• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    斜黝帘石中定向金红石的拓扑结构和成因机制

    宋岳庭 徐一凡 赵珊茸 徐畅

    宋岳庭, 徐一凡, 赵珊茸, 徐畅, 2023. 斜黝帘石中定向金红石的拓扑结构和成因机制. 地球科学, 48(11): 3965-3977. doi: 10.3799/dqkx.2022.063
    引用本文: 宋岳庭, 徐一凡, 赵珊茸, 徐畅, 2023. 斜黝帘石中定向金红石的拓扑结构和成因机制. 地球科学, 48(11): 3965-3977. doi: 10.3799/dqkx.2022.063
    Song Yueting, Xu Yifan, Zhao Shanrong, Xu Chang, 2023. Topotaxial Relationships and Origin of Orientated Rutile Inclusions in Clinozoisite. Earth Science, 48(11): 3965-3977. doi: 10.3799/dqkx.2022.063
    Citation: Song Yueting, Xu Yifan, Zhao Shanrong, Xu Chang, 2023. Topotaxial Relationships and Origin of Orientated Rutile Inclusions in Clinozoisite. Earth Science, 48(11): 3965-3977. doi: 10.3799/dqkx.2022.063

    斜黝帘石中定向金红石的拓扑结构和成因机制

    doi: 10.3799/dqkx.2022.063
    基金项目: 

    国家自然科学基金项目 41872037

    国家自然科学基金项目 41802042

    详细信息
      作者简介:

      宋岳庭(1993-),男,博士研究生,从事变质显微结构的研究.ORCID:0000-0002-2772-352X. E-mail:songyueting@live.com

      通讯作者:

      赵珊茸,ORCID:0000-0001-8847-6991. E-mail: shanrongzhao@126.com

    • 中图分类号: P57

    Topotaxial Relationships and Origin of Orientated Rutile Inclusions in Clinozoisite

    • 摘要: 大别山红安地区的斜黝帘石榴闪岩中的斜黝帘石普遍含大量定向的针状、棒状的金红石.斜黝帘石(Ca2Al2.57Si0.46[Si3O11]O(OH))是在岩石的退变质过程中形成的,观察到的其内部多组针状金红石的延长方向与主晶形态之间没有固定关系.电子背散射衍射(EBSD)分析表明客晶金红石与主晶斜黝帘石之间具有复杂的结晶学取向关系(CORs),其中 < 001 > Rt // < 010 > Czo、 < 100 > Rt // < 001 > Czo、 < 110 > Rt // < 001 > Czo和 < 101 > Rt // < 001 > Czo出现几率分别为17.7%,14.9%,14.2%和25.0%.这些取向平行关系对应的轴方向上具有良好的晶格匹配程度.上述每种取向关系对应的金红石针/棒会围绕着这个良好的晶格匹配方向在主晶中旋转360°分布.这种独特的形态分布方式使得我们难以从单个或几个主晶颗粒中直观判断包裹体的形态分布,而使用较大的数据量进行结晶学取向分析对于包裹体的形态分布定性描述是必要的.主客晶之间的拓扑结构和化学分布排除了金红石的出溶成因.

       

    • 图  1  桐柏‒红安造山带地质简图(据刘晓春等, 2015)

      Fig.  1.  Geological map of Tongbai-Hong'an orogenic belt (Liu et al., 2015)

      图  2  (a), (b), (c)斜黝帘石榴闪岩镜下照片(单偏光);(b), (c)斜黝帘石内部分布着多组不同方向的针状、棒状、点状金红石(单偏光),其中(c)中用蓝线标识出了可识别的金红石的4组空间取向;(d) 主晶及金红石的背散射电子图像,可见少数针状、点状金红石出露在斜黝帘石切面的表面

      Fig.  2.  Minerals in garnet amphibolite (plane-polarized light) (a, b, c); needle-like, rod-like and spot-like rutile inclusions oriented at different directions are distributed within clinozoisite (b, c), four types of rutile needles spatial distribution are marked in backscattered electron (BSE) images of clinozoisite and rutile inclusions, a few needle-like and spot-like rutile inclusions are exposed on the surface of the clinozoisite (c, d)

      图  3  角闪石、含有大量金红石的斜黝帘石的BSE图及EDS面扫描图,像素密度与元素含量成正比.注意斜黝帘石中的金红石针/柱含量不均匀

      Fig.  3.  BSE image and EDS scanning of amphibolite and clinozoisite containing significant amount of rutile needles. The pixel density is proportional to element enrichment. Note the heterogeneous distributions of rutile needle/rod in clinozoisite

