• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑黑石山铜多金属矿床闪长岩锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素

    李治华 李碧乐 李鹏 孙亚明 史雨凡

    李治华, 李碧乐, 李鹏, 孙亚明, 史雨凡, 2023. 东昆仑黑石山铜多金属矿床闪长岩锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素. 地球科学, 48(12): 4465-4480. doi: 10.3799/dqkx.2022.067
    引用本文: 李治华, 李碧乐, 李鹏, 孙亚明, 史雨凡, 2023. 东昆仑黑石山铜多金属矿床闪长岩锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素. 地球科学, 48(12): 4465-4480. doi: 10.3799/dqkx.2022.067
    Li Zhihua, Li Bile, Li Peng, Sun Yaming, Shi Yufan, 2023. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of Diorite in Heishishan Copper Polymetallic Deposit, East Kunlun. Earth Science, 48(12): 4465-4480. doi: 10.3799/dqkx.2022.067
    Citation: Li Zhihua, Li Bile, Li Peng, Sun Yaming, Shi Yufan, 2023. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of Diorite in Heishishan Copper Polymetallic Deposit, East Kunlun. Earth Science, 48(12): 4465-4480. doi: 10.3799/dqkx.2022.067

    东昆仑黑石山铜多金属矿床闪长岩锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素

    doi: 10.3799/dqkx.2022.067
    基金项目: 

    青海省地质勘查专项基金项目 2023085029ky004

    山金西部地质矿产勘查有限公司科技创新项目 2022-1014

    详细信息
      作者简介:

      李治华(1995-),男,博士研究生,矿产普查与勘探专业.ORCID:0000-0002-6886-1822.E-mail:lzhameame@163.com

      通讯作者:

      李碧乐,教授,主要从事热液矿床成矿理论与预测、区域成矿作用研究,ORCID: 0000-0002-8333-0608.E-mail:libl@jlu.edu.cn

    • 中图分类号: P581

    Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of Diorite in Heishishan Copper Polymetallic Deposit, East Kunlun

    • 摘要: 黑石山铜铅锌矿床位于东昆仑造山带中段的五龙沟地区,矿区内中三叠世的侵入岩十分发育,与矿体近平行产出的闪长岩为限定东昆仑地区古特提斯洋闭合时间提供了很好的研究对象.对黑石山闪长岩进行了LA-ICP-MS锆石U-Pb定年、全岩地球化学和Sr-Nd-Hf同位素分析.定年显示,黑石山闪长岩形成于241.6±1.0 Ma.样品的SiO2含量为52.23%~56.19%,全碱含量为K2O+Na2O=3.99%~6.26%,Na2O=2.79%~3.63%,K2O=1.06%~2.71%,样品富铝、钙、铁,MgO=2.55%~4.84%,TiO2=1.11%~1.43%;样品富集大离子亲石元素如Rb、Ba、K,明显亏损Nb、Ta、Ti、P等高场强元素,富集轻稀土元素,亏损重稀土元素,大多具有较为明显的Eu负异常,δEu为0.39~0.59.锆石εHft)值为-4.1~+0.7;全岩(87Sr/86Sr)t为0.708 860~0.708 960,εNdt)为-4.5~-4.3.综合研究认为,黑石山闪长岩为壳幔混合成因,结合区域构造演化历史,认为其形成于俯冲构造背景,指示东昆仑地区古特提斯洋闭合晚于241.6 Ma.

       

    • 图  1  东昆仑地图(a)、东昆仑地质草图(b)和东昆仑造山带地质简图(c)

      a和b利用GeoMapApp制作(http://geomapapp.org);c.据Xia et al.(2015)修改

      Fig.  1.  Map of the East Kunlun (a), geological sketch map of the East Kunlun (b) and simplified regional geological map of the East Kunlun orogen belt (c)

      图  2  黑石山矿区地质图(据姜芷筠, 2021修改)

      Fig.  2.  Geological map of the Heishishan deposit (modified from Jiang, 2021)

      图  3  黑石山矿床闪长岩野外照片(a, b)、手标本照片(c)、镜下照片(d~f)和地质剖面图(g)

      a.闪长岩与内矽卡岩化花岗岩的接触照片;b.闪长岩与成矿花岗岩的接触部位可见冷凝边和烘烤边;c.闪长岩手标本照片,可见斜长石和角闪石;d.闪长岩的角闪石和长石存在弱定向(-);e,f.闪长岩的斜长石发育聚片双晶和环带结构(+);矿物缩写:Pl.斜长石;Hbl.角闪石;Qr.正长石(矿物缩写据Whitney and Evans, 2010

