• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海中建盆地天然气水合物富集特征与控制因素

    李林 王彬 孙鲁一 王兆旗 鲁银涛 杨涛涛 钱进 王秀娟

    李林, 王彬, 孙鲁一, 王兆旗, 鲁银涛, 杨涛涛, 钱进, 王秀娟, 2023. 南海中建盆地天然气水合物富集特征与控制因素. 地球科学, 48(12): 4628-4640. doi: 10.3799/dqkx.2022.072
    引用本文: 李林, 王彬, 孙鲁一, 王兆旗, 鲁银涛, 杨涛涛, 钱进, 王秀娟, 2023. 南海中建盆地天然气水合物富集特征与控制因素. 地球科学, 48(12): 4628-4640. doi: 10.3799/dqkx.2022.072
    Li Lin, Wang Bin, Sun Luyi, Wang Zhaoqi, Lu Yintao, Yang Taotao, Qian Jin, Wang Xiujuan, 2023. Characteristics and Controlling Factors of Concentrated Gas Hydrate Occurrence in Zhongjian Basin, South China Sea. Earth Science, 48(12): 4628-4640. doi: 10.3799/dqkx.2022.072
    Citation: Li Lin, Wang Bin, Sun Luyi, Wang Zhaoqi, Lu Yintao, Yang Taotao, Qian Jin, Wang Xiujuan, 2023. Characteristics and Controlling Factors of Concentrated Gas Hydrate Occurrence in Zhongjian Basin, South China Sea. Earth Science, 48(12): 4628-4640. doi: 10.3799/dqkx.2022.072

    南海中建盆地天然气水合物富集特征与控制因素

    doi: 10.3799/dqkx.2022.072
    基金项目: 

    国家自然科学基金项目 42076219

    国家自然科学基金项目 92055211

    国家自然科学基金项目 42006067

    中国石油天然气股份有限公司科技开发项目 2019B-4909

    详细信息
      作者简介:

      李林(1970-),男,高级工程师,主要从事深水油气勘探与资源评价.ORCID:0000-0002-6758-611X,E-mail:lilin_nf@cnpc.com.cn

      通讯作者:

      王秀娟,ORCID:0000-0003-1144-8698.E-mail:wangxiujuan@ouc.edu.cn

    • 中图分类号: P618

    Characteristics and Controlling Factors of Concentrated Gas Hydrate Occurrence in Zhongjian Basin, South China Sea

    • 摘要: 寻找与识别高饱和度天然气水合物富集层是当前海域天然气水合物商业性开采的重点.通过对南海中建盆地局部三维地震资料开展宽频重处理和波阻抗反演,结合全区三维地震的精细解释、属性分析和稳定带计算,剖析中建盆地BSR(bottom simulating reflector)反射特征和天然气水合物富集程度.研究发现:(1)研究区BSR特征与南海北部钻探区略微不同,主要分布在半深海细粒沉积物,分布广且连续,当断层到达水合物稳定带处时,BSR振幅强且连续;(2)天然气水合物层饱和度约30%~40%,局部较高,富集程度为中等饱和度;(3)受沉积与构造活动影响,水合物富集层位于BSR上部不同地层深度,断层控制着水合物分布.

       

    • 图  1  南海北部水合物分布区(a)及中建盆地海底发育的麻坑构造及BSR分布(b)

      Fig.  1.  The gas hydrate distribution zones in the northern slope of South China Sea (a) and the pockmarks and BSR distribution in the Zhongjian basin (b)

      图  2  常规处理(a)与宽频重处理剖面(b)BSR特征对比及其反演的波阻抗剖面(c)(位置见图 1b)

      Fig.  2.  The conventional (a) and broadband reprocessed (b) seismic profiles showing the characteristics of BSR and the inverted acoustic impedance (c) (location shown in Fig. 1b)

      图  3  不同位置BSR反射特征及其与断层关系(位置见图 1b)

      Fig.  3.  The characteristic of BSR at different locations and their relationship with faults (location shown in Fig. 1b)

      图  4  沿稳定带底界和强反射振幅上下20 ms时窗提取最大振幅与均方根振幅

      a.稳定带底界面最大振幅属性地温梯度: 55 ℃/km; b.稳定带底界面均方根振幅属性地温梯度: 55 ℃/km; c.T1界面最大振幅属性; d.T1界面均方根振幅属性

      Fig.  4.  The maximum and root mean square amplitudes along the base of gas hydrate stability zone and high amplitude spanning time window up and down 20 ms

      图  5  研究区孔隙度随饱和水层的波阻抗交会图及随深度变化

      Fig.  5.  Porosity calculated from the crossplot between acoustic impedance and porosity of water-saturated sediment and porosity versus depth below the seafloor

      图  6  假设水合物胶结沉积物颗粒,利用循环迭代与泥砂与碳酸钙估算水合物饱和度(位置见图 1b)

