• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    扬子西缘新元古代盐边群火山岩年代学及大地构造背景

    刘佩雯 张继彪 丁孝忠 刘燕学

    刘佩雯, 张继彪, 丁孝忠, 刘燕学, 2023. 扬子西缘新元古代盐边群火山岩年代学及大地构造背景. 地球科学, 48(12): 4508-4526. doi: 10.3799/dqkx.2022.077
    引用本文: 刘佩雯, 张继彪, 丁孝忠, 刘燕学, 2023. 扬子西缘新元古代盐边群火山岩年代学及大地构造背景. 地球科学, 48(12): 4508-4526. doi: 10.3799/dqkx.2022.077
    Liu Peiwen, Zhang Jibiao, Ding Xiaozhong, Liu Yanxue, 2023. Geochronology and Tectonic Significance of Neoproterozoic Volcanic Rocks from Yanbian Group in Western Yangtze Block. Earth Science, 48(12): 4508-4526. doi: 10.3799/dqkx.2022.077
    Citation: Liu Peiwen, Zhang Jibiao, Ding Xiaozhong, Liu Yanxue, 2023. Geochronology and Tectonic Significance of Neoproterozoic Volcanic Rocks from Yanbian Group in Western Yangtze Block. Earth Science, 48(12): 4508-4526. doi: 10.3799/dqkx.2022.077

    扬子西缘新元古代盐边群火山岩年代学及大地构造背景

    doi: 10.3799/dqkx.2022.077
    基金项目: 

    中国地质调查局地质调查项目 DD20221645

    详细信息
      作者简介:

      刘佩雯(1993-),女,硕士,主要从事大地构造学研究. ORCID: 0000-0003-1561-9706. E-mail: 610624735@qq.com

      通讯作者:

      丁孝忠,研究员,从事区域地质编图研究. E-mail: xiaozhongding@sina.com

    • 中图分类号: P58

    Geochronology and Tectonic Significance of Neoproterozoic Volcanic Rocks from Yanbian Group in Western Yangtze Block

    • 摘要: 扬子板块西缘新元古代盐边群广泛发育一系列火山岩,其年代学和构造背景对理解扬子板块前寒武纪构造演化具有重要意义.本文获得盐边群乍古组、小坪组、渔门组和荒田组火山岩LA-ICP-MS锆石U-Pb年龄分别为934±5 Ma、863±4 Ma、843±7 Ma和797±9 Ma,精确限制了盐边群时代为934~797 Ma.荒田组玄武岩属于钙碱性N-MORB(正常型洋中脊玄武岩)系列,轻稀土相对亏损、重稀土相对富集,具有中等程度的Nb、Ta负异常和轻微的Ti负异常,εNdt)值为3.8~4.9.荒田组玄武岩来自以石榴子石和尖晶石为稳定区的地幔橄榄岩10%~20%的部分熔融.构造背景判别图解指示荒田组玄武岩形成于活动大陆边缘弧前盆地.结合前人的研究成果,认为扬子西缘新元古代早-中期存在弧-盆地系统,扬子板块新元古代构造动力学背景应为活动大陆边缘洋-陆俯冲,板块俯冲开始的时间不晚于934 Ma.

       

    • 图  1  扬子板块西缘元古代地层分布图(据耿元生等, 2017修改)

      Fig.  1.  Geological map of the distribution of Proterozoic strata in western Yangtze block (modified from Geng et al., 2017)

      图  2  盐边群区域地质简图及采样位置

      Fig.  2.  Simplified geological map and sampling position of the Yanbian Group

      图  3  盐边群火山岩野外和镜下照片.(a, b)荒田组玄武岩及镜下特征;(c, d)渔门组晶屑凝灰岩及镜下特征;(e, f)小坪组火山角砾岩及镜下特征;(g, h)乍古组凝灰岩及镜下特征

      Fig.  3.  Field and microscopic photos of the volcanic rocks. Microscopic photo of basalts from Huangtian Formation (a, b), microscopic photos of tuff from Yumen Formation (c, d), microscopic photo of volcanic breccia from Xiaoping Formation (e, f), microscopic photos of tuff from Zhagu Formation (g, h)

      图  4  盐边群火山岩样品锆石CL图像

      Fig.  4.  Zircon CL images of volcanic rocks from the Yanbian Group

      图  5  盐边群火山岩锆石U-Pb年龄谐和图

      Fig.  5.  Zircon U-Pb concordia diagrams of volcanic rocks from the Yanbian Group

      图  6  荒田组玄武岩Nb/Y-Zr/TiO2×0.000 1(Winchester and Floyd, 1976)(a)和Zr/Y-Th/Yb图解(b)

      Fig.  6.  Nb/Y-Zr/TiO2×0.000 1(Winchester and Floyd, 1976) (a) and Zr/Y-Th/Yb (b) diagrams of the Huangtian basalts

      图  7  荒田组玄武岩稀土元素球粒陨石标准化图和微量元素原始地幔标准化图

      据Sun and McDonough(1989);IAB数据来自George et al.2003);Central Lau弧后盆地玄武岩数据来自Tian et al.2008

