• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    渤海海域渤中19-6构造及围区深层孔店组砂砾岩优质储层成因及孔隙演化

    庞小军 杜晓峰 王冠民 王清斌 张参

    庞小军, 杜晓峰, 王冠民, 王清斌, 张参, 2023. 渤海海域渤中19-6构造及围区深层孔店组砂砾岩优质储层成因及孔隙演化. 地球科学, 48(11): 4153-4174. doi: 10.3799/dqkx.2022.080
    引用本文: 庞小军, 杜晓峰, 王冠民, 王清斌, 张参, 2023. 渤海海域渤中19-6构造及围区深层孔店组砂砾岩优质储层成因及孔隙演化. 地球科学, 48(11): 4153-4174. doi: 10.3799/dqkx.2022.080
    Pang Xiaojun, Du Xiaofeng, Wang Guanmin, Wang Qingbin, Zhang Can, 2023. Genetic Mechanism and Pore Evolution of High-Quality Glutenite Reservoirs of Deep Kongdian Formation in BZ19-6, Bohai Sea. Earth Science, 48(11): 4153-4174. doi: 10.3799/dqkx.2022.080
    Citation: Pang Xiaojun, Du Xiaofeng, Wang Guanmin, Wang Qingbin, Zhang Can, 2023. Genetic Mechanism and Pore Evolution of High-Quality Glutenite Reservoirs of Deep Kongdian Formation in BZ19-6, Bohai Sea. Earth Science, 48(11): 4153-4174. doi: 10.3799/dqkx.2022.080

    渤海海域渤中19-6构造及围区深层孔店组砂砾岩优质储层成因及孔隙演化

    doi: 10.3799/dqkx.2022.080
    基金项目: 

    “十三五”国家科技重大专项 2016ZX05024-003

    中海油科技项目 ZZKY-2020-TJ-03

    详细信息
      作者简介:

      庞小军(1985-), 男, 高级工程师, 在读博士, 主要从事油气储层预测研究.ORCID: 0000-0002-6095-2332.E-mail: pangxiaojunupc@163.com

      通讯作者:

      王冠民, ORCID: 0009-0006-7912-3012.E-mail: wguanmin@sina.com

    • 中图分类号: P54

    Genetic Mechanism and Pore Evolution of High-Quality Glutenite Reservoirs of Deep Kongdian Formation in BZ19-6, Bohai Sea

    • 摘要: 近年来,在渤中19-6构造太古界大型变质花岗岩潜山凝析气藏之上的深层(埋深大于3 500 m)孔店组砂砾岩储层中首次发现了大量油气,但储层物性差异较大.为了查明深层砂砾岩优质储层的成因,利用铸体薄片、粒度、常规物性、包裹体等化验资料,结合埋藏史分析,对渤海海域渤中19-6构造及围区深层砂砾岩储层物性的差异进行了定量分析,明确了孔店组砂砾岩优质储层发育的主控因素.结果表明:(1)研究区深层孔店组发育扇三角洲砂砾岩储层,埋深分布在3 500~4 200 m,为深层致密储层,物性较差,以低孔低渗为主,成岩阶段处于中成岩A2-B期,溶蚀孔发育.(2)富钾长石、大气淡水淋滤、有机酸溶蚀、深部热流体、超压和裂缝的叠加是研究区孔店组砂砾岩优质储层发育的主要控制因素.(3)孔店组砂砾岩储层主要经历了大气淡水淋滤增孔-早成岩期快速压实减孔-中成岩A1期缓慢减孔以及有机酸、深部热流体大量溶蚀增孔、油气首次充注-中成岩A2、B期缓慢胶结减孔、溶蚀缝形成和油气大规模充注.(4)但不同构造经历的成岩演化阶段和孔隙演化强度具有明显的差异性,渤中19-6构造孔店组砂砾岩储层经历了早成岩期→中成岩A1期→中成岩A2至B期,对应的孔隙度经历了32.6%→17.3%→12.6%→10.6%的演化过程,其遭受压实和胶结的总减孔量为22.0%,总的减孔率分别为67.6%;而渤中25-1构造砂砾岩储层主要经历了早成岩期→中成岩A1期→中成岩A2期,对应的孔隙度经历了32.8%→19.9%→14.2%→13.2%的演化过程,其遭受压实和胶结的总减孔量为19.6%,总的减孔率分别为59.7%.(5)与渤中19-6构造相比,渤中25-1构造孔店组砂砾岩储层压实作用相对较弱,超压作用更强,溶解作用强,是该构造孔隙度相对较好的主要因素,而粗粒、晚期强压实形成的粒内溶蚀孔-缝是渤中19-6构造砂砾岩储层渗透率相对较高的主要因素.该研究可为深部砂砾岩勘探和评价中储层的预测提供帮助.

