• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    全球和我国多年冻土分布范围和实际面积研究进展

    刘桂民 张博 王莉 吴晓东

    刘桂民, 张博, 王莉, 吴晓东, 2023. 全球和我国多年冻土分布范围和实际面积研究进展. 地球科学, 48(12): 4689-4698. doi: 10.3799/dqkx.2022.083
    引用本文: 刘桂民, 张博, 王莉, 吴晓东, 2023. 全球和我国多年冻土分布范围和实际面积研究进展. 地球科学, 48(12): 4689-4698. doi: 10.3799/dqkx.2022.083
    Liu Guimin, Zhang Bo, Wang Li, Wu Xiaodong, 2023. Permafrost Region and Permafrost Area in Globe and China. Earth Science, 48(12): 4689-4698. doi: 10.3799/dqkx.2022.083
    Citation: Liu Guimin, Zhang Bo, Wang Li, Wu Xiaodong, 2023. Permafrost Region and Permafrost Area in Globe and China. Earth Science, 48(12): 4689-4698. doi: 10.3799/dqkx.2022.083

    全球和我国多年冻土分布范围和实际面积研究进展

    doi: 10.3799/dqkx.2022.083
    基金项目: 

    国家自然科学基金项目 41941015

    国家自然科学基金项目 32061143032

    国家自然科学基金项目 41871060

    中科院西部之光项目资助 2020-82

    详细信息
      作者简介:

      刘桂民(1977-),女,教授,从事多年冻土与环境研究. ORCID:0000-0002-1409-789X. E-mail:liuguimin@lzjtu.edu.cn

    • 中图分类号: P941.5

    Permafrost Region and Permafrost Area in Globe and China

    • 摘要: 全球变暖会导致多年冻土解冻融化,这不仅对多年冻土区的工程和基础设施产生重要影响,还会改变陆地和大气间能量、水分和碳循环而反馈于气候系统.多年冻土主要分布于地下,其实际分布资料很难获取,因而许多研究对多年冻土区及其实际面积描述不清,进而影响了多年冻土变化和碳循环等研究结果.近年来,随着遥感和模型的发展,多年冻土实际分布取得了一系列的进展.根据国内外的最新结果,对全球和我国多年冻土区及其实际面积进行了综合分析.结果表明,目前北半球多年冻土区面积约为2 100万km2,多年冻土实际面积约为1 400万km2.我国青藏高原多年冻土区面积约为150万km2,实际多年冻土约为105万km2,我国其他地区的多年冻土实际分布还需进一步的研究.

       

    • 图  1  1990年以来国内外数据库发表关于多年冻土的论文数量

      Fig.  1.  The number of peer-reviewed articles published in different databases since 1990

      图  2  北半球多年冻土区分布和实际面积比例(资源来自Obu et al., 2019)

      Fig.  2.  Permafrost region distribution and actual permafrost area in the northern hemisphere (data were from Obu et al., 2019)

      表  1  我国东北多年冻土分布的研究结果

      Table  1.   Research results on the distribution of permafrost in Northeast China