      Fig.  7.  Chondrite-normalized REE diagrams and primitive mantle-normalized incompatible trace element multi-element plot for the Huangtian basalts

      图  8  荒田组玄武岩εNd(t)-age图解

      Fig.  8.  Plot of εNd(t)-age from the basalts in the Huangtian Formation

      图  9  扬子西缘荒田组玄武岩哈克图解

      Fig.  9.  Harker diagrams of Huangtian basalts in the western Yangtze block

      图  10  扬子西缘荒田玄武岩Zr-Ti(a, Pearce and Cann, 1973)、Ba/Nb-La/Nb(b, Fan et al., 2004)、εNd(t)-Nb/Y(c, Zhang et al., 2013)和Sm-Sm/Yb(d, Aldanmaz et al., 2000)图解

      Fig.  10.  Zr-Ti (a, Pearce and Cann, 1973), Ba/Nb-La/Nb (b, Fan et al., 2004), εNd(t)-Nb/Y (c, Zhang et al., 2013) and Sm-Sm/Yb (d, Aldanmaz et al., 2000) diagrams for the Huangtian basalts

      图  11  扬子板块西缘新元古代构造演化模式

      Fig.  11.  Tectonic evolution model for the western Yangtze block in Neoproterozoic

      表  1  盐边群火山岩锆石U-Pb定年结果

      Table  1.   Zircon U-Pb analyses of volcanic rocks in Yanbian Group

      测点 U Th 同位素比值 同位素年龄(Ma)
      207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 206Pb/238U Th/U
      荒田组
      1.1 108 102 0.069 30 0.001 83 1.260 26 0.040 73 0.131 13 0.001 64 909 53 794 9.3 0.9
      2.1 100 105 0.067 12 0.001 65 1.113 54 0.032 95 0.120 26 0.002 22 842 50 732 12.8 1.0
      3.1 56 34 0.092 15 0.003 38 1.784 00 0.070 06 0.140 44 0.002 44 1472 69 847 13.8 0.6
      4.1 57 58 0.546 17 0.039 80 590.9 46 219.0 47 5.556 45 2.047 31 4370 106 1212 2082.4 1.0
      5.1 99 66 0.068 54 0.002 76 1.230 10 0.037 46 0.130 84 0.002 40 887 83 792 13.7 0.6
      6.1 105 64 0.117 56 0.003 03 2.093 55 0.057 12 0.129 32 0.002 28 1920 46 784 13.1 0.6
      7.1 75 79 0.067 82 0.002 03 1.229 55 0.035 34 0.131 93 0.001 65 864 62 798 9.4 1.0
      8.1 431 347 0.072 23 0.001 54 1.313 18 0.040 03 0.131 37 0.002 05 992 42 795 11.7 0.8
      9.1 42 20 0.063 10 0.002 38 1.158 76 0.041 49 0.133 72 0.002 34 722 81 809 13.3 0.4
      10.1 109 72 0.070 13 0.001 74 1.433 88 0.037 38 0.148 32 0.002 34 931 51 891 13.1 0.6
      11.1 60 29 0.066 85 0.001 78 1.210 91 0.032 29 0.131 78 0.002 07 833 55 798 11.7 0.4
      渔门组
      1.1 65 42 0.064 85 0.002 35 1.208 45 0.040 82 0.135 82 0.001 91 768 71 821 10.8 0.6
      2.1 676 683 0.047 40 0.003 43 0.013 89 0.001 04 0.002 13 0.269 92 77 157 13 0.3 1.0
      3.1 181 186 0.066 90 0.001 18 1.289 93 0.024 89 0.139 96 0.001 41 835 37 844 8.0 1.0
      4.1 172 305 0.066 07 0.001 16 1.250 43 0.030 14 0.137 63 0.002 79 809 41 831 15.8 1.7
      5.1 180 223 0.115 31 0.008 37 2.305 01 0.193 90 0.140 14 0.002 49 1884 131 845 14.1 1.2
      6.1 283 420 0.081 19 0.003 19 1.344 46 0.066 42 0.119 24 0.002 32 1227 77 726 13.3 1.4
      7.1 263 267 0.067 96 0.001 06 1.309 88 0.031 13 0.139 58 0.002 07 877 32 842 11.7 1.0
