• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    山西忻州盆地地热水地球化学特征及其成因机制

    张梦昭 郭清海 刘明亮 刘强

    张梦昭, 郭清海, 刘明亮, 刘强, 2023. 山西忻州盆地地热水地球化学特征及其成因机制. 地球科学, 48(3): 973-987. doi: 10.3799/dqkx.2022.087
    引用本文: 张梦昭, 郭清海, 刘明亮, 刘强, 2023. 山西忻州盆地地热水地球化学特征及其成因机制. 地球科学, 48(3): 973-987. doi: 10.3799/dqkx.2022.087
    Zhang Mengzhao, Guo Qinghai, Liu Mingliang, Liu Qiang, 2023. Geochemical Characteristics and Formation Mechanisms of the Geothermal Waters in the Xinzhou Basin, Shanxi Province. Earth Science, 48(3): 973-987. doi: 10.3799/dqkx.2022.087
    Citation: Zhang Mengzhao, Guo Qinghai, Liu Mingliang, Liu Qiang, 2023. Geochemical Characteristics and Formation Mechanisms of the Geothermal Waters in the Xinzhou Basin, Shanxi Province. Earth Science, 48(3): 973-987. doi: 10.3799/dqkx.2022.087

    山西忻州盆地地热水地球化学特征及其成因机制

    doi: 10.3799/dqkx.2022.087
    基金项目: 

    国家自然科学基金项目 42042036

    详细信息
      作者简介:

      张梦昭(1997-),男,硕士,主要从事地热领域的研究工作. ORCID:0000-0002-8092-2245. E-mail:1360487426@qq.com

      通讯作者:

      郭清海, ORCID: 0000-0001-6602-9664. E-mail: qhguo2006@gmail.com

    • 中图分类号: P641

    Geochemical Characteristics and Formation Mechanisms of the Geothermal Waters in the Xinzhou Basin, Shanxi Province

    • 摘要: 地热水地球化学研究对于认识各类水热型地热资源的成因机制有重要意义.以山西忻州盆地为研究区,开展了系统的地球化学研究.结果显示,忻州盆地地热系统的形成与地壳浅部岩浆房和浅部岩石放射性元素衰变热异常无关,而是正常热流背景下地下水深循环的结果.地热水的水化学和氢氧同位素特征均指示区内地热水补给来源于西部云中山区大气降水,大气降水由补给区入渗并向东部忻州盆地运移,循环深度为1 618.3~3 451.5 m,热储温度达48.4~91.8 ℃.地热水上升至第四系孔隙热储后普遍混入浅层地下冷水,最高混合比可达78%.

       

    • 图  1  忻州盆地地质简图与采样点位置(改自Han et al., 2010b

      ①云中山东麓断裂;②系舟山北麓断裂;③五台山北麓断裂;④恒山南麓断裂

      Fig.  1.  Geological map of Xinzhou basin and sampling locations (after Han et al., 2010b)

      图  3  忻州盆地地下水piper三线图

      Fig.  3.  Piper diagram of groundwater in Xinzhou basin

      图  4  忻州盆地地热水中主要水化学组分箱型图

      Fig.  4.  Box diagram of main hydrochemical components in geothermal water

      图  5  忻州盆地地热水与热海地热水水化学特殊组分柱状图

      热海数据来源于Guo and Wang(2012)和Guo et al.(2014

      Fig.  5.  Column diagram of chemical special components from Xinzhou basin and Rehai geothermal water samples

      图  2  忻州盆地水文地质剖面

      剖面位置见图 1,改自Han et al.(2010a

      Fig.  2.  Hydrogeological cross-sections of Xinzhou basin

      图  6  忻州盆地地下水Na、B与Cl关系

      Fig.  6.  Relationship map of Na, B and Cl concentrations of water samples from Xinzhou basin

      图  7  忻州盆地地热水温度与地下冷水混合比关系

      Fig.  7.  Relationship between geothermal water temperature and mixing ratio of underground cold water in Xinzhou basin

      图  8  忻州盆地地热水与浅层地下冷水δD和δ18O关系

      Fig.  8.  δD-δ18O plot of water samples from Xinzhou basin

      图  9  忻州盆地及热海地区地热水Na-K-Mg三角图

      热海数据来源于Guo and Wang(2012)和Guo et al.(2014

      Fig.  9.  Na-K-Mg triangular diagram for Xinzhou basin and Rehai geothermal water samples

