Mineralogy and Mineral Chemistry of the Luojiashan Gabbro in the Yingyangguan Area of Northeastern Guangxi and Its Tectonic Significance
-
摘要: 对桂东北鹰扬关地区新发现的罗家山辉长岩开展年代学、矿物学和矿物化学研究,可进一步约束区域构造背景.罗家山辉长岩的主要矿物为单斜辉石(Cpx)和斜长石(Pl).单斜辉石具有高铁铝、低钙钠钛的特征,其成分为Wo27~31En36~47Fs21~32,属于普通辉石;斜长石具有高硅铝钠、低钙钾的特点,其成分为An0~3Ab96~100Or0~2,属于钠长石.根据单斜辉石的化学成分判定罗家山辉长岩的母岩浆属于Si不饱和的亚碱性拉斑玄武岩系列.单斜辉石温压估算结果表明,罗家山辉长岩的形成温度介于1 282~1 292 ℃,平均值1 287 ℃;形成压力介于1.53~2.37 GPa,平均值2.02 GPa;对应深度介于50.49~78.21 km,平均值66.80 km. LA-ICP-MS锆石U-Pb年龄表明罗家山辉长岩形成于(768.9±6.8)Ma.单斜辉石的化学成分特征表明罗家山辉长岩属于典型的板内拉斑玄武岩.结合区域构造演化特征,推断罗家山辉长岩起源于地幔物质上涌、岩石圈减薄的伸展裂谷构造背景.Abstract: In this paper, the geochronology, mineralogy and mineral chemistry of Luojiashan gabbro in Yingyangguan area of northeastern Guangxi were studied, to constrain the regional tectonic background. The main mineral compositions of Luojiashan gabbro are clinopyroxene (Cpx) and plagioclase (Pl). The clinopyroxene of Luojiashan gabbro is characterized by high Fe, Al, and low Ca, Na, Ti, and its composition is Wo27-31En36-47Fs21-32, which belongs to augite. Plagioclase is characterized by high Si, Al, Na, and low Ca, K, and its composition is An0-3Ab96-100Or0-2, which belongs to albite. According to the chemical composition of clinopyroxene, the parental magma of the Luojiashan gabbro should belong to tholeiitic series. The crystallization temperature and pressure of clinopyroxene were estimated by the clinopyroxene-melt equilibrium and clinopyroxene isotherm, which yielded crystallization temperature of 1 282-1 292 ℃, with an average of 1 287 ℃. The pressures are 1.53-2.37 GPa, with an average of 2.02 GPa, and corresponding to a formation depth of 50.49-78.21 km, with an average of 66.80 km. The Luojiashan gabbro was formed at (768.9±6.8) Ma based on LA-ICP-MS zircon U-Pb dating. The chemical composition of clinopyroxene indicates that Luojiashan gabbro is a typical intraplate tholeiite. Combined with the characteristics of regional tectonic evolution, it is inferred that the Luojiashan gabbro in northeastern Guangxi originated from the extensional rift tectonic background of lithosphere thinning and mantle upwelling.
-
图 1 研究区地质简图
a修改自周雪瑶等(2015);b和c修改自广西壮族自治区区域地质调查研究院,2005,贺州幅1∶25万区域地质调查报告. 1.白垩系;2.泥盆系;3.寒武系;4.震旦系培地组;5.南华系正圆岭组;6.南华系天子地组;7.上元古界下龙组;8.上元古界鹰扬关组;9.侏罗纪二长花岗岩;10.侏罗纪花岗闪长岩;11.三叠纪花岗闪长岩;12.志留纪花岗闪长岩;13.志留纪二长花岗岩;14.镁铁质岩石;15.断层;16.不整合接触界线;17.地质界线;18.省界;19.采样位置;20.村镇
Fig. 1. Skecth map of research area
图 3 罗家山辉长岩单斜辉石Q-J图解(a)和分类图解(b)
Wo.硅灰石;En.顽火辉石;Fs.铁辉石;Di.透辉石;He.钙铁辉石;Au.普通辉石;Pi.易变辉石;ClEn.斜顽辉石;ClFs.斜铁辉石. 底图据Morimoto et al.(1988)
Fig. 3. Diagrams of Q-J series (a) and classification (b) for clinopyroxenes from Luojiashan gabbro
图 5 罗家山辉长岩斜长石An-Ab-Or分类图解
Fig. 5. Classification of feldspar from Luojiashan gabbro
图 8 单斜辉石的成分等温线图解(底图据Lindsley, 1983)
Fig. 8. The plot for pyroxene showing the equilibrium temperature (after Lindseley, 1983)
图 9 罗家山辉长岩单斜辉石F1-F2图解(a)和单斜辉石Ti-(Ca+Na)图解(b)
图a底图据Nisbet and Pearce(1977);图b底图据Leterrier et al.(1982). WPT.板内拉斑玄武岩;WPA.板内碱性玄武岩;VAB.火山弧玄武岩;OFB.洋底玄武岩;F1=‒0.012 0×SiO2‒0.080 7×TiO2+0.002 6×Al2O3‒0.001 2×FeOT‒0.002 6×MnO+0.008 7×MgO‒0.012 8×CaO‒0.041 9×Na2O;F2=‒0.046 9×SiO2‒0.081 8×TiO2‒0.021 2×Al2O3‒0.004 1×FeOT‒0.143 5×MnO‒0.002 9×MgO+0.008 5×CaO+0.016 0×Na2O
Fig. 9. F1-F2 diagram (a) and Ti-(Ca+Na) diagram (b) of clinopyroxene from Luojiashan gabbro
表 1 罗家山辉长岩中单斜辉石成分电子探针成分分析结果(%)
Table 1. Chemical composition (%) of clinopyroxene in the Luojiashan gabbro
Spot No. LJS-1 LJS-2 LJS-3 LJS-4 LJS-5 LJS-6 LJS-7 LJS-8 LJS-9 LJS-10 LJS-11 LJS-12 LJS-13 LJS-14 LJS-15 SiO2 52.50 53.21 53.16 53.15 51.32 49.91 49.87 50.31 49.74 48.14 48.46 49.34 49.65 49.02 51.34 TiO2 0.22 0.21 0.22 0.22 0.14 0.14 0.09 0.16 0.11 0.63 0.63 0.15 0.18 0.15 0.06 Al2O3 2.65 2.72 2.84 2.74 5.01 5.98 6.43 5.73 5.86 7.00 7.19 5.80 6.70 6.96 3.30 Cr2O3 0.05 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.02 0.05 0.05 0.00 0.01 0.20 FeO* 13.10 12.30 13.16 13.18 12.41 13.23 12.36 12.80 13.24 14.14 14.69 13.33 12.72 12.82 16.18 MnO 0.29 0.35 0.36 0.36 0.29 0.25 0.24 0.23 0.23 0.26 0.30 0.27 0.24 0.21 0.37 MgO 14.79 14.86 14.74 14.74 14.69 13.99 14.17 14.23 13.86 12.79 13.11 13.30 14.08 13.81 12.27 CaO 12.84 12.83 13.03 13.04 13.15 13.31 13.02 13.02 13.11 12.86 12.84 13.01 12.69 12.75 12.57 Na2O 0.24 0.37 0.37 0.35 0.64 0.80 0.89 0.72 0.76 0.74 0.83 0.67 0.85 0.99 0.35 K2O 0.05 0.04 0.02 0.02 0.06 0.09 0.09 0.09 0.09 0.12 0.11 0.08 0.10 0.11 0.10 P2O5 0.03 0.00 0.01 0.01 0.00 0.03 0.01 0.00 0.00 0.04 0.00 0.03 0.05 0.04 0.00 NiO 0.02 0.05 0.01 0.01 0.00 0.00 0.00 0.02 0.00 0.04 0.00 0.00 0.07 0.02 0.00 Total 96.76 96.95 97.93 97.82 97.74 97.74 97.17 97.31 97.00 96.78 98.21 96.04 97.32 96.91 96.75 Si 2.002 2.015 2.002 2.004 1.936 1.897 1.896 1.913 1.904 1.860 1.848 1.909 1.889 1.876 1.989 Al(ⅳ) 0.000 0.000 0.000 0.000 0.064 0.103 0.104 0.087 0.097 0.140 0.152 0.091 0.111 0.124 0.011 Al(ⅵ) 0.119 0.121 0.126 0.122 0.159 0.165 0.185 0.170 0.168 0.179 0.171 0.174 0.189 0.190 0.140 Ti 0.006 0.006 0.006 0.006 0.004 0.004 0.003 0.004 0.003 0.018 0.018 0.004 0.005 