      冻土分布年代(a) 面积(万km2) 方法和资料 文献
      1970 26~27 冻土分布南界调查,考虑冻土连续性 Jin et al.(2007)
      2000 ~17
      2012 24 对不同的冻土图集分析 Ran et al.(2012)
      2010 41 利用地温和气温数据,结合经验和半经验模型 Zhang et al. (2019)
      1950 48 1951—2017年258个气象站资料,根据温度界定冻土分布 Zhang et al. (2021b)
      2010 31
      2001—2018 68 卫星遥感的温度数据和温度统计模型 Zhang et al. (2021a)
      下载: 导出CSV
    • Aalto, J., Karjalainen, O., Hjort, J., et al., 2018. Statistical Forecasting of Current and Future Circum-Arctic Ground Temperatures and Active Layer Thickness. Geophysical Research Letters, 45(10): 4889-4898. https://doi.org/10.1029/2018gl078007
      Arias, P. A., Bellouin, N., Coppola, E., et al., 2021.2021: Technical Summary. In: Masson-Delmotte, V., ed., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
      Biskaborn, B. K., Smith, S. L., Noetzli, J., et al., 2019. Permafrost is Warming at a Global Scale. Nature Communications, 10: 264. https://doi.org/10.1038/s31467-018-08240-4
      Burke, E. J., Jones, C. D., Koven, C. D., 2013. Estimating the Permafrost-Carbon Climate Response in the CMIP5 Climate Models Using a Simplified Approach. Journal of Climate, 26(14): 4897-4909. https://doi.org/10.1175/jcli-d-12-00550.1
      Cao, B., Zhang, T. J., Wu, Q. B., et al., 2019. Permafrost Zonation Index Map and Statistics over the Qinghai-Tibet Plateau Based on Field Evidence. Permafrost and Periglacial Processes, 30(3): 178-194. https://doi.org/10.1002/ppp.2006
      Cheng, G. D., 1994. Progress of Glaciology and Geocrology in China in the Last 10 Years and Prospect. Acta Geographica Sinica, 49(Suppl. 1): 589-600(in Chinese with English abstract).
      Dobinski, W., 2011. Permafrost. Earth Science Reviews, 108(3-4): 158-169. https://doi.org/10.1016/j.earscirev.2011.06.007
      Frederick, J. M., Buffett, B. A., 2014. Taliks in Relict Submarine Permafrost and Methane Hydrate Deposits: Pathways for Gas Escape under Present and Future Conditions. Journal of Geophysical Research: Earth Surface, 119(2): 106-122. https://doi.org/10.1002/2013jf002987
      Frederick, J. M., Buffett, B. A., 2015. Effects of Submarine Groundwater Discharge on the Present-Day Extent of Relict Submarine Permafrost and Gas Hydrate Stability on the Beaufort Sea Continental Shelf. Journal of Geophysical Research: Earth Surface, 120(3): 417-432. https://doi.org/10.1002/2014jf003349
      Gruber, S., 2012. Derivation and Analysis of a High-Resolution Estimate of Global Permafrost Zonation. The Cryosphere, 6(1): 221-233. https://doi.org/10.5194/tc-6-221-2012
      Günther, F., Overduin, P. P., Sandakov, A. V., et al., 2013. Short- and Long-Term Thermo-Erosion of Ice-Rich Permafrost Coasts in the Laptev Sea Region. Biogeosciences, 10(6): 4297-4318. https://doi.org/10.5194/bg-10-4297-2013
      Huang, F., Xu, J. F., Wang, B. D., et al., 2020. Destiny of Neo-Tethyan Lithosphere during India-Asia Collision. Earth Science, 45(8): 2785-2804(in Chinese with English abstract).
      IPCC, 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://www.ipcc.ch/srocc/download/
      Jin, H. J., Yu, Q. H., Lü, L. Z., et al., 2007. Degradation of Permafrost in the Xing'anling Mountains, Northeastern China. Permafrost and Periglacial Processes, 18(3): 245-258. https://doi.org/10.1002/ppp.589
