• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    喀斯特洞穴细菌群落的生境特异性及其潜在功能:以广西桂林盘龙洞为例

    曾智霖 程晓钰 王红梅 曹静 杨梓琪 刘晓燕 王昳衡 李璐 苏春田 黄奇波

    曾智霖, 程晓钰, 王红梅, 曹静, 杨梓琪, 刘晓燕, 王昳衡, 李璐, 苏春田, 黄奇波, 2023. 喀斯特洞穴细菌群落的生境特异性及其潜在功能:以广西桂林盘龙洞为例. 地球科学, 48(12): 4711-4726. doi: 10.3799/dqkx.2022.068
    引用本文: 曾智霖, 程晓钰, 王红梅, 曹静, 杨梓琪, 刘晓燕, 王昳衡, 李璐, 苏春田, 黄奇波, 2023. 喀斯特洞穴细菌群落的生境特异性及其潜在功能:以广西桂林盘龙洞为例. 地球科学, 48(12): 4711-4726. doi: 10.3799/dqkx.2022.068
    Zeng Zhilin, Cheng Xiaoyu, Wang Hongmei, Cao Jing, Yang Ziqi, Liu Xiaoyan, Wang Yiheng, Li Lu, Su Chuntian, Huang Qibo, 2023. Niche Specificity and Potential Functions of Microbial Communities in Karst Caves as Exampled by Panlong Cave in Guilin City, Guangxi. Earth Science, 48(12): 4711-4726. doi: 10.3799/dqkx.2022.068
    Citation: Zeng Zhilin, Cheng Xiaoyu, Wang Hongmei, Cao Jing, Yang Ziqi, Liu Xiaoyan, Wang Yiheng, Li Lu, Su Chuntian, Huang Qibo, 2023. Niche Specificity and Potential Functions of Microbial Communities in Karst Caves as Exampled by Panlong Cave in Guilin City, Guangxi. Earth Science, 48(12): 4711-4726. doi: 10.3799/dqkx.2022.068

    喀斯特洞穴细菌群落的生境特异性及其潜在功能:以广西桂林盘龙洞为例

    doi: 10.3799/dqkx.2022.068
    基金项目: 

    国家自然科学基金重点项目 91951208

    广西自然科学基金项目 2020GXNSFAA297025

    中国地质调查局地质调查项目 DD20190343

    详细信息
      作者简介:

      曾智霖(1998-),女,助教,主要从事喀斯特洞穴微生物研究. ORCID:0009-0008-0365-8154. E-mail:825949348@qq.com

      通讯作者:

      王红梅,教授,主要从事地质微生物的教学和科研工作. ORCID: 0000-0001-7621-7810. E-mail: wanghmei04@163.com

    • 中图分类号: X172

    Niche Specificity and Potential Functions of Microbial Communities in Karst Caves as Exampled by Panlong Cave in Guilin City, Guangxi

    • 摘要: 开展岩溶洞穴不同生境微生物与环境因子间的研究,对阐明深部生物圈微生物的多样性、潜在功能及环境驱动机制具有重要意义.以广西桂林盘龙洞为例,通过对细菌16S rRNA高通量测序系统研究了洞穴7种小生境细菌群落的空间分布特征及其与环境因子之间的关系.研究发现温度是驱动盘龙洞细菌群落组成的重要因素,微生物群落组成及潜在生态功能均具有生境特异性,不同生境具有独有的细菌指示类群.滴水、干燥石笋表面生物膜、湿润石笋表面生物膜3个生境与洞穴氮循环密切相关,风化结皮、沉积物、岩壁3个生境与洞穴微生物固定二氧化碳关系紧密.此外,洞穴细菌通过密切的代谢交换形成协作的正相关关系,暗示着微生物在洞穴这一极端环境中的生存策略.

