• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    库车前陆盆地东部下侏罗统致密砂岩储层裂缝连通性表征及其主控因素

    巩磊 程宇琪 高帅 高志勇 冯佳睿 王洪涛 宿晓岑 卢崎 王杰

    巩磊, 程宇琪, 高帅, 高志勇, 冯佳睿, 王洪涛, 宿晓岑, 卢崎, 王杰, 2023. 库车前陆盆地东部下侏罗统致密砂岩储层裂缝连通性表征及其主控因素. 地球科学, 48(7): 2475-2488. doi: 10.3799/dqkx.2022.066
    引用本文: 巩磊, 程宇琪, 高帅, 高志勇, 冯佳睿, 王洪涛, 宿晓岑, 卢崎, 王杰, 2023. 库车前陆盆地东部下侏罗统致密砂岩储层裂缝连通性表征及其主控因素. 地球科学, 48(7): 2475-2488. doi: 10.3799/dqkx.2022.066
    Gong Lei, Cheng Yuqi, Gao Shuai, Gao Zhiyong, Feng Jiarui, Wang Hongtao, Su Xiaocen, Lu Qi, Wang Jie, 2023. Fracture Connectivity Characterization and Its Controlling Factors in Lower Jurassic Tight Sandstone Reservoirs of Eastern Kuqa Foreland Basin. Earth Science, 48(7): 2475-2488. doi: 10.3799/dqkx.2022.066
    Citation: Gong Lei, Cheng Yuqi, Gao Shuai, Gao Zhiyong, Feng Jiarui, Wang Hongtao, Su Xiaocen, Lu Qi, Wang Jie, 2023. Fracture Connectivity Characterization and Its Controlling Factors in Lower Jurassic Tight Sandstone Reservoirs of Eastern Kuqa Foreland Basin. Earth Science, 48(7): 2475-2488. doi: 10.3799/dqkx.2022.066

    库车前陆盆地东部下侏罗统致密砂岩储层裂缝连通性表征及其主控因素

    doi: 10.3799/dqkx.2022.066
    基金项目: 

    国家自然科学基金项目 42072155

    国家自然科学基金项目 41902150

    黑龙江省优秀青年科学基金项目 YQ2021D006

    黑龙江省普通本科高等学校青年创新人才培养计划 UNPYSCT-2020147

    黑龙江省博士后科研启动金 LBH-Q21001

    中国石油“十四五”上游领域前瞻性基础性课题 2021DJ0302

    详细信息
      作者简介:

      巩磊(1985-),男,博士,教授,主要从事裂缝表征与评价. ORCID:0000-0002-4855-0429. E-mail:kcgonglei@foxmail.com

      通讯作者:

      高帅,ORCID:0000-0002-0316-8541. E-mail: 490389327@qq.com

    • 中图分类号: P618.13

    Fracture Connectivity Characterization and Its Controlling Factors in Lower Jurassic Tight Sandstone Reservoirs of Eastern Kuqa Foreland Basin

    • 摘要: 库车前陆盆地东部下侏罗统为裂缝性致密砂岩储层,天然裂缝的分布控制了油气聚集和单井产能.裂缝连通性是影响致密储层孔渗性能、产能以及盖层完整性的关键因素,但是对于裂缝连通性定量表征方法及其影响因素缺少系统研究.以库车前陆盆地东部依奇克里克构造带下侏罗统致密砂岩储层为例,分析了其裂缝发育特征,利用基于裂缝节点类型及比例的方法对裂缝连通性进行定量表征,并利用数值模拟对裂缝连通性影响因素进行分析.研究区发育粒缘缝、粒内缝和穿粒缝3种微观裂缝类型.从西向东,裂缝连通性逐渐变差,与裂缝发育强度具有一致性.裂缝方位分散度、裂缝长度、裂缝密度以及组间夹角是影响裂缝连通性的主要因素.随着裂缝方位分散度、裂缝长度、裂缝密度以及组间夹角的增加,裂缝连通性变好.