      图  10  地热水样品W04、M03、E01中选定矿物饱和指数随温度变化

      Fig.  10.  The diagram of selected mineral saturation indices changing with temperature in geothermal water samples W04, M03 and E01

      图  11  忻州盆地地热系统成因机制概念模型(改自刘明亮等, 2020

      Fig.  11.  Conceptual model of formation mechanism of Xinzhou basin geothermal system (after Liu et al., 2020)

      表  1  忻州盆地地下水样品现场测试指标

      Table  1.   In-situ parameters of water samples from Xinzhou basin

      编号 采样点位置 采样深度(m) 取水地层 pH T(℃) EC(μs/cm) TDS (mg/L) Eh (mV)
      W01 北合索村 260 太古界 8.7 50.5 1 022 501.5 24.7
      W02 北合索村 264 太古界 8.8 59.0 1 219 597.7 5.1
      W03 东呼延村 270 太古界 8.7 52.0 971 476.4 -107.7
      W04 奇村 150 第四系 8.7 60.0 1 584 776.7 -45.5
      W05 奇村 180 第四系 8.3 42.5 851 417.4 76.3
      W06 奇村 62 第四系 8.6 60.0 1 686 826.7 12.2
      W07 奇村 50 第四系 8.8 43.0 1 253 614.5 -123.5
      W08 奇村 - 第四系 8.4 51.1 1 106 542.6 67.4
      W09 奇村 120 第四系 8.7 52.0 1 678 822.9 55.4
      M01 顿村 337 元古界 7.6 40.2 1 607 787.9 -33.6
      M02 前秦村 377 元古界 7.7 38.5 1 867 915.2 68.0
      M03 北赵村 1 040 元古界 8.1 44.1 2 193 1 075.0 -115.6
      M04 云中河南岸 1 868 元古界 8.3 36.0 1 252 614.1 -286.1
      M05 逯家庄村 450 元古界 8.9 37.5 1 891 926.9 -34.7
      M06 卢野村 470 元古界 9.0 38.0 1 605 786.8 -57.9
      E01 上汤头村 59 第四系 8.0 57.0 3 270 1 603.0 41.6
      E02 上汤头村 58 第四系 7.6 51.2 3 297 1 616.0 89.4
      E03 上汤头村 72 第四系 7.7 45.0 2 813 1 379.0 74.2
      CG01 南岗村 - 第四系 7.9 18.7 389 191.0 164.0
      CG02 上院村 55 第四系 7.2 12.5 771 378.0 215.0
      CG03 上院村 55 第四系 7.6 13.5 433 212.0 214.0
      CG04 上院村 60 第四系 7.7 13.1 459 225.0 209.0
      CG05 上院村 185 第四系 7.6 14.3 729 358.0 121.0
      CG06 上院村 160 第四系 7.8 14.0 418 205.0 118.0
      CG07 中三泉村 - 第四系 7.7 11.0 356 175.0 238.0
      CG08 中三泉村 30 第四系 7.2 11.8 1 503 737.0 189.0
      CG09 中三泉村 - 第四系 7.7 12.1 402 198.0 219.0
      CG10 中三泉村 180 第四系 8.1 11.5 385 189.0 224.0
      CG11 北岗村 170 第四系 7.7 12.7 525 258.0 85.0
      CG12 北贾村 27 第四系 7.8 9.8 884 434.0 179.0
      CG13 尚家庄村 120 第四系 7.9 12.0 515 253.0 85.0
      CG14 施家野庄村 120 第四系 7.5 10.1 1 158 568.0 33.0
      CG15 唐林岗村 50 第四系 7.3 9.3 3 937 1 930.0 143.0
      CG16 桃园村 140 第四系 7.9 13.1 488 240.0 128.0
      CG17 西常村 120 第四系 7.9 11.0 463 227.0 109.0
      下载: 导出CSV

      表  2  忻州盆地花岗岩样品的U、Th、K含量及放射性生热率

      Table  2.   U, Th, K compositions and the radiogenic heating rate of granite samples from Xinzhou basin