       

    • 图  1  广西桂林盘龙洞采样点分布示意图(a)以及采样点的照片(b~h)

      b.上覆土壤(OS);c.7号点岩壁(W)与风化结皮(WC);d.10号点岩壁与风化结皮;e.7号点干燥石笋(DS);f.7号点湿润石笋(WS);g.8号点干燥石笋;h.9号点湿润石笋

      Fig.  1.  Schematic diagram of sampling sites in the Panlong Cave, Guilin City, Guangxi (a) and images of sampling sites in situ (b-h)

      图  2  桂林盘龙洞微生物群落结构及不同生境中微生物群落的指示类群

      a.相对丰度前10的门的组成;b.相对丰度前15的属组成;c.基于LEfSe分析确定的不同生境的指示类群(LDA SCORE > 4);d.基于ASVs水平的微生物群落非度量多维尺度分析(NMDS);DW.滴水;S.沉积物;WC.风化结皮;W.岩壁;DS.干石笋表面生物膜;OS.上覆土壤;WS.湿石笋表面生物膜

      Fig.  2.  Microbial community compositions and microbial indicator groups of different niches in the Panlong Cave, Guilin City

      图  3  广西桂林盘龙洞中细菌群落结构与环境因子之间的冗余分析(RDA)(a)及不同微生物类群与环境因子的相关性热图(b)

      图中*和**分别代表P<0.05和P<0.01

      Fig.  3.  Redundancy analysis (RDA) (a) and the heatmap (b) of microbial communities and environmental parameters in the Panlong Cave, Guilin City, Guangxi

      图  4  基于Tax4fun2数据库对盘龙洞细菌群落参与洞穴元素循环功能预测图; (a)氮循环; (b)碳固定

      图中数字代表该生境中的酶在此元素循环通路中丰度的排名,灰色方块代表未在此生境中检测到与该元素循环相关的酶

      Fig.  4.  Function predictions related to nitrogen (a) and carbon (b) cycles based on 16S rRNA against Tax4fun2 database in the Panlong Cave, Guangxi

      图  5  盘龙洞细菌群落的共现网络分析.(a)按模块着色;(b)按门类着色;(c)来自不同生境的节点在网络模块中所占比例

      每个节点的大小与其连接数量成正比,其中粉色代表正相关,绿色代表负相关.S、W、OS、WC、DW、WS、DS分别代表沉积物,岩壁,上覆土壤,风化结皮,滴水,湿石笋表面生物膜,干石笋表面生物膜

      Fig.  5.  The co-occurrence network analysis of bacterial communities colored by taxonomy (a) and by modules (b) in the Panlong Cave, Guilin City, Guangxi. The node size is proportional to the number of connections. Positive links were in pink and negative ones in green. (c) Relative abundance of bacterial ASVs within individual modules in the networks

      表  1  广西桂林盘龙洞洞穴中各个生境样本α多样性指数

      Table  1.   α diversity index of microbial communities in various habitats in the Panlong Cave, Guilin City, Guangxi

      生境 Simpson Chao1 ACE Shannon
      S 0.98±0.02a 1 449.64±218.07bc 1 454.32±218.59bc 8.13±0.67ab
      W 0.98±0.03a 1 372.14±397.49bc 1 374.13±402.37bcd 8.12±0.91ab
      OS 0.98±0.03a 2 244.26±562.91a 2 224.21±553.77a 8.95±1.12a
      WC 0.98±0.01a 1 053.27±377.47cd 1 058.01±373.47cd 7.67±0.95b
      DW 0.86±0.01b 965.02±361.88d 982.32±377.49d 5.6±0.45c
      WS 0.98±0.03a 1 517.85±145.02b 1 519.34±139.96b 8.29±0.79ab
      DS 0.99±0.00a 1 667.17±331.51b 1 662.63±335.29b 8.97±0.27a
      注:不同字母(a~d)表示生境中存在显著性差异(P<0.05);S.沉积物,W.岩壁,OS.上覆土壤,WC.风化结皮,DW.滴水,WS.湿石笋表面生物膜,DS.干石笋表面生物膜.
      下载: 导出CSV

      表  2  广西桂林盘龙洞内各样品的理化参数

      Table  2.   Physicochemical parameters of samples in the Panlong Cave in Guilin City, Guangxi