       

    • 图  1  研究区位置(a)及综合柱状图(b)

      Fig.  1.  Study area location (a) and comprehensive histogram (b)

      图  2  研究区孔店组沉积相(a)、钻井特征(b)及地震特反射特征(c)

      Fig.  2.  Sedimentary facies (a), drilling (b) and seismic special reflection characteristics (c) in Ek

      图  3  不同构造孔店组岩石学特征

      Fig.  3.  Petrological characteristics of Ek in different structures

      图  4  孔店组储层物性特征

      a.孔隙度与渗透率交会图;b.孔隙度分布直方图;c.渗透率分布直方图

      Fig.  4.  Reservoir physical properties features in Ek

      图  5  研究区孔店组镜下储集空间特征

      a.原生孔隙+粒间溶蚀孔,粒内溶蚀孔+裂缝,BZ19-6-a,3 595 m,铸体薄片,单偏光;b.粒内溶蚀孔+裂缝,粒间溶蚀孔,BZ19-6-b,3 851.84 m,铸体薄片,单偏光;c.粒内溶蚀孔+裂缝,BZ19-6-b,4 049.29 m,铸体薄片,单偏光;d.粒内溶蚀孔+裂缝,裂缝,BZ19-6-b,3 853.17 m,铸体薄片,单偏光;e.原生孔+粒间溶蚀孔为主,粒内溶蚀孔,BZ25-1-c,3 657.87 m,铸体薄片,单偏光;f.原生孔+粒间溶蚀孔为主,局部发育粒内溶蚀孔,BZ25-1-c,3 682.6 m,铸体薄片,单偏光;g.原生孔+粒间溶蚀孔,长石粒内溶蚀孔,BZ25-1-c,3 679.24 m,铸体薄片,单偏光;h.粒间溶蚀孔为主,BZ25-1-c,3 679.24 m,铸体薄片,单偏光

      Fig.  5.  Microscopic features of the reservoir space in the Ek

      图  6  沉积微相、岩性、粒度与储层物性之间的关系

      Fig.  6.  Relationship between sedimentary microfacies, lithology, grain size and reservoir physical properties

      图  7  分选、杂基含量与储层物性之间的关系

      Fig.  7.  Relationship between sorting, hetero-base content and reservoir physical properties

