• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    桂东北鹰扬关地区罗家山辉长岩的矿物化学特征及其构造意义

    秦亚 杨珺茹 冯佐海 朱家明 倪战旭 黄永高 吴杰 周云 刘奕志 白玉明

    秦亚, 杨珺茹, 冯佐海, 朱家明, 倪战旭, 黄永高, 吴杰, 周云, 刘奕志, 白玉明, 2024. 桂东北鹰扬关地区罗家山辉长岩的矿物化学特征及其构造意义. 地球科学, 49(3): 803-821. doi: 10.3799/dqkx.2022.096
    引用本文: 秦亚, 杨珺茹, 冯佐海, 朱家明, 倪战旭, 黄永高, 吴杰, 周云, 刘奕志, 白玉明, 2024. 桂东北鹰扬关地区罗家山辉长岩的矿物化学特征及其构造意义. 地球科学, 49(3): 803-821. doi: 10.3799/dqkx.2022.096
    Qin Ya, Yang Junru, Feng Zuohai, Zhu Jiaming, Ni Zhanxu, Huang Yonggao, Wu Jie, Zhou Yun, Liu Yizhi, Bai Yuming, 2024. Mineralogy and Mineral Chemistry of the Luojiashan Gabbro in the Yingyangguan Area of Northeastern Guangxi and Its Tectonic Significance. Earth Science, 49(3): 803-821. doi: 10.3799/dqkx.2022.096
    Citation: Qin Ya, Yang Junru, Feng Zuohai, Zhu Jiaming, Ni Zhanxu, Huang Yonggao, Wu Jie, Zhou Yun, Liu Yizhi, Bai Yuming, 2024. Mineralogy and Mineral Chemistry of the Luojiashan Gabbro in the Yingyangguan Area of Northeastern Guangxi and Its Tectonic Significance. Earth Science, 49(3): 803-821. doi: 10.3799/dqkx.2022.096

    桂东北鹰扬关地区罗家山辉长岩的矿物化学特征及其构造意义

    doi: 10.3799/dqkx.2022.096
    基金项目: 

    国家自然科学基金项目 42072259

    国家自然科学基金项目 42162018

    广西自然科学基金项目 2022GXNSFAA035570

    广西自然科学基金项目 2019GXNSFDA245009

    详细信息
      作者简介:

      秦亚(1986-),男,副教授,博士,主要从事区域构造演化、花岗岩与成矿的研究及相关教学工作. ORCID:0000-0002-8281-8732. E-mail:qinya2013017@glut.edu.cn

      通讯作者:

      冯佐海,E-mail:fzh@glut.edu.cn

    • 中图分类号: P588.12

    Mineralogy and Mineral Chemistry of the Luojiashan Gabbro in the Yingyangguan Area of Northeastern Guangxi and Its Tectonic Significance

    • 摘要: 对桂东北鹰扬关地区新发现的罗家山辉长岩开展年代学、矿物学和矿物化学研究,可进一步约束区域构造背景.罗家山辉长岩的主要矿物为单斜辉石(Cpx)和斜长石(Pl).单斜辉石具有高铁铝、低钙钠钛的特征,其成分为Wo27~31En36~47Fs21~32,属于普通辉石;斜长石具有高硅铝钠、低钙钾的特点,其成分为An0~3Ab96~100Or0~2,属于钠长石.根据单斜辉石的化学成分判定罗家山辉长岩的母岩浆属于Si不饱和的亚碱性拉斑玄武岩系列.单斜辉石温压估算结果表明,罗家山辉长岩的形成温度介于1 282~1 292 ℃,平均值1 287 ℃;形成压力介于1.53~2.37 GPa,平均值2.02 GPa;对应深度介于50.49~78.21 km,平均值66.80 km. LA-ICP-MS锆石U-Pb年龄表明罗家山辉长岩形成于(768.9±6.8)Ma.单斜辉石的化学成分特征表明罗家山辉长岩属于典型的板内拉斑玄武岩.结合区域构造演化特征,推断罗家山辉长岩起源于地幔物质上涌、岩石圈减薄的伸展裂谷构造背景.