      Fig.  3.  Field photographs (a, b), hand specimen photo (c), microphotographs (d-f) and geological profile (g) of the Heishishan diorite

      图  4  黑石山闪长岩锆石CL图像(a)、U-Pb年龄谐和图(b)和频数图(c)

      Fig.  4.  Cathodoluminescence (CL) images (a), U-Pb ages concordia diagram (b), and frequency diagram of zircons from the Heishishan diorite

      图  5  黑石山闪长岩(Na2O+K2O)-SiO2图解(a)和K2O-SiO2图解(b)

      a.据Middlemost(1994);b.据Peccerillo and Taylor(1976)

      Fig.  5.  (Na2O+K2O)-SiO2 diagram (a) and K2O-SiO2 plot (b) of the Heishishan diorite

      图  6  黑石山闪长岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)

      球粒陨石和原始地幔标准化值引自Sun and McDonough(1989)

      Fig.  6.  Chondrite-normalized REE (a) and primitive mantle-normalized multi-element (b) diagrams of the Heishishan diorite

      图  7  黑石山闪长岩的锆石年龄-εHf(t)值相关图(a)和全岩εNd(t)-(87Sr/86Sr)t图解(b)

      b.据Xiong et al.(2013)修改,数据来源:黑石山正长岩、花岗岩和花岗闪长岩为数据李治华等(2023)Li et al.(2023),富集地幔成因的中基性岩石数据熊富浩等(2011)Ding et al.(2014)Xiong et al.(2019)

      Fig.  7.  εHf(t) vs. t diagram for zircons (a) and εNd(t) vs. (87Sr/86Sr)t diagram (b) from Heishishan diorite

      图  8  黑石山闪长岩Zr/Nb-Zr图解(a)、TFeO-MgO图解(b)、MgO-SiO2图解(c)和Mg#-SiO2图解(d)

      b.据Zorpi et al.(1991);c.据Defant and Drumond(1990);d.据Rapp et al.(1999)Wang et al.(2006)

      Fig.  8.  Zr/Nb vs. Zr diagram (a), TFeO vs. MgO diagram (b), MgO vs. SiO2 diagram (c) and Mg# vs. SiO2 diagram (d) of Heishishan diorite

      图  9  黑石山闪长岩TFeO-MgO-Al2O3图解(a)、Zr/Yb-Nb/Yb图解(b)和Th/Yb-Ta/Yb图解(c)

      a.据Pearce et al.(1977);b和c.据Pearce and Peate(1995)

      Fig.  9.  TFeO-MgO-Al2O3 diagram (a), Zr/Yb vs. Nb/Yb diagram (b) and Th/Yb vs. Ta/Yb diagram (c) of Heishishan diorite