      8.1 84 68 0.067 05 0.001 54 1.302 43 0.031 98 0.141 05 0.001 68 838 48 850 9.4 0.8
      9.1 2421 710 0.053 06 0.000 85 0.182 99 0.003 23 0.025 05 0.000 29 331 37 159 1.8 0.3
      10.1 246 566 0.066 49 0.001 28 1.274 85 0.031 48 0.139 01 0.002 13 821 36 839 12.1 2.3
      11.1 224 332 0.070 39 0.001 48 1.197 34 0.037 48 0.123 23 0.002 77 938 43 749 15.9 1.4
      12.1 247 118 0.069 02 0.001 22 1.356 71 0.024 99 0.142 70 0.001 68 899 68 859 9.4 0.4
      13.1 274 510 0.068 86 0.001 22 1.052 51 0.032 54 0.110 73 0.002 75 894 37 677 15.9 1.8
      14.1 92 133 0.066 50 0.001 55 1.286 25 0.035 70 0.140 05 0.002 02 833 49 844 11.4 1.4
      15.1 132 181 0.071 10 0.001 53 1.369 62 0.058 78 0.138 70 0.004 10 961 44 837 23.2 1.3
      16.1 541 691 0.066 67 0.001 28 0.914 07 0.023 79 0.099 39 0.001 99 827 45 610 11.7 1.2
      17.1 128 113 0.068 66 0.001 50 1.321 36 0.034 49 0.139 41 0.002 13 888 78 841 12.1 0.8
      小坪组
      1.1 103 100 0.070 21 0.001 64 1.376 30 0.033 14 0.142 40 0.001 80 1000 48.15 858 10.1 0.9
      2.1 63 301 0.070 99 0.002 08 1.410 39 0.047 68 0.144 35 0.002 89 966 60.3375 869 16.2 4.7
      3.1 277 202 0.070 22 0.001 04 1.408 74 0.029 41 0.145 04 0.002 34 1000 29.6275 875 13.2 0.7
      4.1 230 81 0.067 67 0.001 10 1.342 26 0.029 83 0.143 87 0.002 24 858 29.475 865 12.6 0.4
      5.1 296 260 0.069 34 0.000 89 1.395 45 0.026 64 0.145 08 0.002 22 909 58.335 877 12.5 0.8
      6.1 154 179 0.068 84 0.001 51 1.389 46 0.038 17 0.146 96 0.002 42 894 45.5275 879 13.6 1.1
      7.1 75 65 0.070 27 0.001 87 1.388 28 0.042 44 0.143 81 0.001 96 936 55.555 861 11.0 0.8
      8.1 271 204 0.071 01 0.001 00 1.418 88 0.025 71 0.144 92 0.001 66 966 29.6325 870 9.4 0.7
      9.1 75 69 0.069 96 0.002 24 1.378 57 0.044 58 0.142 53 0.001 64 927 65.28 861 9.2 0.9
      10.1 246 163 0.069 97 0.001 49 1.392 59 0.032 90 0.144 45 0.002 10 927 44.4475 869 11.8 0.6
      11.1 238 204 0.072 09 0.001 28 1.429 47 0.027 04 0.143 62 0.001 85 988 39.8175 866 10.4 0.8
      12.1 458 474 0.069 92 0.000 78 1.402 01 0.022 79 0.145 72 0.001 62 927 24.0725 873 9.1 1.0
      13.1 164 96 0.070 62 0.001 75 1.393 88 0.037 67 0.142 15 0.001 45 946 51.8525 861 8.3 0.5
      14.1 43 40 0.072 12 0.003 01 1.416 17 0.059 93 0.142 68 0.002 40 990 85.1875 861 13.5 0.9
      15.1 66 86 0.069 44 0.002 00 1.368 77 0.044 13 0.142 95 0.002 13 922 59.26 860 12.0 1.2
      16.1 242 136 0.069 14 0.001 03 1.389 93 0.028 30 0.145 48 0.001 75 902 63.8925 875 9.8 0.5
      17.1 140 97 0.068 22 0.001 40 1.341 26 0.029 56 0.142 84 0.001 79 875 42.5925 860 10.1 0.6
      18.1 46 46 0.069 25 0.002 35 1.599 66 0.061 47 0.167 81 0.003 01 905 70.375 999 16.6 1.0
      19.1 82 71 0.070 20 0.002 64 1.363 18 0.052 21 0.140 31 0.001 87 1000 77.01 850 10.5 0.8