      图  8  研究区孔店组储层成岩作用特征

      a.压实作用,缝合线接触,原生孔隙不发育,BZ19-6-a,3 595 m,正交光;b.压实作用,颗粒遭受强烈挤压发生错动形成裂缝,BZ19-6-b,4 051.93 m,单偏光;c.铁白云石胶结作用,局部溶蚀孔被铁白云石充填,BZ19-6-b,4 166.5 m,单偏光;d.含铁方解石胶结作用,铁方解石溶蚀孔和裂缝,BZ19-6-b,3 855.07 m,单偏光;e.硅质和黏土矿物胶结作用,石英被伊利石包裹,BZ19-6-b,4 170 m,扫描电镜;f.溶解作用和黏土矿物胶结,钾长石溶蚀,米粒状高岭石充填溶蚀孔,BZ19-6-b,3 850.21 m,单偏光;g.溶解作用,压实作用形成压裂缝,长石沿解理和压裂缝溶蚀形成网状孔缝,BZ19-6-b,3 855.07 m,单偏光;h.溶解作用和烃类充注,烃类充填孔缝,BZ19-6-b,4 049.87 m,单偏光;i.压实作用,线‒凹凸接触为主,粒间溶蚀孔发育,BZ25-1-c,3 945.1 m,单偏光;j.压实作用,云母被压断和变形,颗粒之间线‒凹凸接触为主,BZ25-1-c,3 679.24 m,正交光;k.方解石胶结作用,含铁方解石充填粒内和粒间溶蚀孔,BZ25-1-a,3 965 m,单偏光;l.铁方解石胶结作用,铁方解石充填溶蚀孔,BZ25-1-c,3 664.67 m,单偏光;m.硅质和伊利石胶结作用,次生石英分布在伊利石之间,伊利石呈包壳包裹颗粒,BZ25-1-c,3 661 m,扫描电镜;n.溶解作用,长石边缘和内部溶蚀形成粒间溶蚀孔和粒内溶蚀孔,BZ25-1-c,3 658 m,单偏光;o.溶解作用,长石溶蚀形成铸模孔,BZ25-1-c,3 664.6 m,单偏光;p.石英及石英次生加大边溶蚀,BZ25-1-c,3 679.24 m,正交光

      Fig.  8.  Diagenesis characteristics of the Ek reservoir in the study area

      图  9  研究区孔店组储层中胶结物成因以及胶结物、钾长石与孔隙度的关系

      a.白云石胶结物碳、氧同位素散点图;b.碳酸盐胶结物成因判别图;c.铁白云石胶结,3 818.8 m,BZ19-6-b;d.铁白云石、铁方解石胶结,4 170 m,BZ19-6-d;e.次生石英、伊利石胶结,3 850.03 m,BZ19-6-b

      Fig.  9.  Origin of the cement and relationship between cement, potash feldspar and porosity of formation reservoir in Ek

      图  10  研究区孔店组砂砾岩、沙三段至沙一段烃源岩的埋藏史和生烃史

      a.渤中19-6构造; b.渤中25-1构造

      Fig.  10.  Burial history and hydrocarbon generation history of Kongdian glutenite, Es3 to Es1 source rock

      图  14  研究区孔店组砂砾岩储层孔隙度定量演化综合模式

      a.渤中19-6构造; b.渤中25-1构造

      Fig.  14.  Comprehensive model map of quantitative evolution of porosity in glutenite reservoir of Ek

      图  11  研究区孔店组砂砾岩异常高压差异及其对储层的影响

      Fig.  11.  The difference of abnormal high pressure of Kongdian glutenite and its influence on reservoir

      图  12  研究区孔店组砂砾岩储层成岩阶段划分

      Fig.  12.  Diagenesis stages of Kongdian glutenite reservoir

      图  13  研究区孔店组砂砾岩储层中包裹体温度分布

      Fig.  13.  Temperature distribution of inclusions in glutenite reservoirs of Kongdian Formation

      图  15  研究区孔店组砂砾岩储层孔隙空间及孔隙度差异演化模式

      Fig.  15.  Diagram of differential evolution model of pore space and porosity of Kongdian glutenite reservoir

      表  1  研究区孔店组岩石成分统计表

      Table  1.   Rock composition statistics of Kongdian Formation in the study area

      构造 石英(%) 钾长石(%) 斜长石(%) 岩屑(%) 杂基(%) 胶结物(%)
      渤中19-6 2.0~40.0/16.9 1.0~35.0/21.1 3.0~42.0/13.1 3.0~94.0/32.6 0.0~12.0/3.6 0.0~5.0/0.96
      渤中25-1 18.0~58.0/41.6 9.5~42.0/32.3 1.0~10.0/4.9 1.5~56.0/17.1 1.0~8.0/3.5 0.0~4.5/1.4
      下载: 导出CSV