      样品名 Cl-
      (mg/kg)
      SO42-
      (mg/kg)
      K+
      (mg/kg)
      Na+
      (mg/kg)
      Si4+
      (mg/kg)
      Ca/Mg pH TOC(%) C/N 温度(℃)
      PLD1W 2.04±0.13 108.72±12.57 8.64±0.11 7.14±1.85 15.36±0.50 8.21±0.05 9.14±0.03 2.68 82.76 10.80
      PLD1S 1.32±0.08 35.70±0.42 1.98±0.04 8.10±9.62 5.94±7.51 7.47±0.10 8.44±0.04 1.82 11.49 10.80
      PLD2W 2.16±0.11 296.82±2.03 52.50±1.88 6.84±0.44 37.92±5.57 4.08±2.12 8.39±0.03 0.73 5.64 13.60
      PLD2S 0.66±0.14 20.34±0.27 0.78±0.06 6.36±0.70 16.56±2.13 18.9±0.70 8.39±0.01 1.45 7.66 13.60
      PLD3W 3.36±0.62 30.66±9.12 6.54±0.13 12.72±7.02 51.78±5.63 5.06±0.09 9.04±0.01 1.57 122.95 17.10
      PLD3S 10.98±0.11 134.52±1.97 22.44±0.91 6.96±0.71 14.52±1.24 2.10±0.02 8.41±0.04 0.77 7.21 17.10
      PLD4W 2.34±0.14 61.92±0.49 4.44±0.07 7.74±0.92 17.58±1.86 8.10±0.06 8.95±0.02 2.79 246.82 16.40
      PLD4S 24.66±0.94 606.84±20.39 42.06±0.95 8.34±9.34 6.06±7.34 4.50±0.03 7.80±0.01 0.58 6.00 16.40
      PLD5W 6.24±0.08 97.68±9.17 5.58±0.47 8.46±0.46 17.88±2.39 22.13±0.48 8.41±0.04 2.93 50.65 17.40
      PLD5S 23.64±0.17 1 682.04±77.99 148.62±3.90 8.28±0.77 19.32±1.70 8.18±0.01 7.83±0.04 0.38 5.32 17.40
      PLD6W 2.04±0.07 40.68±0.23 5.34±0.06 9.72±2.06 27.84±8.95 30.63±0.57 8.73±0.02 3.67 63.71 17.90
      PLD6S 10.32±1.21 1 374.60±18.00 36.00±1.30 6.48±0.42 14.64±3.97 14.29±0.13 8.15±0.03 0.54 5.37 17.90
      PLD7W 2.82±0.09 26.04±0.31 6.06±6.07 8.10±2.05 21.60±15.73 3.54±0.35 9.19±0.03 5.48 302.34 18.30
      PLD7S 8.70±0.04 63.84±1.52 12.72±0.37 10.02±1.93 33.66±14.77 6.41±0.14 8.62±0.02 4.46 172.81 18.30
      PLD8W 3.24±0.00 18.18±0.90 29.52±23.06 10.68±6.12 19.20±7.74 3.63±0.71 9.05±0.07 1.81 201.72 18.60
      PLD8S 1.62±0.07 14.46±0.34 222.54±88.59 15.48±4.98 28.50±4.40 0.94±0.45 8.46±0.03 3.71 146.12 18.60
      PLD9W 3.36±0.00 21.54±0.37 1.38±0.04 10.68±4.85 21.42±6.90 31.29±12.42 8.73±0.01 2.77 147.06 18.70
      PLD9S 6.18±0.07 68.10±0.20 72.84±83.33 15.06±4.36 28.98±5.75 17.81±10.48 8.14±0.02 5.76 156.64 18.70
      PLD10W 5.22±0.01 68.82±0.20 0.84±0.29 8.52±1.25 22.68±2.85 26.42±1.83 9.26±0.04 4.08 353.98 19.30
      PLD10S 0.54±0.02 34.98±24.30 32.52±0.85 9.42±1.74 22.50±8.22 8.07±0.2 8.57±0.03 0.28 4.02 19.30
      下载: 导出CSV
    • Barton, H. A., Giarrizzo, J. G., Suarez, P., et al., 2014. Microbial Diversity in a Venezuelan Orthoquartzite Cave is Dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group Ⅰ. 1c. Frontiers in Microbiology, 5: 615. https://doi.org/10.3389/fmicb.2014.00615
      Bastida, F., Selevsek, N., Torres, I. F., et al., 2015. Soil Restoration with Organic Amendments: Linking Cellular Functionality and Ecosystem Processes. Scientific Reports, 5: 15550. https://doi.org/10.1038/srep15550
      Bokulich, N. A., Thorngate, J. H., Richardson, P. M., et al., 2014. Microbial Biogeography of Wine Grapes is Conditioned by Cultivar, Vintage, and Climate. Proceedings of the National Academy of Sciences of the United States of America, 111(1): E139-E148. https://doi.org/10.1073/pnas.1317377110
      Bradford, M. A., McCulley, R. L., Crowther, T. W., et al., 2019. Cross-Biome Patterns in Soil Microbial Respiration Predictable from Evolutionary Theory on Thermal Adaptation. Nature Ecology & Evolution, 3(2): 223-231. https://doi.org/10.1038/s31559-018-0771-4
      Cai, Y. F., Zhou, X., Shi, L. M., et al., 2020. Atmospheric Methane Oxidizers are Dominated by Upland Soil Cluster Alpha in 20 Forest Soils of China. Microbial Ecology, 80(4): 859-871. https://doi.org/10.1007/s00248-020-01570-1