      表  1  黑石山闪长岩锆石U-Pb同位素定年数据

      Table  1.   Zircon U-Pb isotopic dating results of the Heishishan diorite

      样品 Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
      比值 比值 比值 t(Ma) t(Ma) t(Ma)
      HSS-N1-01 0.68 0.050 15 0.002 31 0.264 90 0.011 94 0.038 22 0.000 65 202 103 239 10 242 4
      HSS-N1-02 0.62 0.052 62 0.002 89 0.272 88 0.01 460 0.037 53 0.000 72 312 120 245 12 238 4
      HSS-N1-03 0.68 0.051 59 0.003 44 0.267 24 0.017 33 0.037 49 0.000 81 267 146 241 14 237 5
      HSS-N1-04 0.46 0.050 94 0.003 69 0.266 63 0.018 75 0.037 89 0.000 87 238 159 240 15 240 5
      HSS-N1-05 0.90 0.050 87 0.002 46 0.267 64 0.012 65 0.038 10 0.000 67 235 108 241 10 241 4
      HSS-N1-06 0.61 0.051 25 0.003 86 0.270 87 0.019 83 0.038 28 0.000 88 252 164 243 16 242 5
      HSS-N1-07 0.58 0.050 70 0.003 15 0.271 02 0.016 45 0.038 73 0.000 77 227 138 244 13 245 5
      HSS-N1-09 0.38 0.051 92 0.005 26 0.268 49 0.026 32 0.037 47 0.001 14 282 216 242 21 237 7
      HSS-N1-10 0.44 0.050 45 0.002 33 0.266 07 0.01 20 0.038 23 0.000 66 216 103 240 10 242 4
      HSS-N1-11 0.94 0.051 72 0.002 29 0.271 40 0.011 75 0.038 05 0.000 65 273 98 244 9 241 4
      HSS-N1-12 0.64 0.050 71 0.003 15 0.268 19 0.016 18 0.038 36 0.000 80 228 137 241 13 243 5
      HSS-N1-13 0.43 0.051 28 0.002 89 0.266 32 0.014 62 0.037 68 0.000 74 253 125 240 12 238 5
      HSS-N1-15 1.01 0.049 14 0.002 42 0.258 91 0.012 43 0.038 24 0.000 68 155 111 234 10 242 4
      HSS-N1-17 0.38 0.050 32 0.001 93 0.266 06 0.010 04 0.038 39 0.000 61 210 87 240 8 243 4
      HSS-N1-18 0.55 0.050 68 0.004 38 0.263 79 0.0220 8 0.037 81 0.000 99 226 188 238 18 239 6
      HSS-N1-19 0.89 0.051 70 0.002 38 0.272 31 0.012 22 0.038 27 0.000 67 272 102 245 10 242 4
      HSS-N1-22 0.96 0.050 87 0.002 17 0.268 67 0.011 21 0.038 40 0.000 64 235 95 242 9 243 4
      HSS-N1-24 0.37 0.050 49 0.002 50 0.265 99 0.012 85 0.038 33 0.000 69 217 111 240 10 243 4
      HSS-N1-25 0.45 0.051 32 0.004 61 0.268 87 0.023 38 0.038 12 0.001 04 255 194 242 19 241 6
      HSS-N1-26 0.96 0.050 96 0.002 64 0.269 96 0.013 60 0.038 56 0.000 72 239 115 243 11 244 4
      HSS-N1-27 0.48 0.049 90 0.002 85 0.268 05 0.014 90 0.039 11 0.000 78 190 128 241 12 247 5
      HSS-N1-28 0.72 0.051 46 0.005 37 0.272 56 0.027 46 0.038 57 0.001 21 261 223 245 22 244 8
      HSS-N1-30 0.76 0.051 32 0.004 12 0.266 20 0.020 71 0.037 79 0.000 96 255 175 240 17 239 6
      下载: 导出CSV

      表  2  黑石山闪长岩样品主量元素、稀土元素和微量元素含量及有关参数

      Table  2.   Major, REE and trace element content and parameter of the Heishishan diorite