       

    • 图  1  库车前陆盆地位置及构造单元划分

      史超群等(2020)修改

      Fig.  1.  Location and tectonic unit division of Kuqa foreland basin

      图  2  库车前陆盆地东部吐格尔明剖面下侏罗统构造裂缝发育特征

      Fig.  2.  Fracture development characteristics of Lower Jurassic at Tugeerming in eastern Kuqa foreland basin

      图  3  依奇克里克构造带下侏罗统岩心裂缝发育特征

      a. 近直立层控张性裂缝,YN3井,细砂岩,3 183.23 m;b. 高角度穿层剪切裂缝,YS4井,中砂岩,3 436.30 m;c. 顺层剪切裂缝,YN4井,细砂岩,4 126.13 m;d. 层理缝,YN4井,细砂岩,4 540.77 m.图中红色箭头指示裂缝;蓝色箭头指示擦痕方向

      Fig.  3.  Fracture development characteristics of Lower Jurassic core in the Yiqikelike structural belt

      图  4  依奇克里克构造带下侏罗统裂缝走向玫瑰花图

      a. 据露头区实测,吐格尔明剖面,N=756;b. 据成像测井,N=1 245

      Fig.  4.  Rose diagrams of fracture strikes of Lower Jurassic core in theYiqikelike structural belt

      图  5  依奇克里克构造带下侏罗统单井岩心裂缝密度分布

      Fig.  5.  Fracture density distribution of Lower Jurassic core in theYiqikelike structural belt

      图  6  依奇克里克构造带下侏罗统致密砂岩储层微观裂缝类型及发育特征

      a. 粒内缝,MN1井,粗砂岩,2 082.50 m;b. 粒缘缝,YS4井,粗砂岩,4 004.45 m;c. 穿粒缝,YN5井,中砂岩,5 010.30 m

      Fig.  6.  Microfracture types and development characteristics of Lower Jurassic tight sandstone reservoirs in the Yiqikelike structural belt

      图  7  裂缝连通性定量表征示意图

      据Sanderson and Nixon(2015)修改. a. 裂缝节点类型示意图;b. 不同裂缝发育模式下的3种节点类型比例三角图;c. 裂缝连通性判别图版

      Fig.  7.  Schematic diagram for quantitative characterization of fracture connectivity

      图  8  依奇克里克构造带下侏罗统致密砂岩储层微观裂缝连通性定量表征

      a. 拼接的微观裂缝图片,TD1井,泥质细砂岩,2 260.30 m;b. 微观裂缝分布模式;c. 裂缝连通性表征

      Fig.  8.  Quantitative characterization of microfracture connectivity of Lower Jurassic tight sandstone reservoirs in the Yiqikelike structural belt

      图  9  依奇克里克构造带不同地区微观裂缝3种节点所占比例

      Fig.  9.  The proportions of three kinds of nodes of micro- fractures in different areas of Yiqikelike structural belt

      图  10  依奇克里克构造带不同地区微观裂缝连通性定量表征

      Fig.  10.  Quantitative characterization of microfracture connectivity in different areas of the Yiqikelike structural belt

      图  11  裂缝方位分散度对裂缝连通性影响模拟过程示意图

      Fig.  11.  Schematic diagrams for simulation process of influence of fracture azimuth dispersion on fracture connectivity

      图  12  裂缝方位分散度(a)和长度(b)对X型节点比例的影响

      Fig.  12.  Influence of fracture azimuth dispersion (a) and length (b) on X-node ratio

      图  13  裂缝方位分散度(a)和长度(b)对裂缝网络连通性的影响

      Fig.  13.  Influence of fracture azimuth dispersion (a) and length (b) on fracture network connectivity

      图  14  裂缝组间夹角对裂缝连通性影响模拟过程示意图

      Fig.  14.  Schematic diagrams for simulation process of influence of angle between fracture sets on fracture connectivity

      图  15  裂缝组间夹角(a)和长度(b)对X型节点比例的影响

      Fig.  15.  Influence of angle between fracture sets (a) and fracture length (b) on X-node ratio