      Caporaso, J. G., Kuczynski, J., Stombaugh, J., et al., 2010. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nature Methods, 7(5): 335-336. https://doi.org/10.1038/nmeth.f.303
      Cheeptham, N., Sadoway, T., Rule, D., et al., 2013. Cure from the Cave: Volcanic Cave Actinomycetes and Their Potential in Drug Discovery. International Journal of Speleology, 42(1): 35-47. https://doi.org/10.5038/1827-806x.42.1.5
      Cheng, S. B., Liu, A. S., Cui, S., et al., 2021. Mineralization Process of Permian Karst Bauxite in Western Guangxi. Earth Science, 46(8): 2697-2710(in Chinese with English abstract).
      Cheng, X. Y., Liu, X. Y., Wang, H. M., et al., 2021a. USCγ Dominated Community Composition and Cooccurrence Network of Methanotrophs and Bacteria in Subterranean Karst Caves. Microbiology Spectrum, 9(1): e0082021. https://doi.org/10.1128/spectrum.00820-21
      Cheng, X. Y., Yun, Y., Wang, H. M., et al., 2021b. Contrasting Bacterial Communities and Their Assembly Processes in Karst Soils under Different Land Use. Science of the Total Environment, 751: 142263. https://doi.org/10.1016/j.scitotenv.2020.142263
      Claesson, M., O'Sullivan, Ó., Wang, Q., et al., 2009. Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for Exploring Microbial Community Structures in the Human Distal Intestine. PloS One, 4(8): e6669. https://doi.org/10.1371/journal.pone.0006669
      Davis, M. C., Messina, M. A., Nicolosi, G., et al., 2020. Surface Runoff Alters Cave Microbial Community Structure and Function. PLoS One, 15(5): e0232742. https://doi.org/10.1371/journal.pone.0232742
      Debora, R., Tugba, O., 2016. Carbon Dioxide Sequestration through Microbially-Induced Calcium Carbonate Precipitation Using Ureolytic Aquatic Microorganisms. Abstracts of Papers of the American Chemical Society, 251: 672-680.
      Edgar, R. C., 2010. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics, 26(19): 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
      Edgar, R. C., Haas, B. J., Clemente, J. C., et al., 2011. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics, 27(16): 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
      Fang, B. Z., Salam, N., Han, M. X., et al., 2017. Insights on the Effects of Heat Pretreatment, pH, and Calcium Salts on Isolation of Rare Actinobacteria from Karstic Caves. Frontiers in Microbiology, 8: 1535. https://doi.org/10.3389/fmicb.2017.01535
      Gulecal-Pektas, Y., 2016. Bacterial Diversity and Composition in Oylat Cave (Turkey) with Combined Sanger/Pyrosequencing Approach. Polish Journal of Microbiology, 65: 69-75. https://doi.org/10.5604/17331331.1197277
      Han, Q., Ma, Q., Chen, Y., et al., 2020. Variation in Rhizosphere Microbial Communities and Its Association with the Symbiotic Efficiency of Rhizobia in Soybean. The ISME Journal, 14(8): 1915-1928. https://doi.org/10.1038/s31396-020-0648-9
      He, Z. L., Gentry, T. J., Schadt, C. W., et al., 2007. GeoChip: A Comprehensive Microarray for Investigating Biogeochemical, Ecological and Environmental Processes. The ISME Journal, 1(1): 67-77. https://doi.org/10.1038/ismej.2007.2
      Herbst, F. A., Jehmlich, N., von Bergen, M., et al., 2018. Sulfur-34S and 36S Stable Isotope Labeling of Amino Acids for Quantification (SULAQ34/36) of Proteome Analyses. Microbial Proteomics. Humana Press, New York, 163-174. https://doi.org/10.1007/978-1-4939-8695-8_12
      Ivanova, A. A., Zhelezova, A. D., Chernov, T. I., et al., 2020. Linking Ecology and Systematics of Acidobacteria: Distinct Habitat Preferences of the Acidobacteriia and Blastocatellia in Tundra Soils. PLos One, 15(3): e0230157. https://doi.org/10.1371/journal.pone.0230157