      20.1 63 69 0.073 19 0.002 86 1.436 84 0.057 01 0.142 03 0.001 87 1020 79.6325 859 10.5 1.0
      21.1 221 149 0.070 17 0.001 30 1.410 68 0.033 18 0.145 19 0.002 64 1000 38.89 878 14.8 0.6
      22.1 332 258 0.068 26 0.001 01 1.335 33 0.025 40 0.141 79 0.001 57 875 33.335 855 8.8 0.7
      23.1 259 148 0.070 23 0.001 16 1.375 13 0.027 27 0.142 82 0.001 72 1000 33.3325 856 9.7 0.5
      24.1 154 74 0.071 36 0.001 52 1.389 02 0.032 35 0.141 21 0.001 35 968 44.445 851 7.6 0.4
      25.1 60 38 0.071 74 0.002 30 1.388 08 0.043 87 0.141 81 0.002 07 988 60.19 851 11.7 0.6
      26.1 180 251 0.072 68 0.001 63 1.439 29 0.045 57 0.143 31 0.002 98 100 45.5275 864 16.8 1.3
      27.1 148 86 0.103 45 0.006 57 2.252 96 0.172 09 0.153 37 0.003 17 927 65.28 919 17.7 0.6
      28.1 243 116 0.233 75 0.028 63 9.479 25 1.937 26 0.211 14 0.015 54 3079 191 1234 82.6 0.4
      乍古组
      1.1 342 272 0.069 84 0.001 04 1.509 12 0.024 95 0.156 46 0.001 24 924 29.6275 937 6.8 0.7
      2.1 203 171 0.102 71 0.005 30 2.226 46 0.125 37 0.155 80 0.001 37 1673 95.21 933 7.6 0.8
      3.1 352 226 0.068 06 0.000 97 1.460 03 0.027 05 0.155 60 0.002 47 872 28.55 932 13.7 0.6
      4.1 211 179 0.070 34 0.001 89 1.505 74 0.039 76 0.155 41 0.001 97 938 54.1675 931 10.7 0.8
      5.1 76 41 0.078 38 0.003 56 1.635 83 0.084 02 0.150 49 0.002 24 1166 89.3475 903 12.3 0.5
      6.1 88 64 0.070 64 0.001 57 1.515 84 0.039 96 0.155 46 0.002 17 946 45.215 931 11.8 0.7
      7.1 257 239 0.070 51 0.001 32 1.509 63 0.029 91 0.155 46 0.002 01 942 37.8075 931 11.5 0.9
      8.1 114 71 0.125 68 0.015 64 4.286 67 1.756 31 0.164 67 0.017 71 2038 221.915 982 98.0 0.6
      9.1 198 149 0.074 38 0.001 55 1.616 83 0.041 23 0.157 40 0.002 28 1053 42.5925 942 12.7 0.7
      10.1 93 67 0.071 70 0.002 75 1.525 39 0.062 82 0.153 86 0.001 80 977 77.78 922 10.0 0.7
      11.1 169 117 0.071 08 0.001 68 1.538 62 0.045 07 0.156 95 0.002 77 961 49.23 939 15.4 0.6
      12.1 72 83 0.068 77 0.002 08 1.479 32 0.043 68 0.156 47 0.002 01 892 62.9625 937 11.2 1.1
      13.1 316 143 0.057 54 0.001 39 0.545 73 0.013 74 0.068 83 0.000 73 522 53.7 429 4.4 0.4
      14.1 256 299 0.074 19 0.002 16 1.599 07 0.044 49 0.156 59 0.001 59 1055 59.2575 937 8.8 1.1
      15.1 100 89 0.068 83 0.001 91 1.484 03 0.042 34 0.156 50 0.001 88 894 57.87 937 10.5 0.8
      16.1 83 83 0.071 20 0.002 08 1.533 31 0.052 41 0.155 95 0.002 73 964 57.4075 934 15.2 1.0
      17.1 191 204 0.072 01 0.001 53 1.547 40 0.039 11 0.155 69 0.002 01 987 43.365 932 11.2 1.1
      18.1 276 248 0.070 72 0.001 25 1.535 37 0.033 52 0.157 24 0.002 19 949 32.41 941 12.2 0.8
      19.1 130 151 0.068 73 0.001 65 1.479 15 0.040 35 0.156 17 0.002 38 900 49.2275 935 13.2 1.1
      注:划掉的数据为误差较大年龄,不参与计算.
      下载: 导出CSV