      图  16  裂缝组间(a)和长度(b)对裂缝网络连通性的影响

      Fig.  16.  Influence of angle between fracture sets (a) and fracture length (b) on fracture network connectivity

      图  17  依奇克里克构造带下侏罗统宏观裂缝连通性模拟

      Fig.  17.  Simulation of macro fracture connectivity of Lower Jurassic in the Yiqikelike structural belt

    • Alghalandis, Y. F., Dowd, P. A., Xu, C. S., 2015. Connectivity Field: A Measure for Characterising Fracture Networks. Mathematical Geosciences, 47(1): 63-83. https://doi.org/10.1007/s11004-014-9520-7
      Bao, Y. C., Liu, Q. H., Du, X. F., et al., 2021. Division of Glutenite Lithofacies Based on the Trielement of Gravel-Matrix-Fracture. Earth Science, 46(6): 2157-2171 (in Chinese with English abstract).
      Berkowitz, B., 1995. Analysis of Fracture Network Connectivity Using Percolation Theory. Mathematical Geology, 27(4): 467-483. https://doi.org/10.1007/BF02084422
      Ding, W. L., Wang, X. H., Hu, Q. J., et al., 2015. Progress in Tight Sandstone Reservoir Fractures Research. Advances in Earth Science, 30(7): 737-750 (in Chinese with English abstract).
      Feng, J. W., Zhao, L. B., Wang, Y. D., 2020. Controlling Factors for Productivity of Ultra-Deep Tight Reservoirs in Keshen Gas Field, Kuqa Depression. Acta Petrolei Sinica, 41(4): 478-488 (in Chinese with English abstract).
      Ferrill, D. A., Smart, K. J., Cawood, A. J., et al., 2021. The Fold-Thrust Belt Stress Cycle: Superposition of Normal, Strike-Slip, and Thrust Faulting Deformation Regimes. Journal of Structural Geology, 148: 104362. https://doi.org/10.1016/j.jsg.2021.104362
      Ghosh, K., Mitra, S., 2009. Two-Dimensional Simulation of Controls of Fracture Parameters on Fracture Connectivity. AAPG Bulletin, 93(11): 1517-1533. https://doi.org/10.1306/07270909041
      Gong, L., Fu, X. F., Wang, Z. S., et al., 2019a. A New Approach for Characterization and Prediction of Natural Fracture Occurrence in Tight Oil Sandstones with Intense Anisotropy. AAPG Bulletin, 103(6): 1383-1400. https://doi.org/10.1306/12131818054
      Gong, L., Liu, B., Fu, X. F., et al., 2019b. Quantitative Prediction of Sub-Seismic Faults and Their Impact on Waterflood Performance: Bozhong 34 Oilfield Case Study. Journal of Petroleum Science and Engineering, 172: 60-69. https://doi.org/10.1016/j.petrol.2018.09.049
      Gong, L., Gao, M. Z., Zeng, L. B., et al., 2017. Controlling Factors on Fracture Development in the Tight Sandstone Reservoirs: A Case Study of Jurassic-Neogene in the Kuqa Foreland Basin. Natural Gas Geoscience, 28(2): 199-208 (in Chinese with English abstract).
      Gong, L., Gao, S. A., Liu, B., et al., 2021a. Quantitative Prediction of Natural Fractures in Shale Oil Reservoirs. Geofluids, 2021: 5571855. https://doi.org/10.1155/2021/5571855
      Gong, L., Wang, J., Gao, S., et al., 2021b. Characterization, Controlling Factors and Evolution of Fracture Effectiveness in Shale Oil Reservoirs. Journal of Petroleum Science and Engineering, 203: 108655. https://doi.org/10.1016/j.petrol.2021.108655
      Gong, L., Zeng, L. B., Du, Y. J., et al., 2015. Influences of Structural Diagenesis on Fracture Effectiveness: A Case Study of the Cretaceous Tight Sandstone Reservoirs of Kuqa Foreland Basin. Journal of China University of Mining & Technology, 44(3): 514-519 (in Chinese with English abstract).