      图  4  (a) 金红石 < 100 > , < 110 > , < 001 > 极图.(b)斜黝帘石主晶的{100}, < 010 > , {001}极图.圆圈与六边形标记了主晶与金红石极图中重叠的极点,揭示了 < 001 > Rt // < 010 > Czo和{100}Rt // {001}Czo的关系;绿线代表金红石的延长方向,其与金红石 < 001 > 极点相交, < 001 > 即为金红石的延长方向;蓝线代表了斜黝帘石的延长方向,与斜黝帘石 < 010 > 极图中的极点相交, < 010 > 即为斜黝帘石的延长方向.(c)EBSD分析区域的背散射电子图像,两根金红石平行生长,红叉为EBSD打点分析的位置.(d), (e), (f) 第二组金红石与主晶结晶学取向关系分析图,同样反映了金红石的 < 001 > 延长方向以及斜黝帘石的 < 010 > 延长方向,揭示了 < 100 > Rt // < 001 > Czo和{110}Rt // {001}Czo的结晶学取向关系

      Fig.  4.  (a) < 100 > , < 110 > , < 001 > pole figures of host clinozoisite. (b) {100}, < 010 > , {001} pole figures of rutile. The circles and hexagons marked the pole overlaps between pole figures of host clinozoisite and rutile, and CORs < 001 > Rt // < 010 > Czo and {100}Rt // {001}Czo are demonstrated. Elongate direction of rutile represented by green line intersects with < 001 > pole. The blue line represents the elongation of clinozoisite, which intersects with clinozoisite < 010 > pole, that means < 010 > is the elongation direction of clinozoisite. (c) BSE image of the EBSD analysis region, in which two rutile inclusions grow parallel to each other, the EBSD analyzing points are marked by red crosses. (d), (e), (f) are the pole figures and BSE image of another rutile inclusion in the surface of clinozoisite, respectively, which also reveal the < 001 > rutile elongation direction, the < 010 > clinozoisite elongation as well as the COR < 100 > Rt // < 001 > Czo and {110}Rt // {001}Czo

      图  5  (a) 将所有斜黝帘石主晶的极点旋转到相同的正规方位:{100}极点位于南北方向, < 010 > 极点位于东西方向, < 001 > 极点位于圆心.(b)与主晶同时旋转后金红石各极点在极图上的分布

      Fig.  5.  (a) Clinozoisite poles in pole figures are rotated to the normalized orientation, which {100} poles locate in the north-south direction, < 010 > poles locate in the east-west direction, and < 001 > poles locate in the center of the pole figure. (b) Distribution of rutile poles after simultaneous rotation with the clinozoisite host

      图  6  (a) 斜黝帘石主晶的正规坐标系投影图(同图 5a);(b)满足 < 001 > Rt // < 010 > Czo条件的51根金红石针状体的极图,蓝圈对应 < 001 > Rt和 < 010 > Czo重叠的极点;(c)满足 < 100 > Rt // < 001 > Czo条件的43根金红石针状体极图,红框对应 < 100 > Rt和 < 001 > Czo上重叠的极点

      < 100 > Rt为金红石四方柱面的法线方向,每个晶体有两个:[100]和[010],极图中心的极点代表其一,而靠近基圆的极点代表其二. < 001 > 极点代表金红石的延长方向,在基圆处不均匀分布;(d)满足 < 110 > Rt // < 001 > Czo条件的41根金红石针状体极图,红框对应 < 110 > Rt和 < 001 > Czo上重叠的极点.其中 < 110 > Rt也有两个:[110]和[1$ \overline{1} $0],除圆心处的极点代表其一外,还有其二在近基圆处;(e)满足 < 101 > Rt // < 001 > Czo条件的72根金红石针状体极图,红框对应 < 101 > Rt和 < 001 > Czo上重叠的极点,其中 < 101 > Rt有四个:[101],[$ \overline{1} $01],[011],[$ 0\overline{1}1 $],除了圆心处的极点代表其一外,其他三个非均匀分布在投影面上