      表  2  荒田组玄武岩主量、微量和稀土元素分析结果

      Table  2.   Major and trace element data for the volcanic rocks from the Huangtian Formation

      HT-1 HT-2 HT-3 HT-4 HT-5 HT-6 HT-7 HT-1 HT-2 HT-3 HT-4 HT-5 HT-6 HT-7
      SiO2 46.56 46.36 46.32 47.38 48.69 47.57 47.68 Ce 17.70 16.77 13.16 14.32 14.24 17.26 14.33
      Al2O3 14.96 14.66 15.71 13.32 13.12 14.03 13.52 Pr 2.87 2.83 1.91 2.30 2.23 2.71 2.25
      CaO 11.28 10.99 12.67 11.71 10.48 10.61 12.20 Nd 14.80 14.43 9.64 12.18 11.84 13.78 12.17
      FeOT 13.89 13.61 12.26 14.45 13.80 14.08 14.19 Sm 4.84 4.79 2.85 4.05 3.96 4.47 4.11
      K2O 0.24 0.26 0.22 0.22 0.19 0.19 0.27 Eu 1.51 1.54 1.15 1.50 1.39 1.58 1.55
      MgO 6.45 6.81 6.31 6.81 6.58 6.68 6.70 Gd 6.61 6.35 3.57 5.49 5.61 6.13 5.69
      MnO 0.22 0.219 0.23 0.21 0.22 0.22 0.21 Tb 1.11 1.07 0.57 0.92 0.92 1.00 0.94
      Na2O 2.20 2.23 2.62 2.28 3.25 2.84 1.90 Dy 7.37 7.06 3.69 6.11 5.97 6.56 6.18
      P2O5 0.17 0.18 0.19 0.22 0.23 0.22 0.22 Ho 1.45 1.44 0.75 1.22 1.22 1.32 1.27
      TiO2 1.46 1.70 1.16 1.74 1.74 1.72 1.76 Er 3.47 3.36 2.29 3.76 3.79 4.10 3.81
      LOI 1.06 1.12 1.36 0.97 1.04 1.14 0.72 Tm 0.65 0.62 0.31 0.53 0.52 0.57 0.54
      Li 3.81 3.03 3.08 3.19 2.36 2.99 3.34 Yb 4.07 4.01 2.02 3.38 3.38 3.65 3.42
      Be 0.54 0.63 0.43 0.43 0.57 0.55 0.48 Lu 0.61 0.61 0.30 0.50 0.51 0.54 0.52
      Sc 53.25 52.78 47.04 51.40 49.58 51.64 53.12 Hf 2.87 2.74 1.51 2.35 2.44 2.81 2.38
      Ti 10 409 10 365 7 281 10 516 10 333 10 538 10 858 Ta 0.12 0.16 0.09 0.10 0.10 0.13 0.11
      V 382.10 394.21 321.02 397.87 374.28 383.14 404.47 W 0.64 0.51 0.35 0.31 0.33 0.47 0.32
      Cr 190.67 194.38 193.32 222.49 212.83 219.80 227.73 Tl 0.01 0.05 0.01 0.03 0.01 0.01 0.04
      Mn 1 764.9 1 757.5 1 905.2 1 689.2 1 578.9 1 773.7 1 723.8 Pb 2.35 1.95 2.09 1.00 3.78 1.41 1.03
      Co 53.27 46.93 45.71 57.72 45.89 41.40 54.58 Bi 0.02 0.04 0.03 0.02 0.01 0.01 0.02
      Ni 56.93 57.84 69.87 66.46 55.62 54.93 61.03 Th 0.50 0.46 0.64 0.31 0.30 0.53 0.29
      Cu 87.96 77.76 80.93 81.99 52.86 54.59 101.8 U 0.09 0.09 0.22 0.10 0.11 0.17 0.11
      Zn 138.33 119.57 79.16 94.30 93.31 95.65 93.68 Cd 0.16 0.11 0.14 0.17 0.10 0.10 0.15
      Ga 21.25 21.08 17.64 18.41 16.02 18.44 18.65 In 0.12 0.12 0.06 0.09 0.08 0.08 0.09
      Ge 1.81 1.74 1.29 1.62 1.73 1.47 1.70 Sn 0.81 0.77 0.70 1.38 0.81 0.98 0.82
      As 4.91 2.28 0.40 2.89 5.00 0.47 0.41 Sb 0.12 0.23 0.03 0.05 0.03 0.03 0.02
      Rb 2.63 2.18 1.84 2.29 1.09 2.21 4.30 Cs 0.03 0.04 0.04 0.02 0.03 0.04 0.02
      Sr 160.91 160.19 310.79 179.26 229.30 194.96 176.68 La 7.22 7.32 5.18 5.12 5.05 6.48 5.06
      Y 38.42 38.46 20.59 34.08 33.04 36.41 33.51 Ce 18.70 18.77 13.16 14.32 14.24 17.26 14.33
      Zr 70.26 80.88 52.13 80.99 78.78 93.39 79.74 La 5.22 5.32 5.18 5.12 5.05 6.48 5.06
      Ba 110.44 102.42 119.51 121.71 155.35 90.929 62.325 Nb 1.66 1.63 1.36 1.45 1.43 1.91 1.50
      注:主量元素单位为10-2;微量和稀土元素单位为10-6.
      下载: 导出CSV

      表  3  荒田组玄武岩全岩Nd同位素分析结果

      Table  3.   Whole-rock Nd isotopic compositions for basalts from the Huangtian Formation