      Hooker, J. N., Laubach, S. E., Marrett, R., et al., 2018. Microfracture Spacing Distributions and the Evolution of Fracture Patterns in Sandstones. Journal of Structural Geology, 108: 66-79. https://doi.org/10.1016/j.jsg.2017.04.001
      Jin, Z. J., 2014. A Study on the Distribution of Oil and Gas Reservoirs Controlled by Source-Caprock Assemblage in Unmodified Foreland Region of Tarim Basin. Oil & Gas Geology, 35(06): 763-770 (in Chinese with English abstract).
      Ju, W., Niu, X. B., Feng, S. B., et al., 2020. The Present-Day In-Situ Stress State and Fracture Effectiveness Evaluation in Shale Oil Reservoir: A Case Study of the Yanchang Formation Chang 7 Oil-Bearing Layer in the Ordos Basin. Journal of China University of Mining & Technology, 49(05): 931-940 (in Chinese with English abstract).
      Laubach, S. E., Lamarche, J., Gauthier, B. D. M., et al., 2018. Spatial Arrangement of Faults and Opening-Mode Fractures. Journal of Structural Geology, 108: 2-15. https://doi.org/10.1016/j.jsg.2017.08.008
      Lei, Q. H., Wang, X. G., 2016. Tectonic Interpretation of the Connectivity of a Multiscale Fracture System in Limestone. Geophysical Research Letters, 43(4): 1551-1558. https://doi.org/10.1002/2015GL067277
      Lyu, W. Y., Zeng, L. B., Zhou, S. B., et al., 2019. Natural Fractures in Tight-Oil Sandstones: A Case Study of the Upper Triassic Yanchang Formation in the Southwestern Ordos Basin, China. AAPG Bulletin, 103(10): 2343-2367. https://doi.org/10.1306/0130191608617115
      Magnusdottir, L., Horne, R. N., 2015. Inversion of Time-Lapse Electric Potential Data to Estimate Fracture Connectivity in Geothermal Reservoirs. Mathematical Geosciences, 47(1): 85-104. https://doi.org/10.1007/s11004-013-9515-9
      Peacock, D. C. P., Sanderson, D. J., Rotevatn, A., 2018. Relationships between Fractures. Journal of Structural Geology, 106: 41-53. https://doi.org/10.1016/j.jsg.2017.11.010
      Petrie, E. S., Evans, J. P., Bauer, S. J., 2014. Failure of Cap-Rock Seals as Determined from Mechanical Stratigraphy, Stress History, and Tensile-Failure Analysis of Exhumed Analogs. AAPG Bulletin, 98(11): 2365-2389. https://doi.org/10.1306/06171413126
      Rashid, F., Hussein, D., Lawrence, J. A., et al., 2020. Characterization and Impact on Reservoir Quality of Fractures in the Cretaceous Qamchuqa Formation, Zagros Folded Belt. Marine and Petroleum Geology, 113: 104117. https://doi.org/10.1016/j.marpetgeo.2019.104117
      Sanderson, D. J., Nixon, C. W., 2015. The Use of Topology in Fracture Network Characterization. Journal of Structural Geology, 72: 55-66. https://doi.org/10.1016/j.jsg.2015.01.005
      Sanderson, D. J., Nixon, C. W., 2018. Topology, Connectivity and Percolation in Fracture Networks. Journal of Structural Geology, 115: 167-177. https://doi.org/10.1016/j.jsg.2018.07.011
      Shi, C. Q., Xu, A. M., Wei, H. X., et al., 2020. Quantitative Characterization on the Clastic Reservoir Destruction by Tectonic Compression: a Case Study of the Jurassic Ahe Formation in Yiqikelike Structural Belt, Kuqa Depression. Acta Petrolei Sinica, 41(2): 205-215 (in Chinese with English abstract).