      Koven, C. D., Ringeval, B., Friedlingstein, P., et al., 2011. Permafrost Carbon-Climate Feedbacks Accelerate Global Warming. Proceedings of the National Academy of Sciences of the United States of America, 108(36): 14769-14774. https://doi.org/10.1073/pnas.1103910108
      Lantuit, H., Overduin, P. P., Couture, N., et al., 2012. The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines. Estuaries & Coasts, , 35(2): 383-400. https://doi.org/10.1007/s12237-010-9362-6
      Li, X. B., Ji, J. L., Cao, Z. M., et al., 2021. The Climatic Significance of the Color of the Paleo-Neogene Fluvial and Lacustrine Sediments in the Northern Qaidam Basin. Earth Science, 46(9): 3278-3289(in Chinese with English abstract).
      Liu, S., Wu, T., Wang, X., et al., 2020. Changes in the Global Cryosphere and Their Impacts: A Review and New Perspective. Sciences in Cold and Arid Regions, 12(6): 343-354. https://doi.org/10.3724/sp.j.1226.2020.00343
      Luo, D. L., Jin, H. J., Lin, L., et al., 2012. Degradation of Permafrost and Cold-Environments on the Interior and Eastern Qinghai Plateau. Journal of Glaciology and Geocryology, 34(3): 538-546(in Chinese with English abstract).
      Ma, Q., Jin, H. J., 2020. Impacts of Climate Warming on Soil Organic Carbon Pools in Permafrost Regions. Journal of Glaciology and Geocryology, 42(1): 91-10(in Chinese with English abstract).
      Maslakov, A., Kraev, G., 2016. Erodibility of Permafrost Exposures in the Coasts of Eastern Chukotka. Polar Science, 10(3): 374-381. https://doi.org/10.1016/j.polar.2016.04.009
      Mu, C. C., Abbott, B. W., Zhao, Q., et al., 2017. Permafrost Collapse Shifts Alpine Tundra to a Carbon Source But Reduces N2O and CH4 Release on the Northern Qinghai-Tibetan Plateau. Geophysical Research Letters, 44(17): 8945-8952. https://doi.org/10.1002/2017gl074338
      Mu, C. C., Zhang, T. J., Wu, Q. B., et al., 2015. Carbon and Nitrogen Properties of Permafrost over the Eboling Mountain in the Upper Reach of Heihe River Basin, Northwestern China. Arctic, Antarctic, and Alpine Research, 47(2): 203-211. https://doi.org/10.1657/aaar00c-13-095
      Ni, J. E., Wu, T. H., Zhu, X. F., et al., 2021. Simulation of the Present and Future Projection of Permafrost on the Qinghai-Tibet Plateau with Statistical and Machine Learning Models. Journal of Geophysical Research: Atmospheres, 126(2): e2020JD033402. https://doi.org/10.1029/2020jd033402
      Niu, F. J., Cheng, G. D., Ni, W. K., et al., 2005. Engineering-Related Slope Failure in Permafrost Regions of the Qinghai-Tibet Plateau. Cold Regions Science and Technology, 42(3): 215-225. https://doi.org/10.1016/j.coldregions.2005.02.002
      Obu, J., 2021. How Much of the Earth's Surface is Underlain by Permafrost? Journal of Geophysical Research: Earth Surface, 126(5): e2021JF006123. https://doi.org/10.1029/2021jf006123
      Obu, J., Westermann, S., Bartsch, A., et al., 2019. Northern Hemisphere Permafrost Map Based on TTOP Modelling for 2000—2016 at 1 km2 Scale. Earth-Science Reviews, 193: 299-316. https://doi.org/10.1016/j.earscirev.2019.04.023
      Peng, C. Y., Sheng, Y., Wu, J. C., et al., 2021. Simulation of the Permafrost Distribution in the Qilian Mountains. Journal of Glaciology and Geocryology, 43(1): 158-169(in Chinese with English abstract).