0.004 0.002 Cr 0.002 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.000 0.000 0.006 Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.006 0.000 Fe2+ 0.424 0.396 0.421 0.422 0.394 0.421 0.394 0.409 0.425 0.458 0.453 0.433 0.406 0.404 0.531 Mn 0.010 0.011 0.012 0.012 0.009 0.008 0.008 0.007 0.008 0.009 0.010 0.009 0.008 0.007 0.012 Mg 0.841 0.839 0.828 0.829 0.826 0.793 0.803 0.806 0.791 0.736 0.745 0.767 0.799 0.788 0.709 Ca 0.525 0.521 0.526 0.527 0.532 0.542 0.530 0.530 0.538 0.532 0.524 0.540 0.517 0.523 0.522 Na 0.017 0.028 0.027 0.026 0.047 0.059 0.066 0.053 0.056 0.055 0.061 0.051 0.063 0.074 0.027 K 0.003 0.002 0.001 0.001 0.003 0.004 0.004 0.004 0.004 0.006 0.005 0.004 0.005 0.006 0.005 Wo 28.88 29.02 29.01 29.03 29.40 29.74 29.45 29.37 29.59 29.73 29.00 29.98 28.87 29.02 28.98 En 46.30 46.76 45.66 45.68 45.69 43.47 44.60 44.64 43.53 41.13 41.21 42.65 44.57 43.74 39.37 Fs 23.86 22.69 23.84 23.88 22.32 23.54 22.30 23.04 23.80 26.05 26.40 24.57 23.06 23.15 30.18 Ac 0.96 1.53 1.50 1.41 2.59 3.25 3.66 2.95 3.08 3.10 3.40 2.81 3.50 4.09 1.47 Mg# 66.48 67.93 66.31 66.28 67.69 65.30 67.10 66.36 65.05 61.66 62.22 63.91 66.32 66.12 57.16 Cr# 1.25 0.08 0.00 0.00 0.27 0.04 0.00 0.08 0.00 0.19 0.43 0.60 0.00 0.13 3.95 Spot No. LJS-16 LJS-17 LJS-18 LJS-19 LJS-20 LJS-21 LJS-22 LJS-23 LJS-24 LJS-25 LJS-26 LJS-27 LJS-28 LJS-29 LJS-30 SiO2 50.79 51.16 51.42 51.71 52.00 50.65 49.26 49.21 49.78 49.46 49.42 50.58 51.52 49.51 49.06 TiO2 0.15 0.14 0.08 0.03 0.05 0.67 0.10 0.12 0.16 0.50 0.47 0.12 0.05 0.13 0.10 Al2O3 5.56 4.22 3.73 3.67 2.84 4.40 6.67 6.83 6.57 5.76 4.90 4.31 3.46 5.31 5.55 Cr2O3 0.12 0.12 0.10 0.15 0.18 0.17 0.18 0.15 0.12 0.07 0.14 0.09 0.09 0.07 0.03 FeO* 12.97 13.20 16.19 16.67 15.78 14.96 12.51 12.51 11.59 12.52 13.79 16.89 16.07 16.62 16.57 MnO 0.33 0.33 0.35 0.32 0.33 0.30 0.24 0.29 0.27 0.29 0.29 0.38 0.29 0.32 0.35 MgO 14.12 15.11 12.30 12.65 12.90 12.79 14.12 13.94 14.59 14.81 13.28 11.85 12.58 11.59 11.28 CaO 12.96 12.48 12.93 12.61 12.83 12.95 13.06 13.02 12.98 13.14 13.02 12.37 13.15 12.62 12.84 Na2O 0.66 0.47 0.48 0.46 0.35 0.51 0.85 0.80 0.77 0.68 0.65 0.55 0.48 0.60 0.64 K2O 0.08 0.09 0.08 0.11 0.08 0.12 0.08 0.10 0.09 0.09 0.10 0.10 0.08 0.13 0.15 P2O5 0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.00 0.01 0.00 0.01 0.00 0.05 0.01 0.00 NiO 0.07 0.00 0.02 0.04 0.08 0.02 0.07 0.03 0.02 0.04 0.03 0.00 0.04 0.02 0.02 Total 97.80 97.30 97.69 98.42 97.42 97.55 97.16 97.00 96.94 97.36 96.12 97.24 97.85 96.92 96.58 Si 1.922 1.945 1.975 1.973 1.998 1.941 1.879 1.879 1.891 1.884 1.918 1.957 1.977 1.925 1.917 Al(ⅳ) 0.078 0.055 0.025 0.027 0.002 0.059 0.121 0.121 0.109 0.116 0.082 0.043 0.023 0.075 0.083 Al(ⅵ) 0.170 0.134 0.144 0.138 0.127 0.140 0.179 0.187 0.186 0.142 0.142 0.154 0.133 0.168 0.173 Ti 0.004 0.004 0.002 0.001 0.001 0.019 0.003 0.004 0.006 0.014 0.014 0.004 0.001 0.004 0.003 Cr 0.004 0.004 0.003 0.005 0.005 0.005 0.006 0.005 0.004 0.002 0.004 0.003 0.003 0.002 0.001 Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Fe2+ 0.413 0.422 0.526 0.537 0.514 0.484 0.399 0.400 0.370 0.399 0.450 0.552 0.521 0.544 0.544 Mn 0.010 0.011 0.011 0.010 0.011 0.010 0.008 0.009 0.009 0.009 0.010 0.013 0.010 0.011 0.012 Mg 0.797 0.856 0.704 0.720 0.739 0.731 0.803 0.793 0.826 0.841 0.768 0.684 0.719 0.672 0.657 Ca 0.526 0.508 0.532 0.516 0.528 0.532 0.534 0.533 0.528 0.536 0.542 0.513 0.541 0.526 0.537 Na 0.049 0.034 0.036 0.034 0.026 0.038 0.063 0.059 0.057 0.050 0.049 0.042 0.036 0.046 0.049 K 0.004 0.005 0.004 0.006 0.004 0.006 0.004 0.005 0.004 0.004 0.005 0.005 0.004 0.007 0.008 Wo 29.28 27.75 29.41 28.38 29.06 29.62 29.54 29.68 29.52 29.21 29.78 28.46 29.60 29.25 29.88 En 44.40 46.74 38.93 39.60 40.67 40.72 44.44 44.20 46.18 45.82 42.26 37.92 39.39 37.37 36.54 Fs 23.61 23.63 29.69 30.15 28.85 27.53 22.53 22.82 21.13 22.23 25.26 31.31 29.04 30.84 30.89 Ac 2.71 1.88 1.97 1.87 1.42 2.12 3.49 3.30 3.18 2.74 2.70 2.31 1.97 2.53 2.70 Mg# 65.85 66.97 57.26 57.25 59.00 60.14 66.79 66.47 69.10 67.84 63.08 55.33 58.01 55.27 54.71 Cr# 1.43 1.87 1.80 2.71 3.96 2.50 1.80 1.47 1.18 0.84 1.88 1.35 1.70 0.82 0.31 Spot No. LJS-31 LJS-32 LJS-33 LJS-34 LJS-35 LJS-36 LJS-37 LJS-38 LJS-39 LJS-40 LJS-41 LJS-42 LJS-43 LJS-44 LJS-45 SiO2 49.06 50.49 49.65 50.58 50.07 52.19 51.69 51.82 51.40 51.22 52.02 51.68 49.74 50.81 51.13 TiO2 0.12 0.10 0.12 0.13 0.07 0.09 0.02 0.04 0.08 0.43 0.09 0.09 0.14 0.05 0.06 Al2O3 5.47 4.68 5.77 4.96 4.04 3.48 3.60 3.57 3.47 3.17 3.59 3.94 5.34 3.82 3.83 Cr2O3 0.18 0.14 0.14 0.00 0.07 0.06 0.08 0.13 0.05 0.06 0.07 0.03 0.04 0.04 0.10 FeO* 17.01 15.33 15.97 12.85 16.79 15.18 15.69 15.02 15.46 15.28 15.05 15.43 13.92 15.54 15.96 MnO 0.30 0.32 0.31 0.23 0.35 0.28 0.35 0.33 0.27 0.29 0.29 0.34 0.30 0.28 0.35 MgO 11.64 12.68 12.34 14.15 11.95 13.54 12.91 13.17 13.02 12.96 13.07 12.88 13.26 12.65 12.47 CaO 12.66 12.85 12.97 12.99 12.66 12.93 13.19 13.02 12.86 13.29 12.89 12.79 13.07 13.10 12.72 Na2O 0.61 0.59 0.73 0.74 0.58 0.42 0.46 0.41 0.49 0.36 0.40 0.50 0.64 0.41 0.47 K2O 0.14 0.12 0.13 0.09 0.11 0.09 