      Smith, J., Durucan, S., Korre, A., et al., 2011. Carbon Dioxide Storage Risk Assessment: Analysis of Caprock Fracture Network Connectivity. International Journal of Greenhouse Gas Control, 5(2): 226-240. https://doi.org/10.1016/j.ijggc.2010.10.002
      Wang, B., Yang, Y., Cao, Z. C., et al., 2021. U-Pb Dating of Calcite Veins Developed in the Middle-Lower Ordovician Reservoirs in Tahe Oilfield and Its Petroleum Geologic Significance in Tahe Oilfield. Earth Science, 46(9): 3203-3216 (in Chinese with English abstract).
      Wang, K., Yang, H. J., Zhang, H. L., et al., 2018. Characteristics and Effectiveness of Structural Fractures in Ultra-Deep Tight Sandstone Reservoir: A Case Study of Keshen-8 Gas Pool in Kuqa Depression, Tarim Basin. Oil & Gas Geology, 39(4): 719-729 (in Chinese with English abstract).
      Wang, R. Y., Hu, Z. Q., Liu, J. S., et al., 2018. Comparative Analysis of Characteristics and Controlling Factors of Fractures in Marine and Continental Shales: A Case Study of the Lower Cambrian in Cengong Area, Northern Guizhou Province. Oil & Gas Geology, 39(4): 631-640 (in Chinese with English abstract).
      Wang, W., Fu, H., Xing, L. X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519 (in Chinese with English abstract).
      Wang, Z. Y., Huang, J. F., 1993. A Multisteps Coalescence Model for the Development of Stress-Induced Cracks in Reservoir Rocks. Progress in Geophysics, 8(4): 81-89 (in Chinese with English abstract).
      Wu, G. H., Yue, G. L., Shi, J., et al., 2006. Analysis of Connectivity of Fractures of Ordovician Carbonates and Its Implication in Central Tarim Basin. West China Petroleum Geosciences, 2(2): 156-159 (in Chinese with English abstract).
      Xu, C., Dowd, P. A., Mardia, K. V., et al., 2006. A Connectivity Index for Discrete Fracture Networks. Mathematical Geology, 38(5): 611-634. https://doi. org/10.1007/s11004-006-9029-9 doi: 10.1007/s11004-006-9029-9
      Yang, Y., Wang, B., Cao, Z. C., et al., 2021. Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low- Uplift, Tarim Basin. Earth Science, 46(6): 2246-2257 (in Chinese with English abstract).
      Zeng, L. B., Gong, L., Zu, K. W., et al., 2012. Influence Factors on Fracture Validity of the Paleogene Reservoir, Western Qaidam Basin. Acta Geologica Sinica, 86(11): 1809-1814 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2012.11.010
      Zeng, L. B., Li, Y. G., Wang, Z. G., et al., 2007. Type and Sequence of Fractures in the Second Member of Xujiahe Formation at the South of Western Sichuan Depression. Earth Science, 32(2): 194-200 (in Chinese with English abstract).
      Zeng, L. B., Lü, P., Qu, X. F., et al., 2020. Multi-Scale Fractures in Tight Sandstone Reservoirs with Low Permeability and Geological Conditions of Their Development. Oil & Gas Geology, 41(3): 449-454 (in Chinese with English abstract).
      Zeng, L. B., Su, H., Tang, X. M., et al., 2013. Fractured Tight Sandstone Oil and Gas Reservoirs: A New Play Type in the Dongpu Depression, Bohai Bay Basin, China. AAPG Bulletin, 97(3): 363-377. https://doi.org/10.1306/09121212057