      Jones, D. S., Lyon, E., Macalady, J., 2008. Geomicrobiology of Biovermiculations from the Frasassi Cave System, Italy. Journal of Cave and Karst Studies, 70: 78-93.
      Knief, C., 2015. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on PMOA as Molecular Marker. Frontiers in Microbiology, 6: 1346. https://doi.org/10.3389/fmicb.2015.01346
      Knief, C., Lipski, A., Dunfield, P. F., 2003. Diversity and Activity of Methanotrophic Bacteria in Different Upland Soils. Applied and Environmental Microbiology, 69(11): 6703-6714. https://doi.org/10.1128/aem.69.11.6703-6714.2003
      Kontro, M., Lignell, U., Hirvonen, M. R., et al., 2005. pH Effects on 10 Streptomyces spp. Growth and Sporulation Depend on Nutrients. Letters in Applied Microbiology, 41(1): 32-38. https://doi.org/10.1111/j.1472-765x.2005.01727.x
      Kraft, B., Tegetmeyer, H. E., Sharma, R., et al., 2014. The Environmental Controls That Govern the End Product of Bacterial Nitrate Respiration. Science, 345(6197): 676-679. https://doi.org/10.1126/science.1254070
      Kranjc, A., 2011. The Origin and Evolution of the Term "Karst". Procedia—Social and Behavioral Sciences, 19: 567-570. https://doi.org/10.1016/j.sbspro.2011.05.170
      Kuypers, M. M. M., Marchant, H. K., Kartal, B., et al., 2018. The Microbial Nitrogen-Cycling Network. Nature Reviews Microbiology, 16(5): 263-276. https://doi.org/10.1038/nrmicro.2018.9
      Lavoie, K. H., Winter, A. S., Read, K. J. H., et al., 2017. Comparison of Bacterial Communities from Lava Cave Microbial Mats to Overlying Surface Soils from Lava Beds National Monument, USA. PLoS One, 12(2): e0169339. https://doi.org/10.1371/journal.pone.0169339
      Lewin, G. R., Carlos, C., Chevrette, M. G., et al., 2016. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. Annual Review of Microbiology, 70: 235-254. https://doi.org/10.1146/annurev-micro-102215-095748
      Lian, B., Xiao, L. L., Sun, Q. B., 2017. Ecological Effects of the Microbial Weathering of Silicate Minerals. Acta Geologica Sinica (English Edition), 91(Suppl. 1): 150-152. https://doi.org/10.1111/1755-6724.13231
      Ma, L. Y., Huang, X. P., Wang, H. M., et al., 2021. Microbial Interactions Drive Distinct Taxonomic and Potential Metabolic Responses to Habitats in Karst Cave Ecosystem. Microbiology Spectrum, 9(2): e0115221. https://doi.org/10.1128/Spectrum.01152-21
      Melillo, J. M., Frey, S. D., DeAngelis, K. M., et al., 2017. Long-Term Pattern and Magnitude of Soil Carbon Feedback to the Climate System in a Warming World. Science, 358(6359): 101-105. doi: 10.1126/science.aan2874
      Morris, B. E. L., Henneberger, R., Huber, H., et al., 2013. Microbial Syntrophy: Interaction for the Common Good. FEMS Microbiology Reviews, 37(3): 384-406. https://doi.org/10.1111/1574-6976.12019
      Mozafari, M., Sajjadian, M., Sorninia, Y., et al., 2020. Hydrogeology and Geomorphology of Bisetun Aquifer (NW Iran): Interesting Example of Deep Endokarst. Carbonates and Evaporites, 35(4): 1-19. https://doi.org/10.1007/s13146-020-00636-y
      Nelson, M. B., Martiny, A. C., Martiny, J. B. H., 2016. Global Biogeography of Microbial Nitrogen-Cycling Traits in Soil. Proceedings of the National Academy of Sciences of the United States of America, 113(29): 8033-8040. https://doi.org/10.1073/pnas.1601070113
      Ortiz, M., Legatzki, A., Neilson, J. W., et al., 2014. Making a Living While Starving in the Dark: Metagenomic Insights into the Energy Dynamics of a Carbonate Cave. The ISME Journal, 8(2): 478-491. https://doi.org/10.1038/ismej.2013.159