      样品编号 采样地点 岩石类型 K(%) Th(μg/g) U(μg/g) 生热率A(μW/m3)
      L03 莲花山 花岗岩 4.37 23.13 2.29 2.60
      L04 莲花山 花岗岩 3.70 27.51 3.49 3.15
      L05 莲花山 花岗岩 3.77 28.12 3.84 3.29
      G01 于家沟 花岗岩 4.90 27.00 2.06 2.86
      G04 于家沟 花岗岩 0.79 17.40 6.24 2.88
      下载: 导出CSV

      表  3  忻州盆地地热水氢氧同位素数据及补给高程计算结果

      Table  3.   Hydrogen and oxygen isotope data and recharge elevation of geothermal water samples from Xinzhou basin

      编号 实测数据 冷水混合前 采样点高程(m) 补给高程(m)
      δD(‰) δ18O(‰) δD(‰) δ18O(‰)
      W02 -84.0 -11.6 -110.1 -14.2 840 3 194
      W03 -83.1 -11.8 -126.3 -16.9 833 3 837
      W04 -80.0 -10.7 -90.4 -11.3 832 2 401
      W06 -81.0 -11.0 -88.5 -11.6 836 2 330
      M01 -76.5 -10.5 -99.9 -11.7 831 2 779
      M02 -78.7 -9.9 -100.0 -9.5 798 2 748
      M03 -83.2 -11.4 -100.9 -13.0 790 2 779
      M04 -66.6 -8.5 -59.6 -3.1 787 1 122
      M06 -87.3 -12.0 -100.2 -13.3 789 2 750
      E01 -81.1 -11.7 -81.1 -11.7 768 1 964
      下载: 导出CSV

      表  4  忻州盆地热储温度和地热水循环深度

      Table  4.   Reservoir temperatures and circulation depth of Xinzhou basin

      编号 井口温度(℃) 热储玉髓温度(℃) 循环深度(m)
      W01 50.5 79.6 2 937.6
      W02 59.0 84.7 3 152.8
      W03 52.0 72.1 2 618.0
      W04 60.0 90.8 3 409.2
      W05 42.5 74.7 2 728.9
      W06 60.0 91.4 3 435.5
      W07 43.0 67.6 2 430.2
      W08 51.1 91.8 3 451.5
      W09 52.0 91.2 3 424.4
      M01 40.2 64.6 2 301.8
      M02 38.5 63.5 2 256.6
      M03 44.1 70.2 2 537.6
      M04 36.0 48.4 1 618.3
      M05 37.5 59.8 2 100.7
      M06 38.0 61.2 2 159.8
      E01 57.0 78.7 2 896.0
      E02 51.2 81.0 2 996.1
      E03 45.0 80.2 2 960.8
      注:热储玉髓温度据Arnórsson et al. (1983).
      下载: 导出CSV

      表  5  忻州盆地地热水相对各种矿物的饱和指数

      Table  5.   The saturation indices of geothermal water relative to various minerals in Xinzhou basin