      Zhang, R. H., Yang, H. J., Wei, H. X., et al., 2019. The Sandstone Characteristics and Hydrocarbon Exploration Signification of Lower Jurassic in Middle East Section of Northern Tectonic Belt in Kuqa Depression, Tarim Basin. Natural Gas Geoscience, 30(9): 1243-1252 (in Chinese with English abstract).
      鲍怡晨, 刘强虎, 杜晓峰, 等, 2021. 基于砾石‒基质‒裂缝三元素的砂砾岩岩相划分. 地球科学, 46(6): 2157-2171. doi: 10.3799/dqkx.2020.284
      丁文龙, 王兴华, 胡秋嘉, 等, 2015. 致密砂岩储层裂缝研究进展. 地球科学进展, 30(7): 737-750. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201507001.htm
      冯建伟, 赵力彬, 王焰东, 2020. 库车坳陷克深气田超深层致密储层产能控制因素. 石油学报, 41(4): 478-488. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004012.htm
      巩磊, 高铭泽, 曾联波, 等, 2017. 影响致密砂岩储层裂缝分布的主控因素分析——以库车前陆盆地侏罗系‒新近系为例. 天然气地球科学, 28(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702003.htm
      巩磊, 曾联波, 杜宜静, 等, 2015. 构造成岩作用对裂缝有效性的影响: 以库车前陆盆地白垩系致密砂岩储层为例. 中国矿业大学学报, 44(3): 514-519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503017.htm
      金之钧, 2014. 从源‒盖控烃看塔里木台盆区油气分布规律. 石油与天然气地质, 35(6): 763-770. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406005.htm
      鞠玮, 牛小兵, 冯胜斌, 等, 2020. 页岩油储层现今地应力场与裂缝有效性评价——以鄂尔多斯盆地延长组长7油层组为例. 中国矿业大学学报, 49(5): 931-940. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202005013.htm
      史超群, 许安明, 魏红兴, 等, 2020. 构造挤压对碎屑岩储层破坏程度的定量表征——以库车坳陷依奇克里克构造带侏罗系阿合组为例. 石油学报, 41(2): 205-215. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202002008.htm
      王斌, 杨毅, 曹自成, 等, 2021. 塔河油田中下奥陶统储层裂缝方解石脉U-Pb同位素年龄及油气地质意义. 地球科学, 46(9): 3203-3216. doi: 10.3799/dqkx.2020.352
      王珂, 杨海军, 张惠良, 等, 2018. 超深层致密砂岩储层构造裂缝特征与有效性——以塔里木盆地库车坳陷克深8气藏为例. 石油与天然气地质, 39(4): 719-729. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804010.htm
      王濡岳, 胡宗全, 刘敬寿, 等, 2018. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比——以黔北岑巩地区下寒武统为例. 石油与天然气地质, 39(4): 631-640. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804002.htm
      王伟, 付豪, 邢林啸, 等, 2021. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为. 地球科学, 46(10): 3509-3519. doi: 10.3799/dqkx.2021.005
      王中言, 黄杰藩, 1993. 储层岩石应力裂缝演化的逐级连通模型及意义. 地球物理学进展, 8(4): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ199304010.htm
      邬光辉, 岳国林, 师骏, 等, 2006. 塔中奥陶系碳酸盐岩裂缝连通性分析及其意义. 中国西部油气地质, 2(2): 156-159.
      杨毅, 王斌, 曹自成, 等, 2021. 塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间. 地球科学, 46(6): 2246-2257. doi: 10.3799/dqkx.2020.200
      曾联波, 巩磊, 祖克威, 等, 2012. 柴达木盆地西部古近系储层裂缝有效性的影响因素. 地质学报, 86(11): 1809-1814. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201211011.htm
      曾联波, 李跃纲, 王正国, 等, 2007. 川西南部须二段低渗透砂岩储层裂缝类型及其形成序列. 地球科学, 32(2): 194-200. http://www.earth-science.net/article/id/3439
      曾联波, 吕鹏, 屈雪峰, 等, 2020. 致密低渗透储层多尺度裂缝及其形成地质条件. 石油与天然气地质, 41(3): 449-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003002.htm
      张荣虎, 杨海军, 魏红兴, 等, 2019. 塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义. 天然气地球科学, 30(9): 1243-1252. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201909001.htm
    • 加载中
    图(17)
    计量
    • 文章访问数:  505
    • HTML全文浏览量:  758
    • PDF下载量:  78
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-08
    • 刊出日期:  2023-07-25

    目录

      /

      返回文章
      返回