      表  2  研究区孔店组物性和储集空间类型统计

      Table  2.   Statistics of physical properties and storage space types of Ek in the study area

      构造 物性 储集空间类型
      孔隙度(%) 渗透率(mD) 原生孔(%) 粒内溶蚀孔(%) 粒间溶蚀孔(%)
      渤中19-6 1.2~20.9/8.8 0.01~129.7/3.3 0.0~-2.0/0.04 0.0~8.0/2.2 0.0~6.0/1.6
      渤中25-1 2.0~17.7/12.3 0.01~49.7/1.40 0.0~5.0/0.6 0.0~3.0/0.5 0.0~9.0/2.1
      下载: 导出CSV

      表  3  各构造孔店组成岩作用对孔隙度影响统计

      Table  3.   Statistics of lost or increased porosity of each diagenesis in Ek

      构造名称 压实作用 胶结作用 溶解作用
      损失孔隙度(%) 损孔率(%) 损失孔隙度(%) 损孔率(%) 增加孔隙度(%) 增孔率(%)
      渤中19-6 26.7~35.9/32.6 91.8~100.0/99.7 0.0~5.0/0.96 0.0~12.8/2.2 6.9~14.4/10.5 20.5~45.4/32.2
      渤中25-1 21.0~36.4/31.0 61.2~100.0/94.7 0.0~4.5/1.4 0.0~9.8/3.2 0.7~15.9/11.4 1.9~50.7/35.1
      下载: 导出CSV
    • Athy, L. F., 1930. Density, Porosity and Compaction of Sedimentary Rocks. AAPG Bulletin, 14(1): 1-24. https://doi.org/10.1306/3D93289E-16B1-11D7-8645000102C1856D
      Du, X. F., Wang, Q. M., Zhao, M., et al., 2020. Sedimentary Characteristics and Mechanism Analysis of a Large-Scale Fan Delta System in the Paleocene Kongdian Formation, Southwestern Bohai Sea, China. Interpretation, 8(2): SF81-SF94. https://doi.org/10.1190/int-2019-0143.1
      Duan, W., Luo, C.F., Liu, J.Z., et al., 2015. Effect of Overpressure Formation on Reservoir Diagenesis and Its Geological Significance to LD Block of Yinggehai Basin. Earth Science, 40(9): 1517-1528 (in Chinese with English abstract).
      Guo, L. L., Cheng, H. D., Huang, X. B., et al., 2020. Quantitative Analysis on Pore Evolution in Feldspar-Rich Coarse Clastic Sandstone: A Case Study of Es2 in the North Part of Liaodong Uplift. Oil & Gas Geology, 41(4): 874-883 (in Chinese with English abstract).
      He, D.F., Ma, Y.S., Liu, B., et al., 2019. Main Advances and Key Issues for Deep-Seated Exploration in Petroliferous Basins in China. Earth Science Frontiers, 26(1): 1-12 (in Chinese with English abstract).
      Hou, M.C., Cao, H.Y., Li, H.Y., et al., 2019. Characteristics and Controlling Factors of Deep Buried-Hill Reservoirs in the BZ19-6 Structural Belt, Bohai Sea Area. Natural Gas Industry, 39(1): 33-44 (in Chinese with English abstract).
      Jia, H.S., Li, Z.P., Zhang, W., et al., 2020. Analysis of Characteristics and Main Controlling Factors of Glutenite Reservoir of E1-2k2 Formation in B Gas Field of Bohai Sea. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 22(3): 44-48 (in Chinese with English abstract).
      Li, Y., Chang, X. C., Yin, W., et al., 2017. Quantitative Impact of Diagenesis on Reservoir Quality of the Triassic Chang 6 Tight Oil Sandstones, Zhenjing Area, Ordos Basin, China. Marine and Petroleum Geology, 86: 1014-1028. https://doi.org/10.1016/j.marpetgeo.2017.07.005
      Liao, J.H., Wu K.Q., Er, C., 2022. Deep Reservoir Characteristics and Effective Reservoir Control Factors in Baiyun Sag of Pearl River Mouth Basin. Earth Science, 47(7): 2454-2467.