      Qiu, G. Q., Cheng, G. D., 1995. Permafrost in China: Past and Persent. Quaternary Sciences, 15(1)13-22(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.1995.01.002
      Ran, Y. H., Li, X., Cheng, G. D., et al., 2012. Distribution of Permafrost in China: An Overview of Existing Permafrost Maps. Permafrost and Periglacial Processes, 23(4): 322-333. https://doi.org/10.1002/ppp.1756
      Riseborough, D., Shiklomanov, N., Etzelmüller, B., et al., 2008. Recent Advances in Permafrost Modelling. Permafrost and Periglacial Processes, 19(2): 137-156. https://doi.org/10.1002/ppp.615
      Sayedi, S. S., Abbott, B. W., Thornton, B. F., et al., 2020. Subsea Permafrost Carbon Stocks and Climate Change Sensitivity Estimated by Expert Assessment. Environmental Research Letters, 15(12): 124075. https://doi.org/10.1088/1748-9326/abcc29
      Schaefer, K., Zhang, T. J., Bruhwiler, L., et al., 2011. Amount and Timing of Permafrost Carbon Release in Response to Climate Warming. Tellus B, 63(2): 165-180. https://doi.org/10.1111/j.1600-0889.2011.00527.x
      Schneider von Deimling, T., Meinshausen, M., Levermann, A., et al., 2012. Estimating the Near-Surface Permafrost-Carbon Feedback on Global Warming. Biogeosciences, 9(2): 649-665. https://doi.org/10.5194/bg-9-649-2012
      Schuur, E. A. G., McGuire, A. D., Schädel, C., et al., 2015. Climate Change and the Permafrost Carbon Feedback. Nature, 520(7546): 171-179. https://doi.org/10.1038/nature14338
      Wu, Q. B., Liu, Y. Z., Zhang, J. M., et al., 2002. A Review of Recent Frozen Soil Engineering in Permafrost Regions along Qinghai-Tibet Highway, China. Permafrost and Periglacial Processes, 13(3): 199-205. https://doi.org/10.1002/ppp.420
      Wu, Q. B., Zhang, Z. Q., Gao, S. R., et al., 2016a. Thermal Impacts of Engineering Activities and Vegetation Layer on Permafrostin Different Alpine Ecosystems of the Qinghai-Tibet Plateau, China. The Cryosphere, 10(4): 1695-1706. https://doi.org/10.5194/tc-10-1695-2016
      Wu, X. D., Zhao, L., Fang, H. B., et al., 2016b. Environmental Controls on Soil Organic Carbon and Nitrogen Stocks in the High-Altitude Arid Western Qinghai-Tibetan Plateau Permafrost Region. Journal of Geophysical Research: Biogeosciences, 121(1): 176-187. https://doi.org/10.1002/2015jg003138
      Wu, X. D., Zhao, L., Hu, G. J., et al., 2018. Permafrost and Land Cover as Controlling Factors for Light Fraction Organic Matter on the Southern Qinghai-Tibetan Plateau. Science of the Total Environment, 613/614: 1165-1174. https://doi.org/10.1016/j.scitotenv.2017.09.052
      Xie, C. W., Gough, W. A., Tam, A., et al., 2013. Characteristics and Persistence of Relict High-Altitude Permafrost on Mahan Mountain, Loess Plateau, China. Permafrost and Periglacial Processes, 24(3): 200-209. https://doi.org/10.1002/ppp.1776
      Zhang, F., Mu, M., Fan, C. Y., et al., 2020. Studies of Permafrost Carbon Cycle in the Third Polar and Arctic Regions. Journal of Glaciology and Geocryology, 42(1): 170-181(in Chinese with English abstract).
      Zhang, T., Barry, R. G., Knowles, K., et al., 1999. Statistics and Characteristics of Permafrost and Ground-Ice Distribution in the Northern Hemisphere. Polar Geography, 23(2): 132-154. https://doi.org/10.1080/10889379909377670