      Fig.  6.  (a) Normalized pole figures of host clinozoisite (same to Fig. 5a). (b) Pole figures of 51 rutile inclusions with < 001 > Rt // < 010 > Czo, the blue circles marked the overlaps between < 001 > Rt and < 010 > Czo. (c) Pole figures of 43 rutile inclusions with < 100 > Rt // < 001 > Czo, the red rectangle marks the overlaps between < 100 > Rt and < 001 > Czo

      图  7  斜黝帘石与金红石的某些轴方向上匹配程度的示意图,数字代表这个方向上的轴单位长度(单位)

      a.箭头方向分别表示出了 < 001 > Rt // < 010 > Czo及 < 100 > Rt // < 001 > Czo的结晶学取向关系,其中 < 001 > Czo的一个轴单位长度与 < 100 > Rt两个轴单位长度大致相等, < 010 > Czo的一个轴单位长度与 < 001 > Rt两个轴单位长度相等;b.表示了 < 110 > Rt // < 001 > Czo的关系, < 001 > Czo的一个轴单位长度与 < 110 > Rt三个轴单位长度相等;c.表示了 < 101 > Rt // < 001 > Czo, < 001 > Czo的一个轴单位长度与 < 101 > Rt两个轴单位长度相等

      Fig.  7.  Schematic diagrams represent the lattice coherency degrees between clinozoisite and rutile in some certain axial directions, the numbers are the unit axial length of a certain direction

      图  8  针状金红石在斜黝帘石主晶中的延长方向示意

      金红石的延长方向为 < 001 > .a.满足 < 001 > Rt // < 010 > Czo的金红石的延长方向 < 001 > Rt受主晶 < 010 > Czo控制(相互平行),而其他方向不受控制,可以绕着延长方向旋转360°均匀生长;b,c. 满足 < 100 > Rt // < 001 > Czo或 < 110 > Rt // < 001 > Czo金红石的 < 100 > Rt或 < 110 > Rt分别被主晶 < 001 > Czo控制,延长方向 < 001 > Rt在水平面分布;d.满足 < 101 > Rt // < 001 > Czo的金红石, < 101 > Rt方向同样被主晶 < 001 > Czo控制,延长方向 < 001 > Rt在一个双锥面分布

      Fig.  8.  Schematic diagram of the spatial distribution of needle-like rutile in clinozoisite

      表  1  斜黝帘石榴闪岩中角闪石与斜黝帘石探针分析(%)

      Table  1.   EMPA analysis of amphibole and clinozoisite in clinozoisite garnet amphibolite (%)

      矿物 角闪石 斜帘石
      测试点 a1 a2 a3 a4 a5 a6 a7 a8 c1 c2 c3 c4 c5 c6 c7
      MgO 15.22 15.42 16.19 13.52 15.53 15.10 12.16 14.51 0.13 0.10 0.12 0.10 0.06 0.11 0.13
      Al2O3 6.95 6.37 5.84 7.75 6.02 7.13 10.53 7.34 26.56 27.54 28.27 27.11 29.39 27.45 26.86
      SiO2 53.37 54.40 54.64 52.03 53.81 53.54 58.30 52.70 38.66 39.32 39.20 38.52 39.94 39.49 39.06
      FeO 9.83 10.00 9.31 11.33 10.08 10.19 9.05 11.35 7.96 6.93 6.45 7.36 5.93 7.01 7.25
      MnO 0.10 0.11 0.08 0.13 0.07 0.09 0.09 0.10 0.03 0.01 0.03 0.05 0.01 0.03 0.04
      Cr2O3 0.05 0.00 0.02 0.00 0.00 0.02 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.09
      TiO2 0.08 0.05 0.08 0.16 0.10 0.16 0.00 0.10 0.12 0.12 0.10 0.15 0.03 0.13 0.12
      K2O 0.13 0.11 0.09 0.10 0.09 0.13 0.02 0.14 0.00 0.01 0.00 0.01 0.00 0.01 0.00
      CaO 8.79 8.49 8.53 7.92 8.84 8.30 2.03 8.78 23.17 23.64 23.53 22.75 23.82 22.88 22.66
      Na2O 2.70 2.56 2.65 2.88 2.26 2.71 5.88 3.12 0.00 0.02 0.00 0.00 0.01 0.01 0.01
      Sum 97.22 97.51 97.46 95.83 96.81 97.37 98.14 98.14 96.63 97.69 97.68 96.06 99.21 97.17 96.33
      Si 7.56 7.67 7.69 7.52 7.65 7.57 7.94 7.47 3.10 3.10 3.08 3.09 3.07 3.12 3.12
      Al 1.16 1.06 0.97 1.32 1.01 1.19 1.69 1.23 2.51 2.56 2.61 2.56 2.66 2.55 2.53
      Ti 0.01 0.01 0.01 0.02 0.01 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01
      Cr 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
      Mg 3.22 3.24 3.40 2.92 3.29 3.18 2.47 3.07 0.02 0.01 0.01 0.01 0.01 0.01 0.02
      Fe 1.17 1.18 1.10 1.37 1.20 1.21 1.03 1.35 0.53 0.46 0.42 0.49 0.38 0.46 0.48
      Mn 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      Ca 1.33 1.28 1.29 1.23 1.35 1.26 0.30 1.33 1.99 1.99 1.98 1.95 1.96 1.94 1.94
      Na 0.74 0.70 0.72 0.81 0.62 0.74 1.55 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      K 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      Total 15.23 15.16 15.19 15.21 15.15 15.20 14.99 15.35 8.15 8.12 8.11 8.12 8.09 8.10 8.10
      注:颗粒a3和a6上各有2或3个测试点,其元素含量为测试点数据的数学平均值.
      下载: 导出CSV