      编号 玉髓 石英 钾云母 方解石 文石 硬石膏 石膏 萤石 钠长石 滑石 白云石
      W01 0.19 0.54 3.20 0.23 0.11 -2.43 -2.37 -0.09 -0.67 4.94 -0.69
      W02 0.12 0.45 2.85 0.23 0.11 -2.20 -2.21 0.03 -0.81 5.33 -1.10
      W03 0.10 0.45 3.08 0.47 0.34 -2.35 -2.30 -0.06 -0.95 5.34 -0.14
      W04 0.18 0.51 2.81 0.34 0.22 -2.15 -2.17 0.05 -0.84 5.20 -1.02
      W05 0.27 0.65 5.41 0.21 0.08 -2.48 -2.36 -0.11 -0.34 3.76 -0.33
      W06 0.20 0.53 3.49 0.34 0.22 -2.02 -2.04 0.06 -0.60 4.63 -1.10
      W07 0.15 0.53 5.06 0.43 0.30 -2.22 -2.10 0.13 -0.56 5.59 -0.20
      W08 0.32 0.68 4.56 0.41 0.28 -2.24 -2.18 -0.03 -0.32 5.79 0.03
      W09 0.27 0.62 4.23 0.47 0.34 -2.46 -2.41 -0.19 -0.30 4.64 -0.62
      M01 0.22 0.60 7.51 0.24 0.11 -1.08 -0.94 0.08 -0.14 -0.32 -0.81
      M02 0.23 0.62 7.66 0.13 0.00 -0.94 -0.79 0.18 -0.04 0.18 -1.04
      M03 0.22 0.60 6.27 0.28 0.15 -0.82 -0.71 0.17 -0.05 2.36 -1.11
      M04 0.08 0.48 6.45 0.54 0.41 -1.67 -1.51 -0.15 -0.34 3.43 0.40
      M05 0.13 0.52 4.10 0.34 0.21 -1.61 -1.45 0.57 -0.47 3.00 -1.52
      M06 0.12 0.51 4.45 0.31 0.17 -1.48 -1.32 0.58 -0.26 3.58 -1.69
      E01 0.17 0.51 5.70 0.14 0.01 -0.36 -0.36 0.29 -0.19 3.21 -1.62
      E02 0.26 0.62 6.51 0.25 0.13 -0.69 -0.64 0.00 -0.20 2.40 -0.57
      E03 0.32 0.69 7.20 0.38 0.25 -0.58 -0.47 0.11 0.20 0.93 -0.93
      下载: 导出CSV
    • Ármannsson, H., 2016. The Fluid Geochemistry of Icelandic High Temperature Geothermal Areas. Applied Geochemistry, 66: 14-64. https://doi.org/10.1016/j.apgeochem.2015.10.008
      Arnórsson, S., Gunnlaugsson, E., Svavarsson, H., 1983. The Chemistry of Geothermal Waters in Iceland. Ⅲ. Chemical Geothermometry in Geothermal Investigations. Geochimica et Cosmochimica Acta, 47: 567-577. https://doi.org/10.1016/0016-7037(83)90278-8
      Bai, D. H., Liao, Z. J., Zhao, G. Z., et al., 1994. Inferred Magma Heat Source from MT Detection Results in Tengchong Rehai Hot Field. Chinese Science Bulletin, 39(4): 344-347 (in Chinese). doi: 10.1360/csb1994-39-4-344
      Chen, M. X., 1988. Geothermics in North China. Science Press, Beijing (in Chinese).
      Clark, I. D., 1998. Environmental Isotopes in Hydrogeology: Boca. Lewis Publishers, Boca Raton.
      Dai, W., Jiang, X. W., Luo, Y. F., et al., 2021. Identification and Quantification of Factors Controlling Hydrogen and Oxygen Isotopes of Geothermal Water: an Example from the Guide Basin, Qinghai Province. Earth Science Frontiers, 28(1): 420-427 (in Chinese with English abstract).
      Deng, A. L., Sun, H. P., 2002. Discussion on Hydraulic Loading and Effluent Effect in Wastewater Infiltration land Treating Systems. Earth Science, 27(2): 134, 208 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2002.02.024
      Guo, Q. H., 2012. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 27(10): 1887-1898. https://doi.org/10.1016/j.apgeochem.2012.07.006
      Guo, Q. H., 2020. Magma-Heated Geothermal Systems and Hydrogeochemical Evidence of Their Occurrence. Acta Geologica Sinica, 94(12): 3544-3554 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.12.002
      Guo, Q. H., Liu, M. L., Li, J. X., et al., 2014. Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China): Formed via Magmatic Fluid Absorption or Geothermal Steam Heating? Bulletin of Volcanology, 76(10): 1-12. https://doi.org/10.1007/s00445-014-0868-9
      Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215-216: 61-73. https://doi.org/10.1016/j.jvolgeores.2011.12.003
      Han, D. M., 2007. Analysis of Groundwater Flow System and Modeling of Hydrogeochemical Evolution in Xinzhou Basin, China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Han, D. M., Liang, R., Currell, R. J., et al., 2010a. Environmental Isotopic and Hydrochemical Characteristics of Groundwater Systems in Daying and Qicun Geothermal Fields, Xinzhou Basin, Shanxi, China. Hydrological Processes, 24(22): 3157-3176. https://doi.org/10.1002/hyp.7742