      Lin, H.M., Liu, P., Wang, T.D., et al., 2019. Diagenetic Evolution Mechanism of Deep Glutenite Reservoirs Based on Differences in Parent Rock Types: A Case Study of Lower Submember of Member 3 of Shahejie Formation in Chezhen Sag, Bohai Bay Basin. Acta Petrolei Sinica, 40(10): 1180-1191 (in Chinese with English abstract).
      Liu, Q.H., Zhu, H.T., Du, X.F., et al., 2020. Development and Hotspots of Sedimentary Response of Glutenite in the Offshore Bohai Bay Basin. Earth Science, 45(5): 1676-1705 (in Chinese with English abstract).
      Lu, H., Wang, Q.B., Niu, C.M., et al., 2020. Meteoric Leaching Evidences, Diagenetic Model and Its Geology Significance in Mixed Rock of Steep Slope Zone of Shijiutuo Uplift. Earth Science, 45(10): 3721-3730 (in Chinese with English abstract).
      Pang, X.J., Niu, C.M., Du, X.F., et al., 2020. Quantitative Characterization of Differences in Glutenite Reservoir in the Member 1 and 2 of Shahejie Formation in the Northeastern Margin of Shijiutuo Uplift, Bohai Sea. Acta Petrolei Sinica, 41(9): 1073-1088 (in Chinese with English abstract).
      Scherer, M., 1987. Parameters Influencing Porosity in Sandstones: A Model for Sandstone Porosity Prediction. AAPG Bulletin, 71(5): 485-491. https://doi.org/10.1306/703C80FB-1707-11D7-8645000102C1865D
      Shi, H.S., Wang, Q.B., Wang, J., et al., 2019. Discovery and Exploration Significance of Large Condensate Gas Fields in BZ19-6 Structure in Deep Bozhong Sag. China Petroleum Exploration, 24(1): 36-45 (in Chinese with English abstract).
      Wang, G. W., Hao, F., Chang, X. C., et al., 2017. Quantitative Analyses of Porosity Evolution in Tight Grainstones: A Case Study of the Triassic Feixianguan Formation in the Jiannan Gas Field, Sichuan Basin, China. Marine and Petroleum Geology, 86: 259-267. https://doi.org/10.1016/j.marpetgeo.2017.05.021
      Wang, Q.B., Niu, C.M., Liu, X.J., et al., 2019. Hydrocarbon Charging and Reservoir Densification of the Deep-Seated Glutenite Gas Reservoirs in the Bozhong Sag. Natural Gas Industry, 39(5): 25-33 (in Chinese with English abstract).
      Wang, Q.M., Du, X.F., Guan, D.Y., et al., 2021. Differential Tectonic Activities in Paleocene-Eocene and Its Bearing on the Evolution of Sedimentary Fillings in the Southwest Bozhong Sag. Marine Geology Frontiers, 37(11): 30-41 (in Chinese with English abstract).
      Wang, T., Zhu, X.M., Zhang, Z.L., et al., 2020. Quantitative Pore Evolution Model of Sandstone Reservoirs for Member 3 of Shahejie Formation in the Northern Subsag of Laizhouwan Sag. Acta Petrolei Sinica, 41(6): 671-690 (in Chinese with English abstract).
      Xiao, M., Wu, S.T., Yuan, X.J., et al., 2021. Conglomerate Reservoir Pore Evolution Characteristics and Favorable Area Prediction: A Case Study of the Lower Triassic Baikouquan Formation in the Northwest Margin of the Junggar Basin, China. Journal of Earth Science, 32(4): 998-1010. https://doi.org/10.1007/s12583-020-1083-6