      表  2  角闪石晶体化学式

      Table  2.   Stoichiometric equations of amphibole

      角闪石 化学计算方程式 名称
      a1 (Na0.205K0.024)0.229(Ca1.334Na0.537Fe0.1172+Mn0.012)2 (Mg3.216Fe1.0482+Al0.723Ti0.008Cr0.005)5[(Al0.437Si7.563)8022](OH)2 蓝透闪石
      a2 (Na0.141K0.020)0.161(Ca1.282Na0.559Fe0.1462+Mn0.013)2 (Mg3.24Fe1.0322+Al0.722Ti0.005)5[(Al0.335Si7.665)8022](OH)2 蓝透闪石
      a3 (Na0.170K0.016)0.186(Ca1.285Na0.552Fe0.1542+Mn0.009)2 (Mg3.395Fe0.9412+Al0.653Ti0.008Cr0.002)5[(Al0.315Si7.685)8022](OH)2 蓝透闪石
      a4 (Na0.191)(Ca1.226Na0.615Fe0.1442+Mn0.016)2 (Mg2.915Fe1.2262+Al0.842Ti0.018)5[(Al0.479Si7.521)8022](OH)2 蓝透闪石
      a5 (Na0.134K0.017)0.151(Ca1.346Na0.488Fe0.1582+Mn0.008)2 (Mg3.291Fe1.0412+Al0.657Ti0.01)5[(Al0.351Si7.649)8022](OH)2 透闪石
      a6 (Na0.176K0.023)0.199(Ca1.257Na0.567Fe0.1652+Mn0.011)2 (Mg3.183Fe1.0402+Al0.757Ti0.017Cr0.002)5[(Al0.43Si7.57)8022](OH)2 蓝透闪石
      a7 (K0.003)(Na1.552Ca0.296Fe0.1292+Mn0.010)2 蓝闪石
      (Mg2.467Fe0.9002+Al1.624Cr0.009)5[(Al0.065Si7.935)8022](OH)2
      a8 (Na0.322K0.025)0.347(Ca1.333Na0.536Fe0.1192+Mn0.012)2 (Mg3.067Fe1.2262+Al0.697Ti0.11)5[(Al0.530Si7.470)8022](OH)2 蓝透闪石
      下载: 导出CSV

      表  3  金红石和斜黝帘石主晶的结晶学平行关系对应频次表

      Table  3.   Frequency distribution of parallel CORs between rutile and clinozoisite host

      Czo
      Rutile
      {100} < 100 > < 010 > {001} < 001 > {110} {111} {10-1}
      < 100 > 或{100} 8* 6 14 14 43 6 0 0
      < 110 > 或{110} 2 21 1 20 41 5 1 0
      {111} 2 13 14 3 7 9 6 0
      < 001 > 11 0 51 5 6 9 10 0
      {011} 14 7 34 10 0 6 0 0
      < 101 > 4 1 11 3 72 2 0 0
      注:数字为对应的斜黝帘石和金红石的结晶学平行关系出现的频次,加粗的频次较大,如有51根金红石针状体与其主晶有 < 001 > Rt // < 010 > Czo的关系; 有43根金红石针状体与其主晶有 < 100 > Rt // < 001 > Czo的关系; 有41根金红石针状体与其主晶有 < 110 > Rt // < 001 > Czo的关系;有72根金红石针状体与其主晶有 < 101 > Rt // < 001 > Czo的关系.结晶学平行关系的判据:极点相互重叠(取向差小于2°);测量的金红石颗粒总数:288,与主晶有结晶学平行关系的金红石颗粒数:270 (93.8%).
      下载: 导出CSV