      Fig.  6.  Gas hydrate saturation estimated from iterative inversion based on clay-sand and carbonate models assuming gas hydrate cements sediment particles (location shown in Fig. 1b)

      图  7  地震属性与相干属性刻画的断裂体系和BSR关系及其模式图(位置见图 1b)

      Fig.  7.  The relationship and schematic model between faults and BSR identified from seismic and coherence attributes (location shown in Fig. 1b)

      表  1  中建盆地与南海北部钻探区BSR识别及分布特征对比

      Table  1.   The characteristics of BSR and its distribution between Zhongjian basin and the gas hydrate drilling area in the northern South China Sea

      区域 BSR反射特征 分布特征 储层条件 主要参考文献
      南海北部水合物钻探区 珠江口盆地 不连续-半连续的强振幅反射 BSR多分布在气烟囱构造上方,部分BSR分布受断层控制 细粒泥质粉砂质沉积物,局部含有孔虫砂沉积 Jin et al.(2020);
      杨胜雄等(2017);
      王秀娟等(2021)
      台西南盆地 上拱和不连续的弱-中等强度振幅反射 BSR分布在气烟囱构造上方 细粒泥质粉砂质沉积物 Wang et al.(2018);
      王秀娟等(2021)
      琼东南盆地 上拱和不连续的弱-中等强度振幅反射 BSR分布在气烟囱构造上方,部分BSR分布受断层控制 多期MTD沉积,局部为浊积扇沉积 Liang et al.(2019);
      Ye et al.(2019);
      王秀娟等(2021)
      中建
      盆地
      连续的中等-强振幅反射;
      连续的弱-中等振幅反射;
      局部的弱振幅反射
      BSR分布与断层关系紧密,局部断层穿透BSR 细粒泥质粉砂质沉积物,局部含钙质沉积物 Lu et al.(2017)
      下载: 导出CSV
    • Boswell, R., Shipp, C., Reichel, T., et al., 2016. Prospecting for Marine Gas Hydrate Resources. Interpretation, 4(1): SA13-SA24. https://doi.org/10.1190/int-2015-0036.1
      Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280
      Chen, F., Su, X., Lu, H. F., et al., 2013. Relations between Biogenic Component (Foraminifera) and Highly Saturated Gas Hydrates Distribution from Shenhu Area, Northern South China Sea. Earth Science, 38(5): 907-915(in Chinese with English abstract).
      Collett, T. S., Riedel, M., Cochran, J. R., et al., 2008. Indian Continental Margin Gas Hydrate Prospects Results of the Indian National Gas Hydrate Program (NGHP) Expedition 01. Proceedings of the 6th International Conference on Gas Hydrates. Vancouver, British Columbia, Canada. https://doi.org/10.7916/d8-nf9w-cz91
      Ding, W. W., 2021. Continental Margin Dynamics of South China Sea: From Continental Break-up to Seafloor Spreading. Earth Science, 46(3): 790-800(in Chinese with English abstract).
      Flower, M., Tamaki, K., Hoang, N., 1998. Mantle Extrusion: A Model for Dispersed Volcanism and DUPAL-Like Asthenosphere in East Asia and the Western Pacific. In: Flower, M. F. J., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Washington, D. C., 67-88. https://doi.org/10.1029/gd027p0067
      Gao, H. F., Wang, Y. T., Guo, L. H., 2007. Petroleum Geological Conditions and Prospects in the Zhongjiannan Basin in the Western South China Sea. Geology in China, 34(4): 592-598(in Chinese with English abstract).
      Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/s1367-9120(01)00069-4
      Hein, J. R., Scholl, D. W., Barron, J. A., et al., 1978. Diagenesis of Late Cenozoic Diatomaceous Deposits and Formation of the Bottom Simulating Reflector in the Southern Bering Sea. Sedimentology, 25(2): 155-181. doi: 10.1111/j.1365-3091.1978.tb00307.x
      Hu, G. W., Li, C. F., Ye, Y. G., et al., 2014. Observation of Gas Hydrate Distribution in Sediment Pore Space. Chinese Journal of Geophysics, 57(5): 1675-1682(in Chinese with English abstract).
      Jin, J. P., Wang, X. J., Guo, Y. Q., et al., 2020. Geological Controls on the Occurrence of Recently Formed Highly Concentrated Gas Hydrate Accumulations in the Shenhu Area, South China Sea. Marine and Petroleum Geology, 116: 104294. https://doi.org/10.1016/j.marpetgeo.2020.104294
      Kang, D. J., Liang, J. Q., Kuang, Z. G., et al., 2018. Application of Elemental Capture Spectroscopy Logging in Hydrate Reservoir Evaluation in the Shenhu Sea Area. Natural Gas Industry, 38(12): 54-60(in Chinese with English abstract).