      样品号 HSS-N1-Y1 HSS-N1-Y2 HSS-N1-Y3 HSS-N1-Y4 HSS-N1-Y5 HSS-N1-Y6 HSS-N1-Y7
      SiO2 52.23 53.95 53.73 52.96 52.53 56.19 52.68
      TiO2 1.25 1.11 1.28 1.33 1.43 1.19 1.31
      Al2O3 18.86 15.80 18.36 18.11 17.12 18.82 17.07
      Fe2O3T 10.30 11.59 9.72 9.52 11.00 8.28 10.86
      FeO 8.66 8.82 7.49 7.18 9.27 6.41 8.38
      MgO 4.02 3.78 3.35 3.25 4.84 2.55 4.04
      MnO 0.19 0.24 0.17 0.18 0.21 0.15 0.25
      CaO 8.82 7.77 7.64 8.03 8.61 6.93 8.29
      K2O 1.06 2.17 1.98 2.71 1.26 1.92 1.83
      Na2O 2.94 3.39 3.48 3.55 2.79 3.63 3.37
      P2O5 0.33 0.22 0.30 0.36 0.22 0.34 0.29
      LOI 1.79 0.95 1.19 1.09 1.18 1.07 2.09
      Total 99.33 99.56 99.36 99.35 99.36 99.36 100.53
      K2O/Na2O 2.78 1.56 1.75 1.31 2.21 1.89 1.84
      Mg# 43.59 39.24 40.59 40.32 46.56 37.87 42.45
      Sc 23.55 39.68 29.69 38.23 40.50 28.67 29.48
      V 185 303 170 258 281 132 200
      Cr 7.64 8.71 3.61 9.12 10.60 4.59 8.95
      Co 21.55 19.91 20.15 22.85 23.07 14.31 22.54
      Ni 8.01 8.56 8.83 9.54 9.82 6.17 8.62
      Cu 12.75 12.30 26.03 11.47 11.90 11.20 12.61
      Zn 96 113 167 116 121 91 110
      Ga 23.17 22.60 23.06 21.79 21.16 23.73 22.72
      Rb 46.39 46.30 93.90 47.59 48.28 108.33 50.43
      Sr 437 412 490 361 345 443 428
      Y 63.13 68.60 47.74 68.48 72.49 50.89 69.47
      Zr 329 314 256 312 299 637 319
      Nb 15.85 15.70 16.89 15.76 15.90 20.58 15.91
      Cs 3.39 6.50 6.52 8.22 9.21 5.05 5.23
      Ba 205 256 680 346 295 661 229
      La 28.12 30.32 42.77 30.10 28.88 42.87 28.34
      Ce 69.05 71.41 89.68 76.30 78.32 93.53 71.42
      Pr 9.79 11.72 11.50 10.20 11.32 11.97 10.15
      Nd 46.32 47.33 48.04 49.30 51.25 48.73 48.54
      Sm 11.45 10.63 10.31 12.50 13.33 10.38 11.88
      Eu 1.80 1.56 1.99 1.77 1.74 1.81 1.78
      Gd 11.84 11.93 10.38 12.36 14.02 10.70 12.52
      Tb 1.89 2.22 1.52 2.23 2.31 1.53 1.95
      Dy 11.94 14.12 9.11 12.83 13.70 9.41 12.40
      Ho 2.42 2.63 1.63 2.68 2.80 1.69 2.62
      Er 7.08 7.64 4.67 8.02 8.09 4.92 7.38
      Tm 0.88 0.95 0.60 0.98 1.02 0.65 0.95
      Yb 5.73 6.52 4.13 6.23 6.74 4.55 5.87
      Lu 0.77 0.83 0.55 0.85 0.89 0.60 0.84
      Hf 7.59 7.29 5.85 7.41 7.22 14.13 7.44
      Ta 0.80 0.79 0.78 0.78 0.80 1.00 0.77
      Pb 16.52 13.40 25.19 13.40 11.68 15.70 15.20
      Th 3.93 2.54 3.18 2.46 2.15 3.81 3.42
      U 1.15 0.98 1.31 1.22 0.92 1.32 1.57
      ΣREE 209.08 219.81 236.88 226.35 234.40 243.35 216.64
      LREE/HREE 3.91 3.69 6.27 3.90 3.73 6.14 3.87
      (La/Yb)N 3.52 3.34 7.43 3.47 3.07 6.76 3.46
      δEu 0.47 0.42 0.59 0.44 0.39 0.53 0.45
      Nd/Th 11.79 18.63 15.09 20.04 23.81 12.78 14.19
      Rb/Sr 0.11 0.11 0.19 0.13 0.14 0.24 0.12
      注:表中主量元素为去烧失量之后的结果,主量元素单位为10-2;微量、稀土元素单位为10-6,FeO采用容量滴定法测得,Fe2O3利用Fe2O3T和FeO计算得到(Fe2O3=Fe2O3T-FeO×1.111),Mg#=100×(MgO/40.31)/(MgO/40.31+Fe2O3T×2/159.7).
      下载: 导出CSV

      表  3  黑石山闪长岩锆石Lu-Hf同位素组成

      Table  3.   Zircon Lu-Hf isotopic compositions of the Heishishan diorite

      样品 t (Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) tDM1(Hf) tDM2(Hf) fLu/Hf
      HSS-N1-001 241.6 0.056 052 0.001 528 0.282 512 0.000 017 -9.2 -4.1 0.6 1 062 1 280 -0.95
      HSS-N1-004 241.6 0.021 454 0.000 679 0.282 607 0.000 014 -5.8 -0.7 0.5 906 1 102 -0.98
      HSS-N1-006 241.6 0.036 948 0.001 153 0.282 639 0.000 015 -4.7 0.4 0.5 872 1 048 -0.97
      HSS-N1-010 241.6 0.018 666 0.000 577 0.282 615 0.000 011 -5.6 -0.3 0.4 892 1 086 -0.98
      HSS-N1-011 241.6 0.024 032 0.000 759 0.282 599 0.000 013 -6.1 -0.9 0.5 918 1 116 -0.98
      HSS-N1-013 241.6 0.032 173 0.001 027 0.282 646 0.000 015 -4.4 0.7 0.5 858 1 033 -0.97
      HSS-N1-017 241.6 0.031 941 0.001 035 0.282 576 0.000 014 -6.9 -1.8 0.5 957 1 160 -0.97
      HSS-N1-019 241.6 0.028 283 0.000 904 0.282 598 0.000 015 -6.1 -1.0 0.5 923 1 119 -0.97
      HSS-N1-022 241.6 0.032 989 0.001 101 0.282 623 0.000 018 -5.3 -0.1 0.6 893 1 075 -0.97
      下载: 导出CSV