      Han, D. M., Liang, X., Jin, M. G., et al., 2010b. Evaluation of Groundwater Hydrochemical Characteristics and Mixing Behavior in the Daying and Qicun Geothermal Systems, Xinzhou Basin. Journal of Volcanology and Geothermal Research, 189(1-2): 92-104. https://doi.org/10.1016/j.jvolgeores.2009.10.011
      Huang, W. X., 2005. Conceptual Model of Qicun Geothermal Field in Xinzhou, Shanxi Province. Huabei Natural Resources, (6): 15-18 (in Chinese).
      Huang, W. X., Yang, Q. M., 2003. Discussion on Geothermal Resources in Shanxi Province. Shanxi Energy and Energy Conservation, (1): 46-47, 49 (in Chinese).
      Jia, Z. X., Zang, H. F., Zheng, X. Q., et al., 2015. Research on Characteristics of Hydrogen and Oxygen Isotopes of Precipitation in Taiyuan Area. Journal of Water Resources and Water Engineering, 26(2): 22-25 (in Chinese with English abstract).
      Kong, Y. L., Pang, Z. H., Shao, H. B., et al., 2014. Recent Studies on Hydrothermal Systems in China: A Review. Geothermal Energy, 2(1): 1-12. https://doi.org/10.1186/s40517-014-0019-8
      Li, Q. L., 1996. Some Characteristics of the Geothermal Distribution in Shanxi Rift Zone. Earthquake Research in Shanxi, (1): 26-30 (in Chinese with English abstract).
      Li, Y. G., Lin, W. J., Xing, L. X., et al., 2021. Estimation of Deep Geothermal Reservoir Temperature in Qabqa Area, Qinghai Province. Geology and Resources, 30(4): 479-484, 511 (in Chinese with English abstract).
      Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its. Earth Science, 45(6): 2221-2231 (in Chinese with English abstract).
      Lu, L. H., Pang, Z. H., Kong, Y. L., et al., 2018. Geochemical and Isotopic Evidence on the Recharge and Circulation of Geothermal Water in the Tangshan Geothermal System near Nanjing, China: Implications for Sustainable Development. Hydrogeology Journal, 26(5): 1705-1719. https://doi.org/10.1007/s10040-018-1721-6
      Ni, S. B., Man, F. S., Wang, Z. R., et al., 1999. Characteristics of Heat Production Distribution in Northern Xinjiang. Journal of University of Science and Technology of China, 29(4): 408-414 (in Chinese with English abstract).
      Rollinson, H., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, London.
      Rybach, L., 1976. Radioactive Heat Production in Rocks and Its Relation to other Petrophysical Parameters. Pure and Applied Geophysics, 114(2): 309-317. https://doi.org/10.1007/BF00878955
      Shangguan, Z. G., Bai, C. H., Sun, M. L., 2000. Mantle-Derived Magmatic Gas Releasing Features at the Rehai Area, Tengchong County, Yunnan Province, China. Science in China (Series D), 30(4): 407-414 (in Chinese).
      Shangguan, Z. G., Sun, M. L., Li, H. Z., 1999. Active Types of Modern Geothermal Fluids at the Tengchong Region, Yunnan Province. Seismology and Geology, 21(4): 436-442 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.1999.04.020
      Wang, D. C., Zhang, R. Q., Shi, Y. H., et al., 1995. General Hydrogeology. Geological Publishing House, Beijing (in Chinese).
      Wang, J. X., 2014. Evaluation on Geothermal Resource of Xinzhou Qicun (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Xiao, J. H., Zhang, R. F., 2005. Characteristics of Hydrogeochemistry of Geothermal Field of Qi Village, Shanxi, and Earthquake Monitoring. Earthquake Research in Shanxi, (1): 12-14 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6265.2005.01.005