      样品 t (Ma) Sm Nd 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)i εNd(t) tDM1 (Ma) tDM2 (Ma)
      HT-1 797 2.85 9.64 0.178 65 0.511 802 0.511 609 0.000 002 3.8 1 801 1 165
      HT-2 797 4.05 12.18 0.201 08 0.511 862 0.511 609 0.000 002 4.9 2 868 1 071
      HT-3 797 3.96 11.84 0.202 56 0.511 853 0.511 609 0.000 003 4.8 3 263 1 085
      HT-4 797 4.47 13.78 0.196 33 0.511 831 0.511 609 0.000 002 4.3 2 573 1 120
      HT-5 797 4.12 12.17 0.204 32 0.511 846 0.511 609 0.000 002 4.6 3 841 1 096
      下载: 导出CSV
    • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95. https://doi.org/10.1016/s0377-0273(00)00182-7
      Brewer, T. S., Åhäll, K. I., Menuge, J. F., et al., 2004. Mesoproterozoic Bimodal Volcanism in SW Norway, Evidence for Recurring Pre-Sveconorwegian Continental Margin Tectonism. Precambrian Research, 134(3-4): 249-273. https://doi.org/10.1016/j.precamres.2004.06.003
      Bureau of Geology and Mineral Resources Sichuan Province, 1991. Regional Geology of Sichuan Province. Geology Publishing House, Beijing (in Chinese).
      Chen, W. T., Sun, W. H., Zhou, M. F., et al., 2018. Ca. 1 050 Ma Intra-Continental Rift-Related A-Type Felsic Rocks in the Southwestern Yangtze Block, South China. Precambrian Research, 309: 22-44. https://doi.org/10.1016/j.precamres.2017.02.011
      Cui, X. Z., Wang, J., Wang, X. C., et al., 2021. Early Crustal Evolution of the Yangtze Block: Constraints from Zircon U-Pb-Hf Isotope Systematics of 3.1-1.9 Ga Granitoids in the Cuoke Complex, SW China. Precambrian Research, 357: 106155. https://doi.org/10.1016/j.precamres.2021.106155
      Du, L. L., Geng, Y. S., Yang, C. H., et al., 2005. Geochemistry and SHRIMP U-Pb Zircon Chronology of Basalts from the Yanbian Group in the Western Yangtze Block. Acta Geologica Sinica, 79(6): 805-813(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2005.06.009
      Du, L. L., Guo, J. H., Nutman, A. P., et al., 2014. Implications for Rodinia Reconstructions for the Initiation of Neoproterozoic Subduction at ~860 Ma on the Western Margin of the Yangtze Block: Evidence from the Guandaoshan Pluton. Lithos, (196-197): 67-82. https://doi.org/10.1016/j.lithos.2014.03.002
      Fan, W. M., Guo, F., Wang, Y. J., et al., 2001. Post-Orogenic Bimodal Volcanism along the Sulu Orogenic Belt in Eastern China. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 733-746. https://doi.org/10.1016/s1464-1895(01)00123-5
      Fan, W. M., Guo, F., Wang, Y. J., et al., 2004. Late Mesozoic Volcanism in the Northern Huaiyang Tectono-Magmatic Belt, Central China: Partial Melts from a Lithospheric Mantle with Subducted Continental Crust Relicts beneath the Dabie Orogen? Chemical Geology, 209(1-2): 27-48. https://doi.org/10.1016/j.chemgeo.2004.04.020
      Geng, Y. S., Kuang, H. W., Liu, Y. Q., et al., 2017. Subdivision and Correlation of the Mesoproterozoic Stratigraphy in the Western and Northern Margins of Yangtze Block. Acta Geologica Sinica, 91(10): 2151-2174(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.10.001
      Geng, Y. S., Yang, C. H., Wang, X. S., et al., 2008. Evolution of Metamorphic Basement in Western Margin of Yangtze Craton. China University of Geosciences Press, Beijing(in Chinese).
      George, R., Turner, S., Hawkesworth, C., et al., 2003. Melting Processes and Fluid and Sediment Transport Rates along the Alaska-Aleutian Arc from an Integrated U-Th-Ra-Be Isotope Study. Journal of Geophysical Research: Solid Earth, 108(B5): 2252. https://doi.org/10.1029/2002jb001916
      Greentree, M. R., Li, Z. X., Li, X. H., et al., 2006. Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia. Precambrian Research, 151(1-2): 79-100. https://doi.org/10.1016/j.precamres.2006.08.002
      Guan, J. L., Zheng, L. L., Liu, J. H., et al., 2011. Zircons SHRIMP U-Pb Dating of Diabase from Hekou, Sichuan Province, China and Its Geological Significance. Acta Geologica Sinica, 85(4): 482-490 (in Chinese with English abstract).
      Guo, J. L., Wu, Y. B., Gao, S., et al., 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China: Implications for Late Archean Tectonics. Precambrian Research, 270: 246-266. https://doi.org/10.1016/j.precamres.2015.09.007
      Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2020. U-Pb Zircon Geochronology, Geochemistry, and Sr-Nd-Hf-O Isotopic Study of Middle Neoproterozoic Magmatic Rocks in the Kangdian Rift, South China: Slab Rollback and Backarc Extension at the Northwestern Edge of the Rodinia. Precambrian Research, 347: 105863. https://doi.org/10.1016/j.precamres.2020.105863