      表  4  结晶学平行方向上的晶格错配值

      Table  4.   Lattice mismatch between crystallographic parallel axis

      CORs Lattice mismatch* Total Grains
      < 001 > Rt // < 010 > Czo 4.09% 51
      < 100 > Rt // < 001 > Czo 9.56% 43
      < 110 > Rt // < 001 > Czo 5.82% 41
      < 101 > Rt // < 001 > Czo 3.74% 72
      *Lattice Mismatch=100%×(nx-my)/ny
      下载: 导出CSV
    • Boudeulle, M., 1994. Disproportionation in Mineral Solid Solutions: Symmetry Constraints on Precipitate Orientation and Morphology: Implications for the Study of Oriented Intergrowths. Journal of Applied Crystallography, 27(4): 7.
      Comodi, P., Zanazzi, P. F., 1997. The Pressure Behavior of Clinozoisite and Zoisite: An X-Ray Diffraction Study. American Mineralogist, 82: 61-68. doi: 10.2138/am-1997-1-208
      Guo, M. J., Qian, J. H., Yin, C. Q., et al., 2021. Metamorphic Evolution and Tectonic Implications of Garnet Amphibolite from Yunzhongshan Terrane in Central North China Craton. Earth Science, 46(11): 3892-3909 (in Chinese with English abstract).
      Griffiths, T. A., Habler, G., Abart, R., 2020. Determining the Origin of Inclusions in Garnet: Challenges and New Diagnostic Criteria. American Journal of Science, 320: 753-789. doi: 10.2475/11.2020.01
      Harlov, D. E., Förster, H. J., Nijland, T. G., 2002. Fluid-Induced Nucleation of (Y 1 REE)-Phosphate Minerals within Apatite: Nature and Experiment. Part I. Chlorapatite. American Mineralogist, 87(2-3): 245-261. https://doi.org/10.2138/am-2002-2-306
      Hwang, S. L., Shen P., Chu H. T., et al., 2015. Origin of Rutile Needles in Star Garnet and Implications for Interpretation of Inclusion Textures in Ultrahigh-Pressure Metamorphic Rocks. Journal of Metamorphic Geology, 33(3): 249-272. doi: 10.1111/jmg.12119
      Hwang, S. L., Shen, P., Chu, H. T., et al., 2019. Rutile Inclusions in Garnet from a Dissolution-Reprecipitation Mechanism. J. Metamorph. Geol. , 37: 1079. doi: 10.1111/jmg.12502
      Hwang, S. L., Yui, T. F., Chu, H. T., et al., 2007. On the Origin of Oriented Rutile Needles in Garnet from UHP Eclogites. J. Metamorph. Geol. , 25: 349-362. doi: 10.1111/j.1525-1314.2007.00699.x
      Li, B., Massonne, H., Yuan, X., 2021. Pressure-Temperature Evolution of a Mylonitic Gneiss from the Lower Seve Nappe in the Hand?. Area, Central Sweden. Journal of Earth Science, 32(6): 1496-1511. doi: 10.1007/s12583-021-1413-3
      Liu, L., Yang, J. X., Zhang, J. F., et al., 2009. Exsolution Microstructures in Ultrahigh-Pressure Rocks: Progress, Controversies and Challenges. Chinese Science Bulletin, 54(10): 1387-1400 (in Chinese). doi: 10.1360/csb2009-54-10-1387
      Liu, Q., Hermann, J., Zheng, S., et al., 2019. Evidence for UHP Anatexis in the Shuanghe UHP Paragneiss from Inclusions in Clinozoisite, Garnet and Zircon. J. Metamorph. Geol. , 38: 129-155.
      Liu, X. C., Li, S. Z., Jiang, B. M., 2015. Tectonic Evolution of the Tongbai-Hong'an Orogen in Central China: From Oceanic Subduction/Accretion to Continent- Continent Collision. Science in China (Series D: Earth Sciences), 45(8): 1088-1108 (in Chinese).