      Zhang, T., Heginbottom, J. A., Barry, R. G., et al., 2000. Further Statistics on the Distribution of Permafrost and Ground Ice in the Northern Hemisphere. Polar Geography, 24(2): 126-131. https://doi.org/10.1080/10889370009377692
      Zhang, Y. Y., Zang, S. Y., Li, M. A., et al., 2021a. Spatial Distribution of Permafrost in the Xing'an Mountains of Northeast China from 2001 to 2018. Land, 10(11): 1127. https://doi.org/10.3390/land10111127
      Zhang, Z. Q., Wu, Q. B., Hou, M. T., et al., 2021b. Permafrost Change in Northeast China in the 1950s—2010s. Advances in Climate Change Research, 12(1): 18-28. https://doi.org/10.1016/j.accre.2021.01.006
      Zhang, Z. Q., Wu, Q. B., Xun, X. Y., et al., 2019. Spatial Distribution and Changes of Xing'an Permafrost in China over the Past Three Decades. Quaternary International, 523: 16-24. https://doi.org/10.1016/j.quaint.2019.06.007
      Zhao, L., Cheng, G. D., Li, S. X., et al., 2000. Thawing and Freezing Processes of Active Layer in Wudaoliang Region of Tibetan Plateau. Chinese Science Bulletin, 45(23): 2181-2187. https://doi.org/10.1007/bf02886326
      Zhao, L., Hu, G. J., Zou, D. F., et al., 2019. Permafrost Changes and Its Effects on Hydrological Processes on Qinghai-Tibet Plateau. Bulletin of Chinese Academy of Sciences, 34(11): 1233-1246(in Chinese with English abstract).
      Zhao, L., Sheng, Y., 2015. Permafrost Survey Manual. Science Press, Beijing(in Chinese).
      Zhao, L., Wu, X. D., Wang, Z. W., et al., 2018. Soil Organic Carbon and Total Nitrogen Pools in Permafrost Zones of the Qinghai-Tibetan Plateau. Scientific Reports, 8: 3656. https://doi.org/10.1038/s31598-018-22024-2
      Zhou, Y. W., 2000. Geocryology in China. Science Press, Beijing(in Chinese).
      Zhuang, Q. L., Melillo, J. M., Sarofim, M. C., et al., 2006. CO2 and CH4 Exchanges between Land Ecosystems and the Atmosphere in Northern High Latitudes over the 21st Century. Geophysical Research Letters, 33(17): L17403. https://doi.org/10.1029/2006gl026972
      Zou, D. F., Zhao, L., Sheng, Y., et al., 2017. A New Map of Permafrost Distribution on the Tibetan Plateau. The Cryosphere, 11(6): 2527-2542. https://doi.org/10.5194/tc-11-2527-2017
      程国栋, 1994. 中国冰川学和冻土学研究近10年进展和展望. 地理学报, 49(增刊1): 589-600.
      黄丰, 许继峰, 王保弟, 等, 2020. 印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运. 地球科学, 45(8): 2785-2804. doi: 10.3799/dqkx.2020.180
      李星波, 季军良, 曹展铭, 等, 2021. 柴达木盆地北缘古-新近纪河湖相沉积物颜色的气候意义. 地球科学, 46(9): 3278-3289. doi: 10.3799/dqkx.2020.329
      罗栋梁, 金会军, 林琳, 等, 2012. 青海高原中、东部多年冻土及寒区环境退化. 冰川冻土, 34(3): 538-546.
      马蔷, 金会军, 2020. 气候变暖对多年冻土区土壤有机碳库的影响. 冰川冻土, 42(1): 91-103.
      彭晨阳, 盛煜, 吴吉春, 等, 2021. 祁连山区多年冻土空间分布模拟. 冰川冻土, 43(1): 158-169.
      邱国庆, 程国栋, 1995. 中国的多年冻土: 过去与现在. 第四纪研究, 15(1)13-22.
      张凤, 母梅, 范成彦, 等, 2020. 从第三极到北极: 多年冻土碳循环研究进展. 冰川冻土, 42(1): 170-181.
      赵林, 胡国杰, 邹德富, 等, 2019. 青藏高原多年冻土变化对水文过程的影响. 中国科学院院刊, 34(11): 1233-1246.
      赵林, 盛煜, 2015. 多年冻土调查手册. 北京: 科学出版社.
      周幼吾, 2000. 中国冻土. 北京: 科学出版社.
    • 加载中
    图(2) / 表(1)
    计量
    • 文章访问数:  670
    • HTML全文浏览量:  414
    • PDF下载量:  89
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-15
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回