0.09 0.09 0.09 0.07 0.09 0.10 0.14 0.09 0.08 P2O5 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.01 0.00 0.00 0.04 0.02 0.02 0.01 0.00 NiO 0.00 0.09 0.02 0.01 0.00 0.00 0.00 0.03 0.06 0.05 0.08 0.01 0.02 0.00 0.06 Total 97.17 97.37 98.13 96.72 96.70 98.28 98.09 97.63 97.24 97.18 97.67 97.8 96.61 96.79 97.23 Si 1.908 1.942 1.903 1.935 1.953 1.980 1.973 1.980 1.977 1.973 1.986 1.973 1.919 1.966 1.972 Al(ⅳ) 0.092 0.058 0.097 0.065 0.047 0.020 0.027 0.020 0.023 0.027 0.014 0.027 0.081 0.034 0.028 Al(ⅵ) 0.159 0.154 0.164 0.159 0.139 0.135 0.135 0.141 0.135 0.117 0.147 0.151 0.162 0.140 0.146 Ti 0.003 0.003 0.003 0.004 0.002 0.003 0.001 0.001 0.002 0.013 0.003 0.003 0.004 0.001 0.002 Cr 0.006 0.004 0.004 0.000 0.002 0.002 0.002 0.004 0.001 0.002 0.002 0.001 0.001 0.001 0.003 Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Fe2+ 0.555 0.497 0.513 0.413 0.551 0.487 0.506 0.486 0.502 0.498 0.487 0.498 0.451 0.508 0.520 Mn 0.010 0.010 0.010 0.008 0.012 0.009 0.011 0.011 0.009 0.010 0.009 0.011 0.010 0.009 0.012 Mg 0.675 0.727 0.705 0.807 0.695 0.766 0.735 0.750 0.746 0.745 0.744 0.733 0.763 0.730 0.717 Ca 0.528 0.530 0.533 0.532 0.529 0.526 0.540 0.533 0.530 0.549 0.527 0.523 0.540 0.543 0.526 Na 0.046 0.044 0.054 0.055 0.044 0.031 0.034 0.031 0.036 0.027 0.030 0.037 0.048 0.031 0.035 K 0.007 0.006 0.006 0.004 0.005 0.004 0.005 0.004 0.004 0.003 0.004 0.005 0.007 0.004 0.004 Wo 29.11 29.30 29.35 29.33 28.90 28.92 29.56 29.46 29.06 30.02 29.34 29.02 29.82 29.85 29.05 En 37.21 40.22 38.86 44.45 37.97 42.12 40.25 41.44 40.93 40.74 41.38 40.67 42.10 40.08 39.62 Fs 31.17 28.05 28.82 23.18 30.73 27.26 28.32 27.42 28.02 27.76 27.62 28.25 25.45 28.39 29.39 Ac 2.52 2.44 2.97 3.04 2.40 1.70 1.87 1.69 1.98 1.48 1.66 2.05 2.62 1.68 1.94 Mg# 54.85 59.41 57.89 66.13 55.78 61.14 59.23 60.70 59.78 59.93 60.43 59.54 62.83 58.96 57.95 Cr# 2.15 1.99 1.59 0.00 1.12 1.08 1.46 2.31 0.88 1.17 1.28 0.50 0.53 0.68 1.75 注:阳离子数的计算以6个氧原子数为基准;Mg#=100×Mg/(Mg+Fe2+),Cr#=100×Cr/(Cr+Al),Wo=100×Ca/(Ca+Mg+Fe2+),En=100×Mg/(Ca+Mg+Fe2+),Fs=100×Fe2+/(Ca+Mg+Fe2+). 表 2 罗家山辉长岩中斜长石电子探针成分分析结果(%)
Table 2. Chemical composition (%) of plagioclase in the Luojiashan gabbro
Spot No. LJS-1 LJS-2 LJS-3 LJS-4 LJS-5 LJS-6 LJS-7 LJS-8 LJS-9 LJS-10 LJS-11 LJS-12 LJS-13 LJS-14 LJS-15 LJS-16 SiO2 67.84 67.74 67.89 69.40 67.39 68.24 68.59 67.87 68.87 67.88 68.11 68.81 68.39 67.82 67.30 67.62 TiO2 0.00 0.03 0.00 0.00 0.00 0.04 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.01 Al2O3 19.37 19.74 19.36 20.29 19.53 19.64 19.61 19.25 20.24 19.40 19.26 20.18 19.85 18.79 18.96 19.60 Cr2O3 0.00 0.00 0.00 0.03 0.01 0.01 0.02 0.00 0.00 0.01 0.03 0.01 0.00 0.00 0.00 0.00 FeO* 0.06 0.04 0.00 0.07 0.08 0.00 0.01 0.09 0.07 0.05 0.02 0.06 0.10 0.03 0.09 0.06 MnO 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.00 0.01 0.00 MgO 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.01 CaO 0.13 0.07 0.19 0.07 0.11 0.07 0.10 0.12 0.08 0.14 0.14 0.19 0.08 0.13 0.11 0.23 Na2O 12.53 12.60 12.50 12.81 12.23 12.31 12.54 12.25 12.21 12.12 12.50 12.26 12.69 12.32 12.37 12.33 K2O 0.05 0.05 0.07 0.05 0.15 0.04 0.07 0.05 0.05 0.07 0.04 0.07 0.06 0.06 0.05 0.06 P2O5 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.06 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 NiO 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.02 0.01 0.04 0.02 0.00 0.00 0.00 0.00 0.03 Total 99.99 100.28 100.04 102.73 99.58 100.35 100.94 99.74 101.56 99.72 100.16 101.62 101.20 99.16 98.90 99.95 Si 2.978 2.966 2.978 2.966 2.973 2.979 2.979 2.986 2.970 2.984 2.985 2.969 2.969 2.998 2.987 2.970 Al 1.002 1.019 1.001 1.022 1.015 1.011 1.004 0.998 1.029 1.005 0.995 1.026 1.015 0.979 0.992 1.015 Ca 0.006 0.003 0.009 0.003 0.005 0.003 0.005 0.006 0.004 0.007 0.007 0.009 0.004 0.006 0.005 0.011 Na 1.066 1.070 1.063 1.062 1.046 1.042 1.056 1.045 1.021 1.033 1.062 1.025 1.068 1.056 1.064 1.050 K 0.003 0.003 0.004 0.003 0.009 0.002 0.004 0.003 0.003 0.004 0.002 0.004 0.003 0.003 0.003 0.003 An 0.58 0.31 0.83 0.30 0.47 0.32 0.45 0.55 0.37 0.63 0.62 0.83 0.35 0.59 0.48 1.02 Ab 99.16 99.43 98.81 99.44 98.73 99.48 99.16 99.19 99.38 99.01 99.18 98.80 99.34 99.12 99.27 98.66 Or 0.26 0.26 0.36 0.27 0.80 0.21 0.39 0.26 0.25 0.37 0.19 0.37 0.30 0.29 0.25 0.32 Spot No. LJS-17 LJS-18 LJS-19 LJS-20 LJS-21 LJS-22 LJS-23 LJS-24 LJS-25 LJS-26 LJS-27 LJS-28 LJS-29 LJS-30 LJS-31 LJS-32 SiO2 66.84 66.06 68.26 67.56 67.89 67.94 67.43 68 70.38 65.93 68.15 68 67.92 67.08 68.01 67.84 TiO2 0.00 0.00 0.00 0.00 0.06 0.00 0.02 0.02 0.02 0.00 0.01 0.00 0.04 0.00 0.01 0.52 Al2O3 19.16 18.68 19.65 19.07 19.83 20.17 19.77 19.47 20.67 19.35 19.99 19.98 19.86 19.58 19.69 19.83 Cr2O3 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 FeO* 0.09 0.09 0.06 0.09 0.03 0.08 0.07 0.01 0.12 0.68 0.06 0.10 0.01 0.02 0.09 0.16 MnO 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 MgO 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.46 0.00 0.01 0.00 0.02 0.04 0.04 CaO 0.13 0.22 0.05 0.19 0.07 0.26 0.17 0.07 0.22 0.19 0.22 0.17 0.20 0.30 0.14 0.53 Na2O 12.21 11.62 12.28 