      Poisot, T., Gravel, D., 2014. When is an Ecological Network Complex? Connectance Drives Degree Distribution and Emerging Network Properties. Peer Journal, 2: e251. https://doi.org/10.7717/peerj.251
      Porter, M. L., Engel, A. S., Kane, T. C., et al., 2009. Productivity-Diversity Relationships from Chemolithoautotrophically Based Sulfidic Karst Systems. International Journal of Speleology, 38: 27-40. https://doi.org/10.5038/1827-806x.38.1.4
      Pratscher, J., Vollmers, J., Wiegand, S., et al., 2018. Unravelling the Identity, Metabolic Potential and Global Biogeography of the Atmospheric Methane-Oxidizing Upland Soil Cluster α. Environmental Microbiology, 20(3): 1016-1029. https://doi.org/10.1111/1462-2920.14036
      Proctor, L. M., 1997. Nitrogen-Fixing, Photosynthetic, Anaerobic Bacteria Associated with Pelagic Copepods. Aquatic Microbial Ecology, 12: 105-113. https://doi.org/10.3354/ame012105
      Pu, G. Z., Lü, Y. N., Dong, L. N., et al., 2019. Profiling the Bacterial Diversity in a Typical Karst Tiankeng of China. Biomolecules, 9(5): 187. https://doi.org/10.3390/biom9050187
      Puissant, J., Jones, B., Goodall, T., et al., 2019. The pH Optimum of Soil Exoenzymes Adapt to Long Term Changes in Soil pH. Soil Biology and Biochemistry, 138: 107601. https://doi.org/10.1016/j.soilbio.2019.107601
      Radita, R., Suwanto, A., Kurosawa, N., et al., 2018. Firmicutes is the Predominant Bacteria in Tempeh. International Food Research Journal, 25(6): 2313-2320.
      Reitschuler, C., Spötl, C., Hofmann, K., et al., 2016. Archaeal Distribution in Moonmilk Deposits from Alpine Caves and Their Ecophysiological Potential. Microbial Ecology, 71(3): 686-699. https://doi.org/10.1007/s00248-015-0727-z
      Riquelme, C., Marshall Hathaway, J. J., de L N Enes Dapkevicius, M., et al., 2015. Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions. Frontiers in Microbiology, 6: 1342. https://doi.org/10.3389/fmicb.2015.01342
      Sauro, F., Mecchia, M., Tringham, M., et al., 2020. Speleogenesis of the World's Longest Cave in Hybrid Arenites (Krem Puri, Meghalaya, India). Geomorphology, 359: 107160. https://doi.org/10.1016/j.geomorph.2020.107160
      Smit, E., Leeflang, P., Gommans, S., et al., 2001. Diversity and Seasonal Fluctuations of the Dominant Members of the Bacterial Soil Community in a Wheat Field as Determined by Cultivation and Molecular Methods. Applied and Environmental Microbiology, 67(5): 2284-2291. https://doi.org/10.1128/aem.67.5.2284-2291.2001
      Sun, X. L., Xu, Z. H., Xie, J. Y., et al., 2022. Bacillus velezensis Stimulates Resident Rhizosphere Pseudomonas stutzeri for Plant Health through Metabolic Interactions. The ISME Journal, 16(3): 774-787. https://doi.org/10.1038/s31396-021-01125-3
      Tang, K., Baskaran, V., Nemati, M., 2009. Bacteria of the Sulphur Cycle: An Overview of Microbiology, Biokinetics and Their Role in Petroleum and Mining Industries. Biochemical Engineering Journal, 44(1): 73-94. https://doi.org/10.1016/j.bej.2008.12.011
      Tetu, S. G., Breakwell, K., Elbourne, L. D. H., et al., 2013. Life in the Dark: Metagenomic Evidence that a Microbial Slime Community is Driven by Inorganic Nitrogen Metabolism. The ISME Journal, 7(6): 1227-1236. https://doi.org/10.1038/ismej.2013.14
      Veress, M. J., 2020. Karst Types and Their Karstification. Journal of Earth Science, 31(3): 621-634. https://doi.org/10.1007/s12583-020-1306-x
      Wang, Q., Zhang, Z. H., Du, R., et al., 2019. Richness of Plant Communities Plays a Larger Role Than Climate in Determining Responses of Species Richness to Climate Change. Journal of Ecology, 107: 1944-1955. https://doi.org/10.1111/1365-2745.13148