      表  4  黑石山闪长岩全岩Sr-Nd同位素组成

      Table  4.   Whole rock Sr-Nd isotope results of the Heishishan diorite

      样品 t (Ma) 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)t 147Sm/144Nd 143Nd/144Nd εNd(t) (143Nd/144Nd)t
      HSS-N1-01 241.6 0.106 2 0.709 914 0.708 860 0.149 5 0.512 333 -4.5 0.512 097
      HSS-N1-03 241.6 0.191 6 0.710 869 0.708 960 0.129 8 0.512 313 -4.3 0.512 108
      下载: 导出CSV
    • Bea, F., Arzamastsev, A., Montero, P., et al., 2001. Anomalous Alkaline Rocks of Soustov, Kola: Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials. Contributions to Mineralogy and Petrology, 140(5): 554-566. https://doi.org/10.1007/s004100000211
      Chen, B., Xiong, F.H., Ma, C.Q., et al., 2021. Coupling Relation between Magma Mixing and Igneous Petrological Diversity: An Example of Bairiqili Felsic Pluton in East Kunlun Orogen. Earth Science, 46(6): 2057-2072(in Chinese with English abstract).
      Chen, G.C., Pei, X.Z., Li, R.B., et al., 2018. Triassic Magma Mixing and Mingling at the the Eastern Section of Eastern Kunlun: A Case Study from Xiangjiananshan Granitic Batholith. Acta Petrologica Sinica, 34(8): 2441-2480(in Chinese with English abstract).
      Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0
      Ding, Q.F., Jiang, S.Y., Sun, F.Y., 2014. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 205: 266-283. https://doi.org/10.1016/j.lithos.2014.07.015
      Dong, Y.P., He, D.F., Sun, S.S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006
      Grove, T.L., Elkins-Tanton, L.T., Parman, S.W., et al., 2003. Fractional Crystallization and Mantle-Melting Controls on Calc-Alkaline Differentiation Trends. Contributions to Mineralogy and Petrology, 145(5): 515-533. https://doi.org/10.1007/s00410-003-0448-z
      Guo, X.Z., Li, Y.Z., Jia, Q.Z., et al., 2018. Geochronology and Geochemistry of the Wulonggou Orefield Related Granites in Late Permian-Triassic East Kunlun: Implication for Metallogenic Tectonic. Acta Petrologica Sinica, 34(8): 2359-2379(in Chinese with English abstract).
      Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Huang, H., Niu, Y.L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
      Jiang, Z.J., 2021. Geological Characteristics and Ore Genesis of the Heishishan Cu-Pb-Zn Deposit in Wulonggou Area, East Kunlun (Dissertation). Jilin University, Changchun(in Chinese with English abstract).
      Jung, S., Hoernes, S., Mezger, K., 2002. Synorogenic Melting of Mafic Lower Crust: Constraints from Geochronology, Petrology and Sr, Nd, Pb and O Isotope Geochemistry of Quartz Diorites (Damara Orogen, Namibia). Contributions to Mineralogy and Petrology, 143(5): 551-566. https://doi.org/10.1007/s00410-002-0366-5
      Kelemen, P.B., 1995. Genesis of High Mg# Andesites and the Continental Crust. Contributions to Mineralogy and Petrology, 120(1): 1-19. https://doi.org/10.1007/bf00311004
      Kong, H.L., Li, Y.Z., Li, J.C., et al., 2021. Petrogenesis of Xiwanggou Olivine Gabbro in East Kunlun Mountains: Constraints from Geochemistry, Zircon U-Pb Dating and Hf Isotopes. Geology in China, 48(1): 173-188(in Chinese with English abstract).
      Li, B.L., Sun, F.Y., Yu, X.F., et al., 2012. U-Pb Dating and Geochemistry of Diorite in the Eastern Section from Eastern Kunlun Middle Uplifted Basement and Granitic Belt. Acta Petrologica Sinica, 28(4): 1163-1172(in Chinese with English abstract).