12.43 12.45 11.71 12.29 12.51 7.34 11.35 11.09 12.40 12.14 11.48 12.34 12.40 K2O 0.12 0.13 0.08 0.06 0.09 0.09 0.09 0.09 0.06 0.07 0.10 0.08 0.07 0.13 0.07 0.06 P2O5 0.01 0.03 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.01 0.00 0.00 0.02 NiO 0.00 0.02 0.00 0.04 0.00 0.04 0.02 0.00 0.03 0.01 0.02 0.00 0.04 0.00 0.00 0.02 Total 98.58 96.83 100.39 99.45 100.48 100.29 99.88 100.19 98.87 98.08 99.63 100.76 100.30 98.61 100.4 101.42 Si 2.977 2.990 2.980 2.984 2.967 2.966 2.965 2.978 3.048 2.975 2.984 2.963 2.970 2.976 2.973 2.960 Al 1.006 0.997 1.011 0.992 1.021 1.038 1.024 1.005 1.055 1.029 1.032 1.026 1.023 1.024 1.014 1.020 Ca 0.006 0.011 0.003 0.009 0.003 0.012 0.008 0.004 0.010 0.009 0.011 0.008 0.009 0.014 0.007 0.025 Na 1.055 1.019 1.039 1.065 1.055 0.991 1.048 1.062 0.616 0.993 0.942 1.048 1.029 0.988 1.046 1.049 K 0.007 0.007 0.005 0.003 0.005 0.005 0.005 0.005 0.003 0.004 0.005 0.004 0.004 0.007 0.004 0.003 An 0.60 1.03 0.24 0.83 0.32 1.20 0.73 0.32 1.64 0.93 1.08 0.75 0.89 1.41 0.62 2.29 Ab 98.76 98.26 99.33 98.87 99.19 98.32 98.81 99.23 97.81 98.67 98.35 98.84 98.75 97.88 98.99 97.41 Or 0.64 0.71 0.43 0.30 0.49 0.48 0.46 0.44 0.54 0.39 0.57 0.41 0.36 0.71 0.39 0.30 Spot No. LJS-33 LJS-34 LJS-35 LJS-36 LJS-37 LJS-38 LJS-39 LJS-40 LJS-41 LJS-42 LJS-43 LJS-44 LJS-45 LJS-46 LJS-47 LJS-48 SiO2 67.90 66.02 67.10 67.82 66.69 65.28 67.85 68.15 67.42 68.37 68.50 64.41 65.13 66.85 66.59 67.12 TiO2 0.00 0.04 0.01 0.00 0.02 0.00 0.00 0.01 0.01 0.02 0.00 0.04 0.01 0.00 0.00 0.00 Al2O3 19.50 19.10 19.89 19.7 19.70 19.67 19.72 19.82 19.41 20.85 21.16 18.67 19.19 20.23 20.63 20.67 Cr2O3 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.01 0.01 0.01 0.00 FeO 0.09 0.12 0.42 0.16 0.55 1.11 0.04 0.13 0.05 0.49 0.37 0.15 0.12 0.32 0.51 0.40 MnO 0.00 0.02 0.00 0.00 0.05 0.03 0.03 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.01 0.00 MgO 0.01 0.00 0.51 0.06 0.45 0.87 0.00 0.00 0.00 0.33 0.23 0.01 0.03 0.12 0.25 0.27 CaO 0.07 0.08 0.29 0.22 0.28 0.35 0.41 0.27 0.17 0.25 0.29 0.23 0.10 0.31 0.22 0.27 Na2O 12.26 11.87 11.85 12.30 12.01 11.23 12.34 12.28 12.27 7.22 6.79 12.14 12.18 12.07 11.00 8.20 K2O 0.07 0.17 0.08 0.09 0.07 0.09 0.11 0.09 0.09 0.09 0.08 0.11 0.22 0.08 0.09 0.09 P2O5 0.02 0.01 0.12 0.00 0.00 0.01 0.00 0.03 0.01 0.00 0.02 0.07 0.04 0.03 0.00 0.00 NiO 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.02 0.03 0.01 0.00 0.00 Total 99.92 97.43 100.25 100.36 99.81 98.64 100.51 100.77 99.45 97.64 97.54 95.87 97.04 100.01 99.31 97.01 Si 2.980 2.976 2.962 2.970 2.961 2.956 2.966 2.970 2.975 3.023 3.022 2.963 2.956 2.946 2.949 2.999 Al 1.009 1.014 1.035 1.017 1.031 1.050 1.016 1.018 1.010 1.087 1.100 1.012 1.027 1.051 1.077 1.088 Ca 0.003 0.004 0.014 0.010 0.013 0.017 0.019 0.013 0.008 0.012 0.014 0.011 0.005 0.014 0.011 0.013 Na 1.043 1.037 1.014 1.044 1.034 0.986 1.046 1.037 1.050 0.619 0.581 1.083 1.072 1.031 0.945 0.710 K 0.004 0.010 0.005 0.005 0.004 0.005 0.006 0.005 0.005 0.005 0.005 0.006 0.013 0.005 0.005 0.005 An 0.31 0.34 1.31 0.96 1.28 1.69 1.78 1.19 0.77 1.86 2.30 1.03 0.43 1.38 1.11 1.79 Ab 99.31 98.74 98.23 98.57 98.37 97.8 97.63 98.32 98.75 97.30 96.94 98.39 98.40 98.17 98.35 97.51 Or 0.37 0.91 0.45 0.47 0.35 0.50 0.58 0.49 0.48 0.83 0.76 0.58 1.17 0.45 0.54 0.70 表 3 罗家山辉长岩的LA⁃ICP⁃MS锆石U⁃Pb测年数据
Table 3. The datas of LA⁃ICP⁃MS zircon U⁃Pb dating for Luojiashan gabbro
点号 (10‒6) Th/U 比值 年龄(Ma) Th U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 20020-01 332.10 427.71 0.78 0.073 00 0.000 97 1.762 89 0.026 97 0.174 92 0.001 48 1 014 18 1 032 10 1 039 8 20020-02 1 213.61 964.01 1.26 0.065 39 0.001 02 1.143 21 0.022 26 0.126 58 0.001 17 787 25 774 11 768 7 20020-03 1 098.56 2 087.20 0.53 0.073 64 0.000 69 1.820 21 0.042 39 0.178 20 0.003 26 1 032 22 1 053 15 1 057 18 20020-04 258.06 2 279.32 0.11 0.071 61 0.000 65 1.620 16 0.023 20 0.163 78 0.001 49 975 15 978 9 978 8 20020-05 265.15 335.47 0.79 0.114 19 0.001 15 5.375 51 0.076 13 0.341 20 0.003 06 1 867 13 1 881 12 1 892 15 20020-06 2 526.81 3 793.33 0.67 0.076 60 0.000 88 1.336 90 0.024 20 0.126 47 0.001 78 1 111 17 862 11 768 10 20020-07 1 921.89 4 594.95 0.42 0.071 41 0.000 70 1.249 55 0.033 06 0.126 52 0.002 97 969 24 823 15 768 17 20020-08 990.66 1 309.82 0.76 0.157 49 0.001 83 9.887 60 0.130 64 0.454 90 0.003 70 2 429 12 2 424 12 2 417 16 20020-09 3 274.53 3 856.46 0.85 0.075 21 0.000 75 1.773 08 0.022 63 0.171 03 0.001 32 1 074 14 1 036 8 1 018 7 20020-10 281.17 291.25 0.97 0.069 47 0.002 05 1.209 18 0.035 65 0.126 66 0.001 51 913 41 805 16 769 9 20020-11 236.87 494.63 0.48 0.194 32 0.001 66 14.210 64 0.193 05 0.531 46 0.005 06 2 779 11 2 764 13 2 748 21 20020-12 559.39 987.38 0.57 0.156 83 0.001 95 9.461 85 0.120 01 0.438 92 0.004 89 2 422 10 2 384 12 2 346 22 20020-13 2 313.97 981.55 2.36 0.076 00 0.000 78 1.910 09 0.025 36 0.182 96 0.001 38 1 095 15 1 085 9 1 083 8 20020-14 1 013.84 516.34 1.96 0.071 84 0.001 14 1.642 52 0.030 27 0.166 45 0.002 00 981 19 987 12 993 11 20020-15 821.93 2 067.25 0.40 0.083 36 0.000 85 2.327 43 0.031 82 0.203 62 0.001 