      Li, H. K., Zhang, C. L., Yao, C. Y., et al., 2013. U-Pb Zircon Age and Hf Isotope Compositions of Mesoproterozoic Sedimentary Strata on the Western Margin of the Yangtze Massif. Science China Earth Sciences, 56(4): 628-639. https://doi.org/10.1007/s11430-013-4590-9
      Li, Q. W., Zhao, J. H., 2018. The Neoproterozoic High-Mg Dioritic Dikes in South China Formed by High Pressures Fractional Crystallization of Hydrous Basaltic Melts. Precambrian Research, 309: 198-211. doi: 10.1016/j.precamres.2017.04.009
      Li, X. H., 1999. U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and Implications for Rodinia Assembly. Precambrian Research, 97(1-2): 43-57. https://doi.org/10.1016/s0301-9268(99)00020-0
      Li, X. H., Li, Z. X., Sinclair, J. A., et al., 2006. Revisiting the "Yanbian Terrane": Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China. Precambrian Research, 151(1-2): 14-30. https://doi.org/10.1016/j.precamres.2006.07.009
      Liu, H., Zhao, J. H., 2019. Slab Breakoff beneath the Northern Yangtze Block: Implications from the Neoproterozoic Dahongshan Mafic Intrusions. Lithos, (342-343): 263-275. https://doi.org/10.1016/j.lithos.2019.05.037
      Liu, S. D., Zeng, Z. X., Guo, R. L., et al., 2021. Huashan Group in Northern Margin of Yangtze Block: A Suite of Back-Arc-Basin Volcanic-Sedimentary Strata But not Ophiolite Mélange. Earth Science, 46(8): 2751-2767(in Chinese with English abstract).
      Ludwig, K. R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, No. 4.
      Luo, B. J., Liu, R., Zhang, H. F., et al., 2018. Neoproterozoic Continental Back-Arc Rift Development in the Northwestern Yangtze Block: Evidence from the Hannan Intrusive Magmatism. Gondwana Research, 59: 27-42. https://doi.org/10.1016/j.gr.2018.03.012
      Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. https://doi.org/10.1016/0012-821x(73)90129-5
      Reagan, M. K., Ishizuka, O., Stern, R. J., et al., 2010. Fore-Arc Basalts and Subduction Initiation in the Izu-Bonin-Mariana System. Geochemistry, Geophysics, Geosystems, 11(3). https://doi.org/10.1029/2009gc002871
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, W. H., Zhou, M. F., Gao, J. F., et al., 2009. Detrital Zircon U-Pb Geochronological and Lu-Hf Isotopic Constraints on the Precambrian Magmatic and Crustal Evolution of the Western Yangtze Block, SW China. Precambrian Research, 172(1-2): 99-126. https://doi.org/10.1016/j.precamres.2009.03.010
      Tian, L. Y., Castillo, P. R., Hawkins, J. W., et al., 2008. Major and Trace Element and Sr-Nd Isotope Signatures of Lavas from the Central Lau Basin: Implications for the Nature and Influence of Subduction Components in the Back-Arc Mantle. Journal of Volcanology and Geothermal Research, 178(4): 657-670. https://doi.org/10.1016/j.jvolgeores.2008.06.039
      Ukstins, I. A., Renne, P. R., Wolfenden, E., et al., 2002. Matching Conjugate Volcanic Rifted Margins: 40Ar/39Ar Chrono-Stratigraphy of Pre- and Syn-Rift Bimodal Flood Volcanism in Ethiopia and Yemen. Earth and Planetary Science Letters, 198(3-4): 289-306. https://doi.org/10.1016/s0012-821x(02)00525-3
      Wang, D. B., Sun, Z. M., Yin, F. G., et al., 2012. Geochronology of the Hekou Group on the Western Margin of the Yangtze Block: Evidence from Zircon LA-ICP-MS U-Pb Dating of Volcanic Rocks. Journal of Stratigraphy, 36(3): 630-635(in Chinese with English abstract).
      Winchester, J. A., Floyd, P. A., 1976. Geochemical Magma Type Discrimination: Application to Altered and Metamorphosed Basic Igneous Rocks. Earth and Planetary Science Letters, 28(3): 459-469. https://doi.org/10.1016/0012-821x(76)90207-7
      Wu, Y. B., Zhou, G. Y., Gao, S., et al., 2014. Petrogenesis of Neoarchean TTG Rocks in the Yangtze Craton and Its Implication for the Formation of Archean TTGS. Precambrian Research, 254: 73-86. https://doi.org/10.1016/j.precamres.2014.08.004
      Yang, H., Liu, F. L., Liu, P. H., et al., 2013. 40Ar-39Ar dating for Muscovite in Garnet Muscovite-Felsic Schists of the Dahongshan Group in Southwestern Yangtze Block and Its Geological Significance. Acta Petrologica Sinica, 29(6): 2161-2170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201306022.htm
      Yao, J. L., Shu, L. S., Santosh, M., et al., 2015. Neoproterozoic Arc-Related Andesite and Orogeny-Related Unconformity in the Eastern Jiangnan Orogenic Belt: Constraints on the Assembly of the Yangtze and Cathaysia Blocks in South China. Precambrian Research, 262: 84-100. https://doi.org/10.1016/j.precamres.2015.02.021
      Yin, F. G., Sun, Z. M., Zhang, Z., 2011. Mesoproterozoic Stratigraphic-Structure Framework in Huili-Dongchuan Area. Geological Review, 57(6): 770-778(in Chinese with English abstract).