      Keller, M. A., Isaacs, C. M., 1985. An Evaluation of Temperature Scales for Silica Diagenesis in Diatomaceous Sequences Including a New Approach Based on the Miocene Monterey Formation, California. Geo-Marine Letters, 5(1): 31-35. https://doi.org/10.1007/bf02629794
      Lai, H. F., Fang, Y. X., Kuang, Z. G., et al., 2021. Geochemistry, Origin and Accumulation of Natural Gas Hydrates in the Qiongdongnan Basin, South China Sea: Implications from Site GMGS5-W08. Marine and Petroleum Geology, 123: 104774. https://doi.org/10.1016/j.marpetgeo.2020.104774
      Lee, G. H., Kim, H. J., Jou, H. T., et al., 2003. Opal-A/Opal-CT Phase Boundary Inferred from Bottom-Simulating Reflectors in the Southern South Korea Plateau, East Sea (Sea of Japan). Geophysical Research Letters, 30(24): 2238. https://doi.org/10.1029/2003gl018670
      Li, F. C., Sun, Z., Yang, H. F., et al., 2020. Continental Interior and Edge Breakup at Convergent Margins Induced by Subduction Direction Reversal: A Numerical Modeling Study Applied to the South China Sea Margin. Tectonics, 39(11): e2020TC006409. https://doi.org/10.1029/2020tc006409
      Li, J. F., Ye, J. L., Qin, X. W., et al., 2018. The First Offshore Natural Gas Hydrate Production Test in South China Sea. China Geology, 1(1): 5-16. https://doi.org/10.31035/cg2018003
      Li, L., Wang, B., Lei, C., et al., 2021. Tectonic Framework in the Xisha Area and Its Differential Evolution. Earth Science, 46(9): 3321-3337(in Chinese with English abstract).
      Li, W., Cook, A., Daigle, H., et al., 2019. Factors Controlling Short-Range Methane Migration of Gas Hydrate Accumulations in Thin Coarse-Grained Layers. Geochemistry, Geophysics, Geosystems, 20(8): 3985-4000. https://doi.org/10.1029/2019gc008405
      Liang, J. Q., Zhang, W., Lu, J., et al., 2019. Geological Occurrence and Accumulation Mechanism of Natural Gas Hydrates in the Eastern Qiongdongnan Basin of the South China Sea: Insights from Site GMGS5-W9-2018. Marine Geology, 418: 106042. https://doi.org/10.1016/j.margeo.2019.106042
      Liu, J., Yang, R., Zhang, J. H., et al., 2019. Gas Hydrate Accumulation Conditions in the Huaguang Depression of Qiongdongnan Basin and Prediction of Favorable Zones. Marine Geology & Quaternary Geology, 39(1): 134-142(in Chinese with English abstract).
      Lu, Y. T., Luan, X. W., Lyu, F. L., et al., 2017. Seismic Evidence and Formation Mechanism of Gas Hydrates in the Zhongjiannan Basin, Western Margin of the South China Sea. Marine and Petroleum Geology, 84: 274-288. https://doi.org/10.1016/j.marpetgeo.2017.04.005
      Luan, X. W., Wang, J., Liu, H., et al., 2021. A Discussion on Tethys in Northern Margin of South China Sea. Earth Science, 46(3): 866-884(in Chinese with English abstract).
      Qian, J., Wang, X. J., Collett, T. S., et al., 2018. Downhole Log Evidence for the Coexistence of Structure II Gas Hydrate and Free Gas below the Bottom Simulating Reflector in the South China Sea. Marine and Petroleum Geology, 98: 662-674. https://doi.org/10.1016/j.marpetgeo.2018.09.024
      Sloan, E. D., Koh, C. A., 2017. Clathrate Hydrates of Natural Gases(3rd Edition). CRC Press, Boca Raton, America, 10-18. https://doi.org/10.1201/9781420008494
      Sun, Q. L., Wu, S. G., Cartwright, J., et al., 2013. Focused Fluid Flow Systems of the Zhongjiannan Basin and Guangle Uplift, South China Sea. Basin Research, 25(1): 97-111. https://doi.org/10.1111/j.1365-2117.2012.00551.x
      Sun, Z., Li, F. C., Lin, J., et al., 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789(in Chinese with English abstract).
      Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin: Special Topic: The South China Sea Ocean Drilling. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      Tréhu, A. M., Ruppel, C., Holland, M., et al., 2006. Gas Hydrates in Marine Sediments: Lessons from Scientific Ocean Drilling. Oceanography, 19(4): 124-142. https://doi.org/10.5670/oceanog.2006.11