87 1 278 13 1 221 10 1 195 10 20020-16 481.61 1 346.66 0.36 0.073 34 0.001 31 1.671 15 0.022 82 0.161 44 0.001 25 1 023 16 998 9 965 7 20020-17 4 601.43 3 687.12 1.25 0.080 90 0.000 69 1.853 19 0.023 11 0.166 46 0.001 27 1 219 13 1 065 8 993 7 20020-18 1 274.70 2 095.80 0.61 0.074 00 0.000 68 1.534 40 0.022 77 0.150 53 0.001 55 1 041 15 944 9 904 9 20020-19 381.27 398.60 0.96 0.077 33 0.001 06 2.041 26 0.033 45 0.191 72 0.001 55 1 130 20 1 129 11 1 131 8 20020-20 387.97 300.11 1.29 0.078 03 0.001 30 1.729 86 0.034 04 0.160 73 0.001 58 1 148 24 1 020 13 961 9 20020-21 6 175.99 3 514.19 1.76 0.074 97 0.000 92 1.310 99 0.020 51 0.126 85 0.001 46 1 068 15 851 9 770 8 20020-22 140.41 275.20 0.51 0.082 14 0.001 40 2.494 45 0.053 64 0.220 68 0.002 96 1 249 22 1 270 16 1 285 16 20020-23 336.39 612.38 0.55 0.066 54 0.001 00 1.543 99 0.024 78 0.168 83 0.001 60 824 18 948 10 1 006 9 20020-24 619.07 2 432.08 0.25 0.083 32 0.000 90 2.436 07 0.057 46 0.211 39 0.003 57 1 277 22 1 253 17 1 236 19 20020-25 2 434.84 6 471.75 0.38 0.072 91 0.001 26 1.269 53 0.028 60 0.126 75 0.001 56 1 011 26 832 13 769 9 20020-26 3 481.25 7 347.11 0.47 0.060 37 0.000 70 1.051 34 0.020 61 0.126 82 0.001 74 617 21 730 10 770 10 20020-27 159.94 238.88 0.67 0.069 04 0.003 19 2.107 38 0.062 80 0.195 08 0.004 82 900 28 1 151 21 1 149 26 表 4 罗家山辉长岩的单斜辉石‒熔体平衡温度、压力和深度
Table 4. Clinopyroxene-melt equilibrium temperatures, pressures and depth of Luojiashan gabbro
Spot No. T(℃) P(GPa) D(km) Spot No. T(℃) P(GPa) D(km) LJS-1 1 284 1.53 50.49 LJS-24 1 291 2.22 73.26 LJS-2 1 286 1.78 58.74 LJS-25 1 286 2.13 70.29 LJS-3 1 285 1.77 58.41 LJS-26 1 286 2.11 69.63 LJS-4 1 285 1.74 57.42 LJS-27 1 289 2.03 66.99 LJS-5 1 288 2.10 69.3 LJS-28 1 284 1.93 63.69 LJS-6 1 288 2.23 73.59 LJS-29 1 289 2.08 68.64 LJS-7 1 291 2.30 75.90 LJS-30 1 288 2.12 69.96 LJS-8 1 289 2.17 71.61 LJS-31 1 288 2.09 68.97 LJS-9 1 288 2.21 72.93 LJS-32 1 287 2.06 67.98 LJS-10 1 289 2.20 72.60 LJS-33 1 288 2.18 71.94 LJS-11 1 290 2.26 74.58 LJS-34 1 288 2.19 72.27 LJS-12 1 288 2.14 70.62 LJS-35 1 286 2.05 67.65 LJS-13 1 292 2.28 75.24 LJS-36 1 286 1.85 61.05 LJS-14 1 292 2.37 78.21 LJS-37 1 285 1.90 62.70 LJS-15 1 287 1.76 58.08 LJS-38 1 286 1.84 60.72 LJS-16 1 289 2.12 69.96 LJS-39 1 285 1.95 64.35 LJS-17 1 287 1.92 63.36 LJS-40 1 282 1.76 58.08 LJS-18 1 286 1.94 64.02 LJS-41 1 286 1.83 60.39 LJS-19 1 287 1.91 63.03 LJS-42 1 287 1.96 64.68 LJS-20 1 285 1.75 57.75 LJS-43 1 287 2.11 69.63 LJS-21 1 286 1.97 65.01 LJS-44 1 285 1.84 60.72 LJS-22 1 290 2.27 74.91 LJS-45 1 287 1.93 63.69 注:1 GPa对应按33 km计算. -
Campbell, I. H., Borley, G. D., 1974. The Geochemistry of Pyroxenes from the Lower Layered Series of the Jimberlana Intrusion, Western Australia. Contributions to Mineralogy and Petrology, 47(4): 281-297. https://doi.org/10.1007/BF00390151 Cui, X. Z., Jiang, X. S., Deng, Q., et al., 2016. Zircon U-Pb Geochronological Results of the Danzhou Group in Northern Guangxi and Their Implications for the Neoproterozoic Rifting Stages in South China. Geotectonica et Metallogenia, 40(5): 1049-1063 (in Chinese with English abstract). Deng, Q., Wang, J., Wang, Z. J., et al., 2016. Middle Neoproterozoic Magmatic Activities and Their Constraints on Tectonic Evolution of the Jiangnan Orogen. Geotectonica et Metallogenia, 40(4): 753-771 (in Chinese with English abstract). Ge, W. C., Li, X. H., Li, Z. X., et al., 2001. Mafic Intrusions in Longsheng Area: Age and Its Geological Implications. Chinese Journal of Geology, 36(1): 112-118 (in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2001.01.013 Kou, C. H., Liu, Y. X., Li, T. D., et al., 2016. Geochronology and Geochemistry of Neoproterozoic Ultrabasic Rocks in the Western Segment of Jiangnan Orogenic Belt and Constraints on Their Sources. Acta Petrologica et Mineralogica, 35(6): 947-964 (in Chinese with English abstract). Kou, C. H., Liu, Y. X., Li, T. D., et al., 2017a. Mineralogical Characteristics of Clinopyroxene from the Neoproterozoic Changjie Olivine Pyroxenolite in Tongdao County, Western Hunan: An Evidence for the Intraplate Rift Origin. Geological Review, 63(4): 881-893 (in Chinese with English abstract). Kou, C. H., Liu, Y. X., Li, T. D., et al., 2017b. Mineralogy and Mineral Chemistry of the Jinche Gabbro in the Longsheng Area of Northern Guangxi in the Western Segment of the Jiangnan Orogen and Its Geological Significance. Acta Petrologica et Mineralogica, 36(1): 20-35 (in Chinese with English abstract). Kou, C. H., Liu, Y. X., Li, T. D., et al., 2021. Petrogenesis and Tectonic Implications of the Neoproterozoic Mafic-Ultramafic Rocks in the Western Jiangnan Orogen: Insights from in Situ Analysis of Clinopyroxenes. Lithos, 392-393: 106156. https://doi.org/10.1016/j.lithos.2021.106156 Kou, C. H., Zhang, Z. C., Liao, B. L., et al., 2011. Mineralogy of Clinopyroxene in Jianchuan Picritic Porphyrite of Western Yunnan Province and Its Geological Significance. Acta Petrologica et Mineralogica, 30(3): 449-462 (in Chinese with English abstract). Leterrier, J., Maury, R. C., Thonon, P., et al., 1982. Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo-Volcanic Series. Earth and Planetary Science Letters, 59(1): 139-154. https://doi.org/10.1016/0012-821X(82)90122-4 Li, J. H., Mu, J., 1999. Tectonic Constraints from Chinese Cratonic Blocks for the Reconstruction of Rodinia. Chinese Journal of Geology, 34(3): 259-272 (in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.1999.03.001 Li, W. X., Li, X. H., Li, Z. X., et al., 2008. Obduction-Type Granites within the NE Jiangxi Ophiolite: Implications for the Final Amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research, 13(3): 288-301. https://doi.org/10.1016/j.gr.2007.12.010 Li, X. H., 1999. U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and Implications for Rodinia Assembly. Precambrian Research, 97(1-2): 43-57. https://doi.org/10.1016/S0301-9268(99)00020-0 Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1-2): 117-128. https://doi.org/10.1016/j.precamres.2009.07.004 Li, X. H., Wang, X. C., Li, W. X., et al., 2008. Petrogenesis and Tectonic Significance of Neoproterozoic Basaltic Rocks in South China: From Orogenesis to Intracontinental Rifting. Geochimica, 37(4): 382-398 (in Chinese with English abstract). Li, Y. X., Yin, C. Q., Lin, S. F., et al., 2021. Geochronology and Geochemistry of Bimodal Volcanic Rocks from the Western Jiangnan Orogenic Belt: Petrogenesis, Source Nature and Tectonic Implication. Precambrian Research, 359: 106218. https://doi.org/10.1016/j.precamres.2021.106218 Li, Z. X., Zhang, L. H., Powell, C. M., 1995. South China in Rodinia: Part of the Missing Link between Australia-East Antarctica and Laurentia? Geology, 23(5): 407-410. https://doi.org/10.1130/0091-7613(1995)0230407:scirpo>2.3.co;2 doi: 10.1130/0091-7613(1995)0230407:scirpo>2.3.co;2 Liang, W. B., Guo, R. Q., Liu, G. P., et al., 2019. LA-ICP-MS Zircon U-Pb Age and Geochemistry of the Olivine Gabbro Dike in the Western Segment of Kuruktag, Xinjiang and Its Tectonic Significance. Bulletin of Geological Science and Technology, 38(1): 58-67 (in Chinese with English abstract). Lin, M. S., Peng, S. B., Jiang, X. F., et al., 2016. Geochemistry, Petrogenesis and Tectonic Setting of Neoproterozoic Mafic-Ultramafic Rocks from the Western Jiangnan Orogen, South China. Gondwana Research, 35: 338-356. https://doi.org/10.1016/j.gr.2015.05.015 Lindsley, D. H., 1983. Pyroxene Thermometry. American Mineralogist, 68: 477-493. Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 Liu, Y. Z., Qin, Y., Feng, Z. H., et al., 2021. New Geochronological and Geochemical Data of the Longsheng Mafic-Ultramafic Suite in Northern Guangxi, China, and Their Implications in Rodinia Breakup. Arabian Journal of Geosciences, 14(2): 1-18. https://doi.org/10.1007/s12517-020-06360-0 Ludwig, K. R., 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Mircrosoft Excel. Berkeley Geochronology Center. Berkeley. McKenzie, D., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 29(3): 625-679. https://doi.org/10.1093/petrology/29.3.625 Morimoto, N., Pabries, J., Ferguson, K., et al., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55-76. https://doi.org/10.1007/BF01226262 Nisbet, E. G., Pearce, J. A., 1977. Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings. Contributions to Mineralogy and Petrology, 63(2): 149-160. https://doi.org/10.1007/BF00398776 Putirka, K. D., Mikaelian, H., Ryerson, F., et al., 2003. New Clinopyroxene-Liquid Thermobarometers for Mafic, Evolved, and Volatile-Bearing Lava Compositions, with Applications to Lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10): 1542-1554. https://doi.org/10.2138/am-2003-1017 Qi, L., Xu, Y. J., Cawood, P. A., et al., 2021. Implications for Supercontinent Reconstructions of Mid-Late Neoproterozoic Volcanic-Sedimentary Rocks from the Cathaysia Block, South China. Precambrian Research, 354: 106056. https://doi.org/10.1016/j.precamres.2020.106056 Qin, X. F., Wang, Z. Q., Wang, T., et al., 2015. The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi: Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt. Acta Geoscientica Sinica, 36(3): 283-292 (in Chinese with English abstract). Qin, Y., Feng, Z. H., Wan, L., et al., 2022. LA-ICP-MS Zircon U-Pb Age of Shanglang Metamafic Rocks in Longsheng, Northern Guangxi and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 52(1): 109-133 (in Chinese with English abstract). Qin, Y., Feng, Z. H., Huang, J. Z., et al., 2021. Discovery of Sanmen Ductile Shear Zone in North Guangxi and Its Tectonic Significances. Earth Science, 46(11): 4017-4032 (in Chinese with English abstract). Qiu, J. X., Liao, Q. A., 1996. Petrogenesis and Cpx Mineral Chemistry of Cenozoic Basalts from Zhejiang and Fujian of Eastern China. Volcanology & Mineral Resources, 17(S1): 16-25 (in Chinese with English abstract). Seyler, M., Bonatti, E., 1994. Na, AlIV and AlVI in Clinopyroxenes of Subcontinental and Suboceanic Ridge Peridotites: A Clue to Different Melting Processes in the Mantle? Earth and Planetary Science Letters, 122(3-4): 