      Liu, X. F., Wang, L., Li, H., et al., 2015. Systematic Mineralogical Classifications and Nomenclatures of Amphibole and Pyroxene Group Minerals. Acta Mineralogica Sinica, 35(1): 19-28 (in Chinese with English abstract).
      Liu, X. W., Jin, Z. M., Qu, J., et al., 2005. Ilmenite and Chromium-Bearing Titanomagnetite from Olivine in Heterostripped Peridotite of Garnet. Science in China (Series D: Earth Sciences), 35(10): 949-956 (in Chinese).
      Palke, A. C., Breeding, C. M., 2017. The Origin of Needle-Like Rutile Inclusions in Natural Gem Corundum: A Combined EPMA, LA-ICP-MS, and NanoSIMS Investigation. American Mineralogist, 102 (7): 1451-1461. doi: 10.2138/am-2017-5965
      Phillips, D. S., Heuer, A. H., Mitchell, T. E., 1980. Precipitation in Star Sapphire I. Identification of the Precipitate. Philosophical Magazine A, 42(3): 385-404. https://doi.org/10.1080/01418618008239365
      Swope, R. J., Smyth, J. R., Larson, A. C., 1995. H in Rutile-Type Compounds: I. Single-Crystal Neutron and X-Ray Diffraction Study of H in Rutile. American Mineralogist, 80: 448-453.
      Xiong, X. L., Hou, T., Wang, X. L., et al., 2022. Development Status and Prospect of Experimental Mineral Deposit Science. Earth Science, 47(8): 2701-2713 (in Chinese with English abstract).
      Xu, H. J., Zhang, J., Zong, K., 2015. Quartz Exsolution Topotaxy in Clinopyroxene from the UHP Eclogite of Weihai, China. Lithos, 226: 17-30. doi: 10.1016/j.lithos.2015.02.010
      Xu, H. J., Zhao, S. T., Wu, Y., 2016. Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene. Earth Science, 41(6): 948-970 (in Chinese with English abstract).
      Ye, K., Cong, B. L., Ye, D. N., 2000. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 407: 734-736. doi: 10.1038/35037566
      Zhang, Z. M., You, Z. D., Han, Y. J., et al., 1995. Petrology, Metamorphic Process and Genesis of the Dabie-Sulu Eclogite Belt, East-Central China. Acta Geologica Sinica, 69(4): 306-325 (in Chinese with English abstract).
      郭敏洁, 钱加慧, 尹常青, 等, 2021. 华北克拉通中部带云中山石榴斜长角闪岩变质演化及其构造意义. 地球科学, 46(11): 3892-3909. doi: 10.3799/dqkx.2021.016
      刘良, 杨家喜, 章军锋, 等, 2009. 超高压岩石中矿物显微出溶结构研究进展、面临问题与挑战. 科学通报, 54(10): 1387-1400. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200910011.htm
      刘晓春, 李三忠, 江博明, 2015. 桐柏‒红安造山带的构造演化: 从大洋俯冲/增生到陆陆碰撞. 中国科学(D辑: 地球科学), 45(8): 1088-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508002.htm
      刘显凡, 汪灵, 李慧, 等, 2015. 角闪石族和辉石族矿物的系统矿物学分类命名. 矿物学报, 35(1): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201501005.htm
      刘祥文, 金振民, 曲晶, 等, 2005. 石榴石异剥橄榄岩中橄榄石的钛铁矿和含铬钛磁铁矿出溶体. 中国科学(D辑: 地球科学), 35(10): 949-956. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200510004.htm
      熊小林, 侯通, 王小林, 2022. 实验矿床学的发展现状和前景展望. 地球科学, 47(8): 2701-2713. doi: 10.3799/dqkx.2022.285
      徐海军, 赵素涛, 武云, 2016. 单斜辉石中石英出溶体的显微结构和成因机制. 地球科学, 41(6): 948-970. doi: 10.3799/dqkx.2016.080
      张泽明, 游振东, 韩郁菁, 等, 1995. 大别‒苏鲁榴辉岩带的岩石学、变质作用过程及成因研究. 地质学报, 69(4): 306-325. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199504002.htm
    • dqkxzx-48-11-3965-附件.docx
    • 加载中
    图(8) / 表(4)
    计量
    • 文章访问数:  688
    • HTML全文浏览量:  492
    • PDF下载量:  126
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-02
    • 网络出版日期:  2023-11-30
    • 刊出日期:  2023-11-25

    目录

      /

      返回文章
      返回