org/10.1007/s00410-006-0095-2
      Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2008. Zircon Lu-Hf Isotopic Constraints on Neoproterozoic Subduction-Related Crustal Growth along the Western Margin of the Yangtze Block, South China. Precambrian Research, 163: 189-209. http://doi.org/10.1016/j.precamres.2007.11.003
      Zhu, D. C., Wang, Q., Zhan, Q. Y., et al., 2021. Late Triassic Tectono-Magmatism of Northern Sanjiang and Associated Several Scientific Problems. Sedimentary Geology and Tethyan Geology, 41(2): 232-245(in Chinese with English abstract).
      程顺波, 付建明, 马丽艳, 等, 2013. 南岭地区加里东期花岗岩地球化学特征、岩石成因及含矿性评价. 华南地质, 29(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201301002.htm
      邓军, 杨立强, 王长明, 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501-2509. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109002.htm
      侯增谦, 莫宣学, 1991. 义敦岛弧的形成演化及其对"三江"地区块状硫化物矿床的控制作用. 地球科学, 16(2): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199102005.htm
      侯增谦, 曲晓明, 周继荣, 等, 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录. 地质学报, 75(4): 484-497. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200104012.htm
      侯增谦, 杨岳清, 曲晓明, 等, 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200401013.htm
      李文昌, 余海军, 尹光候, 2013. 西南"三江" 格咱岛弧斑岩成矿系统. 岩石学报, 29(4): 1129-1144. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202201011.htm
      秦蒙, 严松涛, 文浪, 等, 2019. 甘孜-理塘蛇绿混杂岩带晚三叠世构造演化: 来自理塘地区勇杰岩体地球化学、年代学的制约. 地质通报, 38(10): 1615-1625. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202310006.htm
      时章亮, 张宏飞, 蔡宏明, 2009. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义. 地球科学, 34(4): 569-584. http://www.earth-science.net/article/id/1861?viewType=HTML
      王楠, 吴才来, 秦海鹏, 等, 2016. 川西义敦岛弧稻城花岗岩体和海子山花岗岩体锆石U-Pb年代学、Hf同位素特征及地质意义. 地质学报, 90(11): 3227-3245. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201611016.htm
      吴元保, 郑永飞, 2004. 锆石成因矿物学和微量元素地球化学. 科学通报, 49(16): 1589-1604.
      张瑞刚, 和文言, 高雪, 等, 2018. 川西稻城岩体岩浆混合作用: 矿物学特征的证据. 地学前缘, 25(6): 226-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806021.htm
      朱弟成, 王青, 詹琼窑, 等, 2021. 三江北段晚三叠世构造-岩浆作用和几个相关的科学问题. 沉积与特提斯地质, 41(2): 232-245. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202102011.htm
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  460
    • HTML全文浏览量:  193
    • PDF下载量:  111
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-15
    • 网络出版日期:  2024-07-11
    • 刊出日期:  2024-06-25

    目录

      /

      返回文章
      返回