281-289. https://doi.org/10.1016/0012-821X(94)90002-7 Simith, J. V., Brown, W. L., 1974. Feldspar Minerals. Springer-Verlag, Berlin. Streck, M. J., 2008. Mineral Textures and Zoning as Evidence for Open System Processes. Reviews in Mineralogy and Geochemistry, 69(1): 595-622. https://doi.org/10.2138/rmg.2008.69.15 Su, H. M., Jiang, S. Y., Shao, J. B., et al., 2021. New Identification and Significance of Early Cretaceous Mafic Rocks in the Interior South China Block. Scientific Reports, 11: 11396. https://doi.org/10.1038/s41598-021-91045-1 Sun, C. M., 1994. Genetic Mineralogy of Pyroxenes from the Yanbian Proterozoic Ophiolites (Sichuan, China), and Its Geotectonic Implications. Mineralogy and Petrology, 14(3): 1-15 (in Chinese with English abstract). Tian, Y., Wang, W., Wang, L. Z., et al., 2020. Age and Petrogenesis of the Yingyangguan Volcanic Rocks: Implications on Constraining the Boundary between Yangtze and Cathaysia Blocks, South China. Lithos, 376-377: 105775. https://doi.org/10.1016/j.lithos.2020.105775 Vuorinen, J. H., Hålenius, U., Whitehouse, M. J., et al., 2005. Compositional Variations (Major and Trace Elements) of Clinopyroxene and Ti-Andradite from Pyroxenite, Ijolite and Nepheline Syenite, Alnö Island, Sweden. Lithos, 81(1-4): 55-77. https://doi.org/10.1016/j.lithos.2004.09.021 Wang, J., Jiang, X. S., Zhuo, J. W., et al., 2019. Neoproterozoic Rift Basin Evolution and Lithofacies Paleogeography in South China. Science Press, Beijing (in Chinese). Wang, J., Liu, B. J., Pan, G. T., 2001. Neoproterozoic Rifting History of South China Significance to Rodinia Breakup. Mineralogy and Petrology, 21(3): 135-145 (in Chinese with English abstract). Wang, L. Z., Tian, Y., Li, X., et al., 2020. Composition and Deformation of the Yingyangguan Tectonic Mélange in Eastern Guangxi. Geotectonica et Metallogenia, 44(3): 340-356 (in Chinese with English abstract). Wang, L. Z., Tu, B., Tian, Y., et al., 2019. New Progress in 1: 50 000 Regional Geological and Mineral Survey in Yingyangguan Area, Eastern Guangxi. Geology and Mineral Resources of South China, 35(3): 283-292 (in Chinese with English abstract). Wang, P. M., Yu, J. H., Sun, T., et al., 2012. Geochemistry and Detrital Zircon Geochronology of Neoproterozoic Sedimentary Rocks in Eastern Hunan Province and Their Tectonic Significance. Acta Petrologica Sinica, 28(12): 3841-3857 (in Chinese with English abstract). Wang, X. C., Li, Z. X., Li, X. H., et al., 2011. Geochemical and Hf-Nd Isotope Data of Nanhua Rift Sedimentary and Volcaniclastic Rocks Indicate a Neoproterozoic Continental Flood Basalt Provenance. Lithos, 127(3-4): 427-440. https://doi.org/10.1016/j.lithos.2011.09.020 Wang, X. L., Shu, L. S., Xing, G. F., et al., 2012. Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from Ca. 800-760 Ma Volcanic Rocks. Precambrian Research, 222-223: 404-423. https://doi.org/10.1016/j.precamres.2011.07.003 Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen: Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1-2): 117-131. https://doi.org/10.1016/j.precamres.2007.06.005 Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2006. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China: Implications for Tectonic Evolution. Precambrian Research, 145(1-2): 111-130. https://doi.org/10.1016/j.precamres.2005.11.014 Wang, Y. J., Zhang, F. F., Fan, W. M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. https://doi.org/10.1029/2010TC002750 Xu, X. S., Liu, W., Men, Y. P., et al., 2012. Probe into the Tectonic Nature of Neoproterozoic Southern Hunan-Northern Guangxi Marine Basin. Acta Geologica Sinica, 86(12): 1890-1904 (in Chinese with English abstract). Yin, F. G., Wan, F., Chen, M., 2003. The Multi-Arc Basin System on the South-Eastern Margin of the Pan-Cathaysian Continental Group. Journal of Chengdu University of Technology (Science & Technology Edition), 30(2): 126-131 (in Chinese with English abstract). Yin, H. F., Wu, S. B., Du, Y. S., et al., 1999. South China Defined as Part of Tethyan Archipelagic Ocean System. Earth Science, 24(1): 1-12 (in Chinese with English abstract). Zhang, C. L., Qin, Y., Feng, Z. H., et al., 2020. Chronological Characteristics and Significance of Diaozhushan Diabase in Longsheng, Northern Guangxi. Journal of Guilin University of Technology, 40(1): 1-14 (in Chinese with English abstract). Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. China South China Continental Structure and Problems. Science in China (Series D), 43(10): 1553-1582 (in Chinese). Zhang, Z. C., Mahoney, J. J., Mao, J. W., et al., 2006. Geochemistry of Picritic and Associated Basalt Flows of the Western Emeishan Flood Basalt Province, China. Journal of Petrology, 47(10): 1997-2019. https://doi.org/10.1093/petrology/egl034 Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004 Zhou, H. W., Li, X. H., Wang, H. R., et al., 2002. U-Pb Zircon Geochronology of Basic Volcanic Rocks of the Yingyangguan Group in Hezhou, Guangxi, and Its Tectonic Implications. Geological Review, 48(S1): 22-25 (in Chinese with English abstract). http://www.researchgate.net/publication/284108020_U-Pb_zircon_geochronology_of_basic_volcanic_rocks_within_the_Yingyangguan_Group_in_Hezhou_Guangxi_and_its_tectonic_implications?ev=auth_pub Zhou, J. B., Li, X. H., Ge, W. C., et al., 2007. Geochronology, Mantle Source and Geological Implications of Neoproterozoic Ultramafic Rocks from Yuanbaoshan Area of Northern Guangxi. Geological Science and Technology Information, 26(1): 11-18 (in Chinese with English abstract). Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Some Neoproterozoic Geological Events Involved in the Development of the Jiangnan Orogen. Geological Journal of China Universities, 15(4): 453-459 (in Chinese with English abstract). Zhou, J. C., Wang, X. L., Qiu, J. S., 2014. Neoproterozoic Tectonic-Magmatic Evolution of Jiangnan Orogenic Belt. Science Press, Beijing (in Chinese). Zhou, X. Y., Yu, J. H., Wang, L. J., et al., 2015. Compositions and Formation of the Basement Metamorphic Rocks in Yunkai Terrane, Western Guangdong Province, South China. Acta Petrologica Sinica, 31(3): 855-882 (in Chinese with English abstract). 崔晓庄, 江新胜, 邓奇, 等, 2016. 桂北地区丹洲群锆石U-Pb年代学及对华南新元古代裂谷作用期次的启示. 大地构造与成矿学, 40(5): 1049-1063. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201605014.htm 邓奇, 王剑, 汪正江, 等, 2016. 江南造山带新元古代中期(830~750 Ma)岩浆活动及对构造演化的制约. 大地构造与成矿学, 40(4): 753-771. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201604010.htm 葛文春, 李献华, 李正祥, 等, 2001. 龙胜地区镁铁质侵入体: 年龄及其地质意义. 地质科学, 36(1): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD202302007.htm 寇彩化, 刘燕学, 李廷栋, 等, 2016. 江南造山带西段新元古代超基性岩体年代学和岩石地球化学研究及其对源区的约束. 岩石矿物学杂志, 35(6): 947-964. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201606003.htm 寇彩化, 刘燕学, 李廷栋, 等, 2017a. 湘西通道地区新元古代长界橄榄辉石岩中单斜辉石矿物学特征及其板内裂谷成因论证. 地质论评, 63(4): 881-893. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201704004.htm 寇彩化, 刘燕学, 李廷栋, 等, 2017b. 江南造山带西段桂北龙胜地区金车辉长岩矿物化学研究及其地质意义. 岩石矿物学杂志, 36(1): 20-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201701002.htm 寇彩化, 张招崇, 廖宝丽, 等, 2011. 滇西剑川苦橄玢岩中单斜辉石的矿物学特征及其地质意义. 岩石矿物学杂志, 30(3): 449-462. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201103011.htm 李江海, 穆剑, 1999. 我国境内格林威尔期造山带的存在及其对中元古代末期超大陆再造的制约. 地质科学, 34(3): 259-272. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199903001.htm 李献华, 王选策, 李武显, 等, 2008. 华南新元古代玄武质岩石成因与构造意义: 从造山运动到陆内裂谷. 地球化学, 37(4): 382-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200804011.htm 梁文博, 郭瑞清, 刘桂萍, 等, 2019. 新疆库鲁克塔格西段橄榄辉长岩脉LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义. 地质科技通报, 38(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901007.htm 覃小锋, 王宗起, 王涛, 等, 2015. 桂东鹰扬关群火山岩时代和构造环境的重新厘定: 对钦杭结合带西南段构造格局的制约. 地球学报, 36(3): 283-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201503003.htm 秦亚, 冯佐海, 万磊, 等, 2022. 桂北龙胜上朗变镁铁质岩锆石U-Pb年龄及其地质意义. 吉林大学学报(地球科学版), 52(1): 109-133. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202201008.htm 秦亚, 冯佐海, 黄靖哲, 等, 2021. 桂北地区三门韧性剪切带的厘定及其构造意义. 地球科学, 46(11): 4017-4032. doi: 10.3799/dqkx.2020.353?viewType=HTML 邱家骧, 廖群安, 1996. 浙闽新生代玄武岩的岩石成因学与Cpx矿物化学. 火山地质与矿产, 17(S1): 16-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ1996Z1001.htm 孙传敏, 1994. 四川盐边元古代蛇绿岩中辉石的成因矿物学及其大地构造意义. 矿物岩石, 14(3): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS403.000.htm 王剑, 江新胜, 卓皆文, 2019. 华南新元古代裂谷盆地演化与岩相古地理. 北京: 科学出版社. 王剑, 刘宝珺, 潘桂棠, 2001. 华南新元古代裂谷盆地演化: Rodinia超大陆解体的前奏. 矿物岩石, 21(3): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200103020.htm 王令占, 田洋, 李响, 等, 2020. 桂东鹰扬关构造混杂岩物质组成及变形特征. 大地构造与成矿学, 44(3): 340-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202003002.htm 王令占, 涂兵, 田洋, 等, 2019. 桂东鹰扬关地区1∶5万区域地质矿产调查成果与主要进展. 华南地质与矿产, 35(3): 283-292. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201903001.htm 王鹏鸣, 于津海, 孙涛, 等, 2012. 湘东新元古代沉积岩的地球化学和碎屑锆石年代学特征及其构造意义. 岩石学报, 28(12): 3841-3857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212005.htm 许效松, 刘伟, 门玉澎, 等, 2012. 对新元古代湘桂海盆及邻区构造属性的探讨. 地质学报, 86(12): 1890-1904. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201212004.htm 尹福光, 万方, 陈明, 2003. 泛华夏大陆群东南缘多岛弧盆系统. 成都理工大学学报(自然科学版), 30(2): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200302002.htm 殷鸿福, 吴顺宝, 杜远生, 等, 1999. 华南是特提斯多岛洋体系的一部分. 地球科学, 24(1): 1-12. http://www.earth-science.net/article/id/749 张成龙, 秦亚, 冯佐海, 等, 2020. 桂北龙胜吊竹山辉绿岩年代学及其地质意义. 桂林理工大学学报, 40(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX202001001.htm 张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学(D辑), 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm 周汉文, 李献华, 王汉荣, 等, 2002. 广西鹰扬关群基性火山岩的锆石U-Pb年龄及其地质意义. 地质论评, 48(S1): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1005.htm 周继彬, 李献华, 葛文春, 等, 2007. 桂北元宝山地区超镁铁岩的年代、源区及其地质意义. 地质科技情报, 26(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200701001.htm 周金城, 王孝磊, 邱检生, 2009. 江南造山带形成过程中若干新元古代地质事件. 高校地质学报, 15(4): 453-459. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200904003.htm 周金城, 王孝磊, 邱检生, 2014. 江南造山带新元古代构造-岩浆演化. 北京: 科学出版社. 周雪瑶, 于津海, 王丽娟, 等, 2015. 粤西云开地区基底变质岩的组成和形成. 岩石学报, 31(3): 855-882 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201503018.htm -