      Zhang, J. B., Ding, X. Z., Liu, Y. X., 2021. Neoproterozoic Tectonic Switch on the Southwestern Yangtze Block: Evidence from Zircon U-Pb-Hf Isotopes and Geochemistry of the A- and I-Type Granites. International Geology Review, 63(18): 2338-2355. https://doi.org/10.1080/00206814.2020.1836681
      Zhang, J. B., Ding, X. Z., Liu, Y. X., et al., 2020. Geochronology and Geological Implication in Two Episodes of Meso-Neoproterozoic Magmatism in the Southwestern Yangtze Block. Earth Science, 45(7): 2452-2468(in Chinese with English abstract).
      Zhang, Y. Z., Wang, Y. J., Geng, H. Y., et al., 2013. Early Neoproterozoic (∼850 Ma) Back-Arc Basin in the Central Jiangnan Orogen (Eastern South China): Geochronological and Petrogenetic Constraints from Meta-Basalts. Precambrian Research, 231: 325-342. https://doi.org/10.1016/j.precamres.2013.03.016
      Zhao, J. H., Li, Q. W., Liu, H., et al., 2018. Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge-Propagator. Earth-Science Reviews, 187: 1-18. https://doi.org/10.1016/j.earscirev.2018.10.004
      Zhao, J. H., Zhou, M. F., 2007. Neoproterozoic Adakitic Plutons and Arc Magmatism along the Western Margin of the Yangtze Block, South China. The Journal of Geology, 115(6): 675-689. https://doi.org/10.1086/521610
      Zhao, J. H., Zhou, M. F., Wu, Y. B., et al., 2019. Coupled Evolution of Neoproterozoic Arc Mafic Magmatism and Mantle Wedge in the Western Margin of the South China Craton. Contributions to Mineralogy and Petrology, 174(4): 1-16. https://doi.org/10.1007/s00410-019-1573-7
      Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182(1-2): 57-69. https://doi.org/10.1016/j.precamres.2010.06.021
      Zheng, Y. F., Gong, B., Zhao, Z. F., et al., 2008. Zircon U-Pb Age and O Isotope Evidence for Neoproterozoic Low-18O Magmatism during Supercontinental Rifting in South China: Implications for the Snowball Earth Event. American Journal of Science, 308(4): 484-516. https://doi.org/10.2475/04.2008.04
      Zhou, M. F., Ma, Y. X., Yan, D. P., et al., 2006a. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1-2): 19-38. https://doi.org/10.1016/j.precamres.2005.11.002
      Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006b. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China): Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1-2): 286-300. https://doi.org/10.1016/j.epsl.2006.05.032
      Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51-67. https://doi.org/10.1016/S0012-821x(01)00595-7
      Zhu, W. G., Zhong, H., Li, Z. X., et al., 2016. SIMS Zircon U-Pb Ages, Geochemistry and Nd-Hf Isotopes of ca. 1.0 Ga Mafic Dykes and Volcanic Rocks in the Huili Area, SW China: Origin and Tectonic Significance. Precambrian Research, 273: 67-89. https://doi.org/10.1016/j.precamres.2015.12.011
      Zhu, Y., Lai, S. C., Qin, J. F., et al., 2019a. Petrogenesis and Geodynamic Implications of Neoproterozoic Gabbro-Diorites, Adakitic Granites, and A-Type Granites in the Southwestern Margin of the Yangtze Block, South China. Journal of Asian Earth Sciences, 183: 103977. https://doi.org/10.1016/j.jseaes.2019.103977
      Zhu, Y., Lai, S. C., Qin, J. F., et al., 2019b. Geochemistry and Zircon U-Pb-Hf Isotopes of the 780 Ma I-Type Granites in the Western Yangtze Block: Petrogenesis and Crustal Evolution. International Geology Review, 61(10): 1222-1243. https://doi.org/10.1080/00206814.2018.1504330
      杜利林, 耿元生, 杨崇辉, 等, 2005. 扬子地台西缘盐边群玄武质岩石地球化学特征及SHRIMP锆石U-Pb年龄. 地质学报, 79(6): 805-813. doi: 10.3321/j.issn:0001-5717.2005.06.009
      耿元生, 旷红伟, 柳永清, 等, 2017. 扬子地块西、北缘中元古代地层的划分与对比. 地质学报, 91(10): 2151-2174. doi: 10.3969/j.issn.0001-5717.2017.10.001
      耿元生, 杨崇辉, 王新社等, 2008. 扬子地台西缘变质基底演化. 北京: 地大彩印厂.
      关俊雷, 郑来林, 刘建辉, 等, 2011. 四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义. 地质学报, 85(4): 482-490.
      刘述德, 曾佐勋, 郭瑞禄, 等, 2021. 扬子陆块北缘花山群: 弧后盆地火山-沉积岩系而非蛇绿混杂岩. 地球科学, 46(8): 2751-2767. doi: 10.3799/dqkx.2020.266
      四川省地质矿产局, 1991. 四川省区域地质志. 北京: 地质出版社.
      王冬兵, 孙志明, 尹福光, 等, 2012. 扬子地块西缘河口群的时代: 来自火山岩锆石LA-ICP-MS U-Pb年龄的证据. 地层学杂志, 36(3): 630-635.
      杨红, 刘福来, 刘平华, 等, 2013. 扬子地块西南缘大红山群石榴白云母-长石石英片岩的白云母40Ar-39Ar定年及其地质意义. 岩石学报, 29(6): 2161-2170.
      尹福光, 孙志明, 张璋, 2011. 会理-东川地区中元古代地层-构造格架. 地质论评, 57(6): 770-778.
      张继彪, 丁孝忠, 刘燕学, 等, 2020. 扬子西南缘中-新元古代两期岩浆活动年代学及地质意义. 地球科学, 45(7): 2452-2468. doi: 10.3799/dqkx.2020.034
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  276
    • HTML全文浏览量:  377
    • PDF下载量:  58
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-12-21
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回