      Xu, C. G., Yu, H. B., Wang, J., et al., 2019. Formation Conditions and Accumulation Characteristics of Bozhong 19-6 Large Condensate Gas Field in Offshore Bohai Bay Basin. Petroleum Exploration and Development, 46(1): 27-40 (in Chinese with English abstract). doi: 10.1016/S1876-3804(19)30003-5
      Xu, F. H., Xu, G. S., Liu, Y., et al., 2020. Factors Controlling the Development of Tight Sandstone Reservoirs in the Huagang Formation of the Central Inverted Structural Belt in Xihu Sag, East China Sea Basin. Petroleum Exploration and Development, 47(1): 101-113 (in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60009-X
      Xu, K., Zhang, H., Ju, W., et al., 2023. Effective Fracture Distribution and Its Influence on Natural Gas Productivity of Ultra-Deep Reservoir in Bozi-X Block of Kuqa Depression. Earth Science, 48(7): 2489-2505 (in Chinese with English abstract).
      Xu, Y.H., Yang, X.H., Mei, L.F., 2020. Reservoir Characteristics and Main Control Factors of Conglomerate Reservoir of El3 in the Northwest Steep Slope Zone of Weixinan Depression. Earth Science, 45(5): 1706-1721 (in Chinese with English abstract).
      You, L., Fan, C.W., Wu, S.J., et al., 2021. Genesis of Carbonate Cement and Its Relationship with Fluid Activity in the Ledong Area, Yinggehai Basin. Acta Geologica Sinica, 95(2): 578-587 (in Chinese with English abstract).
      You, L., Zhao, Z.J., Dai, L., et al., 2019. Reservoirs Characteristics and Formation Mechanism of High Temperature and Overpressure Reservoirs from Miocene in Ying-Qiong Basin. Earth Science, 44(8): 2654-2664 (in Chinese with English abstract).
      Zhang, Q., Zhu, X.M., Mao, L., et al., 2021. Pore Evolution and Genesis of Secondary Pores in the Paleogene Dainan Formation, Jinhu Sag, Subei Basin. Earth Science Frontiers, 28(1): 190-201 (in Chinese with English abstract).
      Zhang, T.Y., Hao, P., 2020. Fine Characterization of the Reservoir Space in Deep Ultra-Low Porosity and Ultra-Low Permeability Glutenite in Bozhong Sag. Bulletin of Geological Science and Technology, 39(4): 117-124 (in Chinese with English abstract).
      Zhu, N., Cao, Y.C., Xi, K.L., et al., 2019. Diagenesis and Physical Properties Evolution of Sandy Conglomerate Reservoirs: A Case Study of Triassic Baikouquan Formation in Northern Slope Zone of Mahu Despression. Journal of China University of Mining & Technology, 48(5): 1102-1118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201905018.htm
      段威, 罗程飞, 刘建章, 等, 2015. 莺歌海盆地犔犇区块地层超压对储层成岩. 地球科学, 40(9): 1517-1528. doi: 10.3799/dqkx.2015.136
      郭龙龙, 陈洪德, 黄晓波, 等, 2020. 富长石粗碎屑砂岩孔隙演化定量分析: 以渤海湾盆地辽东凸起北段沙河街组二段为例. 石油与天然气地质, 41(4): 874-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004020.htm
      何登发, 马永生, 刘波, 等, 2019. 中国含油气盆地深层勘探的主要进展与科学问题. 地学前缘, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901002.htm