       

    • 图  1  研究区地质简图

      a修改自周雪瑶等(2015);b和c修改自广西壮族自治区区域地质调查研究院,2005,贺州幅1∶25万区域地质调查报告. 1.白垩系;2.泥盆系;3.寒武系;4.震旦系培地组;5.南华系正圆岭组;6.南华系天子地组;7.上元古界下龙组;8.上元古界鹰扬关组;9.侏罗纪二长花岗岩;10.侏罗纪花岗闪长岩;11.三叠纪花岗闪长岩;12.志留纪花岗闪长岩;13.志留纪二长花岗岩;14.镁铁质岩石;15.断层;16.不整合接触界线;17.地质界线;18.省界;19.采样位置;20.村镇

      Fig.  1.  Skecth map of research area

      图  2  罗家山辉长岩的野外地质照片(a)、手标本照片(b)、显微照片(c~g)和背散射照片(h~i)

      Pl.斜长石;Cpx.单斜辉石;Chl.绿泥石;Cb.碳酸盐矿物;Pt3y.鹰扬关组;Gabbro.罗家山辉长岩

      Fig.  2.  The field geological photo (a), hand specimen photo (b), photomicrograph (c‒g) and BSE images (h‒i) of Luojiashan gabbro

      图  3  罗家山辉长岩单斜辉石Q-J图解(a)和分类图解(b)

      Wo.硅灰石;En.顽火辉石;Fs.铁辉石;Di.透辉石;He.钙铁辉石;Au.普通辉石;Pi.易变辉石;ClEn.斜顽辉石;ClFs.斜铁辉石. 底图据Morimoto et al.(1988)

      Fig.  3.  Diagrams of Q-J series (a) and classification (b) for clinopyroxenes from Luojiashan gabbro

      图  4  单斜辉石主要氧化物对Mg#值相关性图解

      Fig.  4.  Correlation diagrams between major oxides and Mg# in clinopyoxene

      图  5  罗家山辉长岩斜长石An-Ab-Or分类图解

      底图据Simith and Brown(1974)

      Fig.  5.  Classification of feldspar from Luojiashan gabbro

      图  6  罗家山辉长岩的锆石阴极发光图像(a)和U-Pb年龄谐和图解(b)

      Fig.  6.  The zircons CL images (a) and U-Pb age concordia diagram (b) for Luojiashan gabbro

      图  7  岩浆系列判别图解

      Fig.  7.  Discriminant diagrams of magma series

      图  8  单斜辉石的成分等温线图解(底图据Lindsley, 1983

      Fig.  8.  The plot for pyroxene showing the equilibrium temperature (after Lindseley, 1983)

      图  9  罗家山辉长岩单斜辉石F1-F2图解(a)和单斜辉石Ti-(Ca+Na)图解(b)

      图a底图据Nisbet and Pearce(1977);图b底图据Leterrier et al.(1982). WPT.板内拉斑玄武岩;WPA.板内碱性玄武岩;VAB.火山弧玄武岩;OFB.洋底玄武岩;F1=‒0.012 0×SiO2‒0.080 7×TiO2+0.002 6×Al2O3‒0.001 2×FeOT‒0.002 6×MnO+0.008 7×MgO‒0.012 8×CaO‒0.041 9×Na2O;F2=‒0.046 9×SiO2‒0.081 8×TiO2‒0.021 2×Al2O3‒0.004 1×FeOT‒0.143 5×MnO‒0.002 9×MgO+0.008 5×CaO+0.016 0×Na2O

      Fig.  9.  F1-F2 diagram (a) and Ti-(Ca+Na) diagram (b) of clinopyroxene from Luojiashan gabbro

      表  1  罗家山辉长岩中单斜辉石成分电子探针成分分析结果(%)