      Wang, W. F., Ma, Y. T., Ma, X., et al., 2012. Diversity and Seasonal Dynamics of Airborne Bacteria in the Mogao Grottoes, Dunhuang, China. Aerobiologia, 28(1): 27-38. https://doi.org/10.1007/s10453-011-9208-0
      Wang, X. Y., He, T. H., Gen, S. Y., et al., 2020. Soil Properties and Agricultural Practices Shape Microbial Communities in Flooded and Rainfed Croplands. Applied Soil Ecology, 147: 103449. https://doi.org/10.1016/j.apsoil.2019.103449
      Yang, S. H., Ahn, H., Kim, B. S., et al., 2017. Comparison of Bacterial Communities in Leachate from Decomposing Bovine Carcasses. Asian-Australasian Journal of Animal Sciences, 30(11): 1660-1666. https://doi.org/10.5713/ ajas.17.0553 doi: 10.5713/ajas.17.0553
      Yang, Y., Li, T., Wang, Y. Q., et al., 2021. Linkage between Soil Ectoenzyme Stoichiometry Ratios and Microbial Diversity Following the Conversion of Cropland into Grassland. Agriculture, Ecosystems & Environment, 314: 107418. https://doi.org/10.1016/j.agee.2021.107418
      Yun, Y. A., Wang, H. M., Man, B. Y., et al., 2016. The Relationship between pH and Bacterial Communities in a Single Karst Ecosystem and Its Implication for Soil Acidification. Frontiers in Microbiology, 7: 1955. https://doi.org/10.3389/fmicb.2016.01955
      Yun, Y. A., Wang, W. Q., Wang, H. M., et al., 2018. Seasonal Variation of Bacterial Community and Their Functional Diversity in Drip Water from a Karst Cave. Chinese Science Bulletin, 63(36): 3932-3944. https://doi.org/10.1360/n972018-00627
      Yun, Y. A., Xiang, X., Wang, H. M., et al., 2016. Five-Year Monitoring of Bacterial Communities in Dripping Water from the Heshang Cave in Central China: Implication for Paleoclimate Reconstruction and Ecological Functions. Geomicrobiology Journal, 33(7): 1-11. https://doi.org/10.1080/01490451.2015.1062062
      Zelezniak, A., Andrejev, S., Ponomarova, O., et al., 2015. Metabolic Dependencies Drive Species Co-Occurrence in Diverse Microbial Communities. Proceedings of the National Academy of Sciences of the United States of America, 112(20): 6449-6454. https://doi.org/10.1073/pnas.1421834112
      Zeng, L. L., Tian, J. Q., Chen, H., et al., 2019. Changes in Methane Oxidation Ability and Methanotrophic Community Composition across Different Climatic Zones. Journal of Soils and Sediments, 19(2): 533-543. https://doi.org/10.1007/s11368-018-2069-1
      Zhang, Y., Yang, Q. S., Ling, J., et al., 2021. The Diversity of Alkane-Degrading Bacterial Communities in Seagrass Ecosystem of the South China Sea. Ecotoxicology, 30: 1799-1807. https://doi.org/10.1007/s10646-021-02450-1
      Zhao, R., Wang, H. M., Cheng, X. Y., et al., 2018. Upland Soil Cluster γ Dominates the Methanotroph Communities in the Karst Heshang Cave. FEMS Microbiology Ecology, 94(12): fiy192. https://doi.org/10.1093/femsec/fiy192
      Zhu, H. Z., Zhang, Z. F., Zhou, N., et al., 2019. Diversity, Distribution and Co-Occurrence Patterns of Bacterial Communities in a Karst Cave System. Frontiers in Microbiology, 10: 1726. https://doi.org/10.3389/fmicb.2019.01726
      Zhu, H. Z., Zhang, Z. F., Zhou, N., et al., 2021. Bacteria and Metabolic Potential in Karst Caves Revealed by Intensive Bacterial Cultivation and Genome Assembly. Applied and Environmental Microbiology, 87(6): e02440-e02420. https://doi.org/10.1128/aem.02440-20
      程顺波, 刘阿睢, 崔森, 等, 2021. 桂西二叠纪喀斯特型铝土矿地质成矿过程. 地球科学, 46(8): 2697-2710. doi: 10.3799/dqkx.2020.295
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  248
    • HTML全文浏览量:  265
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-12-24
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回