      侯明才, 曹海洋, 李慧勇, 等, 2019. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素. 天然气工业, 39(1): 33-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901005.htm
      贾海松, 李振鹏, 张汶, 等, 2020. 渤海B气田孔店组砂砾岩储层特征及主控因素分析. 重庆科技学院学报(自然科学版), 22(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSG202003013.htm
      廖计华, 吴克强, 耳闯, 2022. 珠江口盆地白云凹陷深层储层特征与有效储层控制因素. 地球科学, 47(7): 2454-2467. doi: 10.3799/dqkx.2022.017
      林红梅, 刘鹏, 王彤达, 等, 2019. 基于母岩类型差异的深层砂砾岩储集体成岩演化机制: 以渤海湾盆地车镇凹陷沙河街组三段下亚段为例. 石油学报, 40(10): 1180-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201910004.htm
      刘强虎, 朱红涛, 杜晓峰, 等, 2020. 渤海海域砂砾岩体沉积响应进展及热点. 地球科学, 45(5): 1676-1705. doi: 10.3799/dqkx.2020.010
      卢欢, 王清斌, 牛成民, 等, 2020. 湖相混积岩系同沉积淋滤作用识别标志与优质储层形成机理: 以石臼坨凸起陡坡带Q29和Q36构造沙一、二段为例. 地球科学, 45(10): 3721-3730. doi: 10.3799/dqkx.2020.175
      庞小军, 牛成民, 杜晓峰, 等, 2020. 渤海海域石臼坨凸起东北缘沙河街组一段+二段砂砾岩储层差异定量表征. 石油学报, 41(9): 1073-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202009006.htm
      施和生, 王清斌, 王军, 等, 2019. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义. 中国石油勘探, 24(1): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201901006.htm
      王清斌, 牛成民, 刘晓健, 等, 2019. 渤中凹陷深层砂砾岩气藏油气充注与储层致密化. 天然气工业, 39(5): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201905003.htm
      王启明, 杜晓峰, 官大勇, 等, 2021. 渤中凹陷西南部古新世‒始新世构造差异活动及沉积充填演化. 海洋地质前沿, 37(11): 30-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202111004.htm
      王彤, 朱筱敏, 张自力, 等, 2020. 莱州湾凹陷北洼沙河街组三段砂岩储层孔隙定量演化模式. 石油学报, 41(6): 671-690. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202006005.htm
      徐长贵, 于海波, 王军, 等, 2019. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm
      徐昉昊, 徐国盛, 刘勇, 等, 2020. 东海西湖凹陷中央反转构造带古近系花港组致密砂岩储集层控制因素. 石油勘探与开发, 47(1): 98-109. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001010.htm
      徐珂, 张辉, 鞠玮, 等, 2023. 库车坳陷博孜X区块超深储层有效裂缝分布规律及对天然气产能的影响. 地球科学, 48(7): 2489-2505. doi: 10.3799/dqkx.2022.227
      徐燕红, 杨香华, 梅廉夫, 2020. 涠西南凹陷西北陡坡带流三段砂砾岩储层特征与主控因素. 地球科学, 45(5): 1706-1721. doi: 10.3799/dqkx.2019.174
      尤丽, 范彩伟, 吴仕玖, 等, 2021. 莺歌海盆地乐东区储层碳酸盐胶结物成因机理及与流体活动的关系. 地质学报, 95(2): 578-587. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102020.htm
      尤丽, 招湛杰, 代龙, 等, 2019. 莺‒琼盆地中新统高温超压储层特征及形成机制. 地球科学, 44(8): 2654-2664. doi: 10.3799/dqkx.2019.108
      张琴, 朱筱敏, 毛凌, 等, 2021. 苏北盆地金湖凹陷古近系戴南组孔隙演化及次生孔隙成因分析. 地学前缘, 28(1): 190-201. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101020.htm
      张铜耀, 郝鹏, 2020. 渤中凹陷深层特低孔特低渗砂砾岩储层储集空间精细表征. 地质科技通报, 39(4): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004015.htm
      朱宁, 操应长, 葸克来, 等, 2019. 砂砾岩储层成岩作用与物性演化: 以玛湖凹陷北斜坡区三叠系百口泉组为例. 中国矿业大学学报, 48(5): 1102-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201905018.htm
    • 加载中
    图(15) / 表(3)
    计量
    • 文章访问数:  384
    • HTML全文浏览量:  772
    • PDF下载量:  56
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-12-02
    • 网络出版日期:  2023-11-30
    • 刊出日期:  2023-11-25

    目录

      /

      返回文章
      返回