      Li, R.B., Pei, X.Z., Li, Z.C., et al., 2012. Geological Characteristics of Late Palaeozoic-Mesozoic Unconformities and Their Response to Some Significant Tectonic Events in Eastern Part of Eastern Kunlun. Earth Science Frontiers, 19(5): 244-254 (in Chinese with English abstract).
      Li, R.B., Pei, X.Z., Li, Z.C., et al., 2018. Paleo-Tethys Ocean Subduction in Eastern Section of East Kunlun Orogen: Evidence from the Geochronology and Geochemistry of the Wutuo Pluton. Acta Petrologica Sinica, 34(11): 3399-3421(in Chinese with English abstract).
      Li, X.W., Huang, X.F., Luo, M.F., et al., 2015. Petrogenesis and Geodynamic Implications of the Mid-Triassic Lavas from East Kunlun, Northern Tibetan Plateau. Journal of Asian Earth Sciences, 105: 32-47. https://doi.org/10.1016/j.jseaes.2015.03.009
      Li, Z.H., Li, B.L., Li, P., et al., 2023. Petrogenesis and Magma Fertility of the Heishishan Skarn Deposit, East Kunlun, NW China: Insights from Geochronology, Mineralogy, Geochemistry, and Sr-Nd-Hf Isotopes. Ore Geology Reviews, 157: 105436. https://doi.org/10.1016/j.oregeorev.2023.105436
      Li, Z.H., Li, B.L., Wang, B., et al., 2023. Genesis and Geological Significance of Sulfide Bearing Mafic Enclaves and Host Syenite in Heishishan, East Kunlun: Evidence from Geochronology, Mineralogy, Geochemistry and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 39(3): 742-762(in Chinese with English abstract). doi: 10.18654/1000-0569/2023.03.08
      Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2004. Mixing Events between the Crust- and Mantle-Derived Magmas in Eastern Kunlun: Evidence from Zircon SHRIMP Ⅱ Chronology. Chinese Science Bulletin, 49(6): 596-602(in Chinese). doi: 10.1360/csb2004-47-6-596
      Liu, J.N., Feng, C.Y., Qi, F., et al., 2012. SIMS Zircon U-Pb Dating and Fluid Inclusion Studies of Xiadeboli Cu-Mo Ore District in Dulan County, Qinghai Province, China. Acta Petrologica Sinica, 28(2): 679-690(in Chinese with English abstract).
      Ma, C.Q., Xiong, F.H., Yin, S., et al., 2015. Intensity and Cyclicity of Orogenic Magmatism: an Example from a Paleo-Tethyan Granitoid Batholith, Eastern Kunlun, Northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555-3568(in Chinese with English abstract).
      Mao, J.W., Zhou, Z.H., Feng, C.Y., et al., 2012. A Preliminary Study of the Triassic Large-Scale Mineralization in China and Its Geodynamic Setting. Geology in China, 39(6): 1437-1471(in Chinese with English abstract).
      Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2007.03.010
      Pearce, J.A., Peate, D.W., 1995. Tectonic Implocations of the Composition of Volcanic Arc Magmas. Annual Review of Earth & Planetary Sciences, 23: 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      Pearce, T.H., Gorman, B.E., Birkett, T.C., 1977. The Relationship between Major Element Chemistry and Tectonic Environment of Basic and Intermediate Volcanic Rocks. Earth and Planetary Science Letters, 36(1): 121-132. https://doi.org/10.1016/0012-821x(77)90193-5
      Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      Richards, J.P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 98(8): 1515-1533. https://doi.org/10.2113/gsecongeo.98.8.1515
      Rogers, G., Hawkesworth, C.J., 1989. A Geochemical Traverse across the North Chilean Andes: Evidence for Crust Generation from the Mantle Wedge. Earth and Planetary Science Letters, 91(3/4): 271-285. https://doi.org/10.1016/0012-821x(89)90003-4
      Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tatsumi, Y., 1982. Origin of High-Magnesian Andesites in the Setouchi Volcanic Belt, Southwest Japan, II. Melting Phase Relations at High Pressures. Earth and Planetary Science Letters, 60(2): 305-317. https://doi.org/10.1016/0012-821x(82)90009-7
      Taylor, S.R., McLennan, S.M., 1995. The Geochemical Evolution of the Continental Crust. Review of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95rg00262
      Wang, G., Sun, F.Y., Li, B.L., et al., 2014. Petrography, Zircon U-Pb Geochronology and Geochemistry of the Mafic-Ultramafic Intrusion in Xiarihamu Cu-Ni Deposit from East Kunlun, with Implications for Geodynamic Setting. Earth Science Frontiers, 21(6): 381-401(in Chinese with English abstract).
      Wang, Q., Xu, J.F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
      Wang, W., Xiong, F.H., Ma, C.Q., et al., 2021. Petrogenesis of Triassic Suolagou Sanukitoid-Like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887-2902(in Chinese with English abstract).
      Whitney, D.L., Evans, B.W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185-187. https://doi.org/10.2138/am.2010.3371
      Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1-2): 105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003
      Wu, F., Zhang, X.J., Zhang, Y.Q., et al., 2010. Zircon U-Pb Ages for Rhyolitic Tuffs of the Naocangjiangou Formation in the East Kulun Orogenic Belt and Their Implication. Journal of Geomechanics, 16(1): 44-50(in Chinese with English abstract).
      Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/bf03184122
      Xia, R., 2017. Paleo-Tethys Orogenic Process and Metallogenesis of the East Kunlun (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Xia, R., Deng, J., Qing, M., et al., 2017. Petrogenesis of Ca. 240 Ma Intermediate and Felsic Intrusions in the Nan'getan: Implications for Crust-Mantle Interaction and Geodynamic Process of the East Kunlun Orogen. Ore Geology Reviews, 90: 1099-1117. https://doi.org/10.1016/j.oregeorev.2017.04.002
      Xia, R., Wang, C.M., Qing, M., et al., 2015. Zircon U-Pb Dating, Geochemistry and Sr-Nd-Pb-Hf-O Isotopes for the Nan'getan Granodiorites and Mafic Microgranular Enclaves in the East Kunlun Orogen: Record of Closure of the Paleo-Tethys. Lithos, 234-235: 47-60. https://doi.org/10.1016/j.lithos.2015.07.018
      Xiong, F.H., Ma, C.Q., Chen, B., et al., 2019. Intermediate-Mafic Dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A Window into Paleo-Arc Magma Feeding System. Lithos, 340/341: 152-165. https://doi.org/10.1016/j.lithos.2019.05.012
      Xiong, F.H., Ma, C.Q., Jiang, H.A., et al., 2013. Petrogenetic and Tectonic Significance of Permian Calc-Alkaline Lamprophyres, East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau. International Geology Review, 55(14): 1817-1834. https://doi.org/10.1080/00206814.2013.804683
      Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt. Acta Petrologica Sinica, 27(11): 3350-3364(in Chinese with English abstract).
      Yang, J.S., Wang, X.B., Shi, R.D., et al., 2004. The Dur'ngoi Ophiolite in East Kunlun, Northern Qinghai-Tibet Plateau: A Fragment of Paleo-Tethyan Oceanic Crust. Geology in China, 31(3): 225-239(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2004.03.001
      Yang, Y.Q., 2013. Study on Geological Characteristics and Genesis of Aikengdelesite Molybdenum (Copper) Deposit, Eastern Kunlun, Qinghai Province (Dissertation). Jilin University, Changchun(in Chinese with English abstract).