      Yuan, J. F., 2013. Hydrogeochemistry of the Geothermal Systems in Coastal Areas of Guangdong Province, South China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhang, P., 2017. Hydrochemical Characteristics and Water Rock Interaction of Arxan Springs (Dissertation). China University of Geosciences, Bejing (in Chinese with English abstract).
      Zhang, S. M., Ren, J. J., Luo, M. H., et al., 2008. Stepwise Landforms and Quaternary Episodic Uplifts of Mountains around Xinding Basin. Seismology and Geology, 30(1): 187-201 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2008.01.013
      Zhang, W., Wang, G. L., Liu, F., et al., 2019. Characteristics of Geothermal Resources in Sedimentary Basins. Geology in China, 46(2): 255-268 (in Chinese with English abstract).
      Zhu, X., Wang, G. L., Ma, F., et al., 2021. Hydrogeochemistry of Geothermal Waters from Taihang Mountain-Xiongan New Area and Its Indicating Significance. Earth Science, 46(7): 2594-2608 (in Chinese with English abstract).
      白登海, 廖志杰, 赵国泽, 等, 1994. 从MT探测结果推论腾冲热海热田的岩浆热源. 科学通报, 39(4): 344-347. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199404017.htm
      陈墨香, 1988. 华北地热. 北京: 科学出版社.
      戴蔓, 蒋小伟, 罗银飞, 等, 2021. 地热水氢氧同位素控制因素识别与定量计算: 以青海贵德盆地为例. 地学前缘, 28(1): 420-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101040.htm
      邓安利, 孙和平, 2002. 山西省奇村地热田超采引起的热水动态变化. 地球科学, 27(2): 134, 208. doi: 10.3321/j.issn:1000-2383.2002.02.024
      郭清海, 2020. 岩浆热源型地热系统及其水文地球化学判据. 地质学报, 94(12): 3544-3554. doi: 10.3969/j.issn.0001-5717.2020.12.002
      韩冬梅, 2007. 忻州盆地第四系地下水流动系统分析与水化学场演化模拟(博士学位论文). 武汉: 中国地质大学.
      黄卫星, 2005. 山西忻州奇村地热田的概念模型. 华北国土资源, (6): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGT200506004.htm
      黄卫星, 杨亲民, 2003. 山西省地热资源探讨. 山西能源与节能, (1): 46-47, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJL200301020.htm
      贾振兴, 臧红飞, 郑秀清, 等, 2015. 太原地区大气降雨的氢氧同位素特征研究. 水资源与水工程学报, 26(2): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201502005.htm
      李清林, 1996. 山西断陷带地热分布的某些特征. 山西地震, (1): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ601.006.htm
      李永革, 蔺文静, 邢林啸, 等, 2021. 青海省恰卜恰地区深部热储温度估算. 地质与资源, 30(4): 479-484, 511. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202104010.htm
      刘明亮, 何曈, 吴启帆, 等, 2020. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231. doi: 10.3799/dqkx.2019.270
      倪守斌, 满发胜, 王兆荣, 等, 1999. 新疆北部地区岩石生热率分布特征. 中国科学技术大学学报, 29(4): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD199904004.htm
      上官志冠, 白春华, 孙明良, 2000. 腾冲热海地区现代幔源岩浆气体释放特征. 中国科学(D辑), 30(4): 407-414. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004009.htm
      上官志冠, 孙明良, 李恒忠, 1999. 云南腾冲地区现代地热流体活动类型. 地震地质, 21(4): 436-442. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199904019.htm
      王大纯, 张人权, 史毅红, 等, 1995. 水文地质学基础. 北京: 地质出版社.
      王俊鑫, 2014. 忻州市奇村地热资源评价(硕士学位论文). 北京: 中国地质大学.
      肖建华, 张瑞丰, 2005. 山西奇村地热田水文地球化学特征与地震监测. 山西地震, (1): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ200501005.htm
      袁建飞, 2013. 广东沿海地热系统水文地球化学研究(博士学位论文). 武汉: 中国地质大学.
      张鹏, 2017. 阿尔山泉群水化学特征与水岩作用研究(硕士学位论文). 北京: 中国地质大学.
      张世民, 任俊杰, 罗明辉, 等, 2008. 忻定盆地周缘山地的层状地貌与第四纪阶段性隆升. 地震地质, 30(1): 187-201. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200801013.htm
      张薇, 王贵玲, 刘峰, 等, 2019. 中国沉积盆地型地热资源特征. 中国地质, 46(2): 255-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902005.htm
      朱喜, 王贵玲, 马峰, 等, 2021. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义. 地球科学, 46(7): 2594-2608. doi: 10.3799/dqkx.2020.207
    • dqkxzx-48-3-973-附表.docx
    • 加载中
    图(11) / 表(5)
    计量
    • 文章访问数:  677
    • HTML全文浏览量:  553
    • PDF下载量:  112
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-07-19
    • 网络出版日期:  2023-03-27
    • 刊出日期:  2023-03-25

    目录

      /

      返回文章
      返回