      Wang, P. X., Huang, C. Y., Lin, J., et al., 2019. The South China Sea is not a Mini-Atlantic: Plate-Edge Rifting vs. Intra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135
      Wang, X. J., Collett, T. S., Lee, M. W., et al., 2014. Geological Controls on the Occurrence of Gas Hydrate from Core, Downhole Log, and Seismic Data in the Shenhu Area, South China Sea. Marine Geology, 357: 272-292. https://doi.org/10.1016/j.margeo.2014.09.040
      Wang, X. J., Jin, J. P., Guo, Y. Q., et al., 2021. The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038-1057 (in Chinese with English abstract).
      Wang, X. J., Liu, B., Qian, J., et al., 2018. Geophysical Evidence for Gas Hydrate Accumulation Related to Methane Seepage in the Taixinan Basin, South China Sea. Journal of Asian Earth Sciences, 168: 27-37. https://doi.org/10.1016/j.jseaes.2017.11.011
      Wang, X. J., Qian, J., Collett, T. S., et al., 2016. Characterization of Gas Hydrate Distribution Using Conventional 3D Seismic Data in the Pearl River Mouth Basin, South China Sea. Interpretation, 4(1): SA25-SA37. https://doi.org/10.1190/int-2015-0020.1
      Xu, Z. Y., Wang, J., Yao, Y. J., et al., 2021. The Temporal-Spatial Distribution and Deep Structure of the Zhongnan-Liyue Fault Zone in the North of the South China Sea Basin. Earth Science, 46(3): 942-955(in Chinese with English abstract).
      Yang, S. X., Liang, J. Q., Lu, J. A., et al., 2017. New Understandings on Characteristics and Controlling Factors of Gas Hydrate Reservoirs in Shenhu Area on Northern Slope of South China Sea. Earth Science Frontiers, 24(2): 1-14 (in Chinese with English abstract).
      Ye, J. L., Wei, J. G., Liang, J. Q., et al., 2019. Complex Gas Hydrate System in a Gas Chimney, South China Sea. Marine and Petroleum Geology, 104: 29-39. https://doi.org/10.1016/j.marpetgeo.2019.03.023
      Zhang, C. M., Sun, Z., Zhao, M. H., et al., 2022. Crustal Structure and Tectono-Magmatic Evolution of Northern South China Sea. Earth Science, 47(7): 2337-2353(in Chinese with English abstract).
      Zhang, G. X., Liang, J. Q., Lu, J. A., et al., 2015. Geological Features, Controlling Factors and Potential Prospects of the Gas Hydrate Occurrence in the East Part of the Pearl River Mouth Basin, South China Sea. Marine and Petroleum Geology, 67: 356-367. https://doi.org/10.1016/j.marpetgeo.2015.05.021
      陈芳, 苏新, 陆红锋, 等, 2013. 南海神狐海域有孔虫与高饱和度水合物的储存关系. 地球科学, 38(5): 907-915. doi: 10.3799/dqkx.2013.089
      丁巍伟, 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303
      高红芳, 王衍棠, 郭丽华, 2007. 南海西部中建南盆地油气地质条件和勘探前景分析. 中国地质, 34(4): 592-598.
      胡高伟, 李承峰, 业渝光, 等, 2014. 沉积物孔隙空间天然气水合物微观分布观测. 地球物理学报, 57(5): 1675-1682.
      康冬菊, 梁金强, 匡增桂, 等, 2018. 元素俘获能谱测井在神狐海域天然气水合物储层评价中的应用. 天然气工业, 38(12): 54-60.
      李林, 王彬, 雷超, 等, 2021. 西沙海域盆地构造格局及其差异演化过程分析. 地球科学, 46(9): 3321-3337. doi: 10.3799/dqkx.2021.098
      刘杰, 杨睿, 张金华, 等, 2019. 琼东南盆地华光凹陷天然气水合物成藏条件及有利区带预测. 海洋地质与第四纪地质, 39(1): 134-142.
      栾锡武, 王嘉, 刘鸿, 等, 2021. 关于南海北部特提斯的讨论. 地球科学, 46(3): 866-884. doi: 10.3799/dqkx.2020.332
      孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371
      王秀娟, 靳佳澎, 郭依群, 等, 2021. 南海北部天然气水合物富集特征及定量评价. 地球科学, 46(3): 1038-1057. doi: 10.3799/dqkx.2020.321
      徐子英, 汪俊, 姚永坚, 等, 2021. 中南-礼乐断裂带在南海海盆北部的时空展布与深部结构. 地球科学, 46(3): 942-955. doi: 10.3799/dqkx.2020.400
      杨胜雄, 梁金强, 陆敬安, 等, 2017. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识. 地学前缘, 24(4): 1-14.
      张翠梅, 孙珍, 赵明辉, 等, 2022. 南海北部陆缘结构及构造-岩浆演化. 地球科学, 47(7): 2337-2353. doi: 10.3799/dqkx.2021.208
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  287
    • HTML全文浏览量:  604
    • PDF下载量:  52
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-24
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回