      Yao, L., 2015. Petrogenesis of the Triassic Granitoids and Skarn Mineralization in the Qimantag Area, Qinghai Province, and Their Geodynamic Setting (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Yu, J.Z., Zheng, Y.Y., Xu, R.K., et al., 2020. Zircon U-Pb Chronology, Geochemistry of Jiangjunmu Ore-Bearing Pluton, Eastern Part of East Kunlun and Their Geological Significance. Earth Science, 45(4): 1151-1167(in Chinese with English abstract).
      Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x
      Zhang, Y.T., 2018. Research on Metallogenesis of Gold Deposits in the Wulonggou Ore Concentration Area, Central Segment of the Kunlun Mountains, Qinghai Province (Dissertation). Jilin University, Changchun(in Chinese with English abstract).
      Zorpi, M.J., Coulon, C., Orsini, J.B., 1991. Hybridization between Felsic and Mafic Magmas in Calc-Alkaline Granitoids: A Case Study in Northern Sardinia, Italy. Chemical Geology, 92(1-3): 45-86. https://doi.org/10.1016/0009-2541(91)90049-w
      陈兵, 熊富浩, 马昌前, 等, 2021. 岩浆混合作用与火成岩多样性的耦合关系: 以东昆仑造山带白日其利长英质岩体为例. 地球科学, 46(6): 2057-2072. doi: 10.3799/dqkx.2020.241
      陈国超, 裴先治, 李瑞保, 等, 2018. 东昆仑东段三叠纪岩浆混合作用: 以香加南山花岗岩基为例. 岩石学报, 34(8): 2441-2480.
      国显正, 栗亚芝, 贾群子, 等, 2018. 东昆仑五龙沟金多金属矿集区晚二叠世-三叠纪岩浆岩年代学、地球化学及其构造意义. 岩石学报, 34(8): 2359-2379.
      姜芷筠, 2021. 东昆仑五龙沟地区黑石山Cu-Pb-Zn矿床地质特征及矿床成因(硕士学位论文). 长春: 吉林大学.
      孔会磊, 栗亚芝, 李金超, 等, 2021. 东昆仑希望沟橄榄辉长岩的岩石成因: 地球化学、锆石U-Pb年龄与Hf同位素制约. 中国地质, 48(1): 173-188.
      李碧乐, 孙丰月, 于晓飞, 等, 2012. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究. 岩石学报, 28(4): 1163-1172.
      李瑞保, 裴先治, 李佐臣, 等, 2012. 东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应. 地学前缘, 19(5): 244-254.
      李瑞保, 裴先治, 李佐臣, 等, 2018. 东昆仑东段古特提斯洋俯冲作用: 乌妥花岗岩体锆石U-Pb年代学和地球化学证据. 岩石学报, 34(11): 3399-3421.
      李治华, 李碧乐, 王斌, 等, 2023. 东昆仑黑石山含硫化物暗色包体及宿主正长岩成因及地质意义: 年代学、矿物学、地球化学和Sr-Nd-Hf同位素证据. 岩石学报, 39(3): 742-762.
      刘成东, 莫宣学, 罗照华, 等, 2004. 东昆仑壳-幔岩浆混合作用: 来自锆石SHRIMP年代学的证据. 科学通报, 49(6): 596-602.
      刘建楠, 丰成友, 亓锋, 等, 2012. 青海都兰县下得波利铜钼矿区锆石U-Pb测年及流体包裹体研究. 岩石学报, 28(2): 679-690.
      马昌前, 熊富浩, 尹烁, 等, 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555-3568.
      毛景文, 周振华, 丰成友, 等, 2012. 初论中国三叠纪大规模成矿作用及其动力学背景. 中国地质, 39(6): 1437-1471.
      莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414.
      王冠, 孙丰月, 李碧乐, 等, 2014. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义. 地学前缘, 21(6): 381-401.
      王巍, 熊富浩, 马昌前, 等, 2021. 东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示. 地球科学, 46(8): 2887-2902. doi: 10.3799/dqkx.2020.270
      吴芳, 张绪教, 张永清, 等, 2010. 东昆仑闹仓坚沟组流纹质凝灰岩锆石U-Pb年龄及其地质意义. 地质力学学报, 16(1): 44-50.
      夏锐, 2017. 东昆仑古特提斯造山过程与金成矿作用(博士学位论文). 北京: 中国地质大学.
      熊富浩, 马昌前, 张金阳, 等, 2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350-3364.
      杨经绥, 王希斌, 史仁灯, 等, 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳. 中国地质, 31(3): 225-239.
      杨延乾, 2013. 青海东昆仑埃坑德勒斯特钼(铜)矿矿床地质特征及成因探讨(硕士学位论文). 长春: 吉林大学.
      姚磊, 2015. 青海祁漫塔格地区三叠纪成岩成矿作用及地球动力学背景(博士学位论文). 北京: 中国地质大学.
      俞军真, 郑有业, 许荣科, 等, 2020. 东昆仑东段将军墓含矿岩体锆石U-Pb年代学、地球化学特征及其地质意义. 地球科学, 45(4): 1151-1167. doi: 10.3799/dqkx.2019.134
      张宇婷, 2018. 青海东昆仑中段五龙沟矿集区金矿成矿作用研究(博士学位论文). 长春: 吉林大学.
    • 加载中
    图(9) / 表(4)
    计量
    • 文章访问数:  264
    • HTML全文浏览量:  340
    • PDF下载量:  42
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-02-15
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回