      Table  1.   Chemical composition (%) of clinopyroxene in the Luojiashan gabbro

      Spot No. LJS-1 LJS-2 LJS-3 LJS-4 LJS-5 LJS-6 LJS-7 LJS-8 LJS-9 LJS-10 LJS-11 LJS-12 LJS-13 LJS-14 LJS-15
      SiO2 52.50 53.21 53.16 53.15 51.32 49.91 49.87 50.31 49.74 48.14 48.46 49.34 49.65 49.02 51.34
      TiO2 0.22 0.21 0.22 0.22 0.14 0.14 0.09 0.16 0.11 0.63 0.63 0.15 0.18 0.15 0.06
      Al2O3 2.65 2.72 2.84 2.74 5.01 5.98 6.43 5.73 5.86 7.00 7.19 5.80 6.70 6.96 3.30
      Cr2O3 0.05 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.02 0.05 0.05 0.00 0.01 0.20
      FeO* 13.10 12.30 13.16 13.18 12.41 13.23 12.36 12.80 13.24 14.14 14.69 13.33 12.72 12.82 16.18
      MnO 0.29 0.35 0.36 0.36 0.29 0.25 0.24 0.23 0.23 0.26 0.30 0.27 0.24 0.21 0.37
      MgO 14.79 14.86 14.74 14.74 14.69 13.99 14.17 14.23 13.86 12.79 13.11 13.30 14.08 13.81 12.27
      CaO 12.84 12.83 13.03 13.04 13.15 13.31 13.02 13.02 13.11 12.86 12.84 13.01 12.69 12.75 12.57
      Na2O 0.24 0.37 0.37 0.35 0.64 0.80 0.89 0.72 0.76 0.74 0.83 0.67 0.85 0.99 0.35
      K2O 0.05 0.04 0.02 0.02 0.06 0.09 0.09 0.09 0.09 0.12 0.11 0.08 0.10 0.11 0.10
      P2O5 0.03 0.00 0.01 0.01 0.00 0.03 0.01 0.00 0.00 0.04 0.00 0.03 0.05 0.04 0.00
      NiO 0.02 0.05 0.01 0.01 0.00 0.00 0.00 0.02 0.00 0.04 0.00 0.00 0.07 0.02 0.00
      Total 96.76 96.95 97.93 97.82 97.74 97.74 97.17 97.31 97.00 96.78 98.21 96.04 97.32 96.91 96.75
      Si 2.002 2.015 2.002 2.004 1.936 1.897 1.896 1.913 1.904 1.860 1.848 1.909 1.889 1.876 1.989
      Al(ⅳ) 0.000 0.000 0.000 0.000 0.064 0.103 0.104 0.087 0.097 0.140 0.152 0.091 0.111 0.124 0.011
      Al(ⅵ) 0.119 0.121 0.126 0.122 0.159 0.165 0.185 0.170 0.168 0.179 0.171 0.174 0.189 0.190 0.140
      Ti 0.006 0.006 0.006 0.006 0.004 0.004 0.003 0.004 0.003 0.018 0.018 0.004 0.005 0.004 0.002
      Cr 0.002 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.000 0.000 0.006
      Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.006 0.000
      Fe2+ 0.424 0.396 0.421 0.422 0.394 0.421 0.394 0.409 0.425 0.458 0.453 0.433 0.406 0.404 0.531
      Mn 0.010 0.011 0.012 0.012 0.009 0.008 0.008 0.007 0.008 0.009 0.010 0.009 0.008 0.007 0.012
      Mg 0.841 0.839 0.828 0.829 0.826 0.793 0.803 0.806 0.791 0.736 0.745 0.767 0.799 0.788 0.709
      Ca 0.525 0.521 0.526 0.527 0.532 0.542 0.530 0.530 0.538 0.532 0.524 0.540 0.517 0.523 0.522
      Na 0.017 0.028 0.027 0.026 0.047 0.059 0.066 0.053 0.056 0.055 0.061 0.051 0.063 0.074 0.027
      K 0.003 0.002 0.001 0.001 0.003 0.004 0.004 0.004 0.004 0.006 0.005 0.004 0.005 0.006 0.005
      Wo 28.88 29.02 29.01 29.03 29.40 29.74 29.45 29.37 29.59 29.73 29.00 29.98 28.87 29.02 28.98
      En 46.30 46.76 45.66 45.68 45.69 43.47 44.60 44.64 43.53 41.13 41.21 42.65 44.57 43.74 39.37
      Fs 23.86 22.69 23.84 23.88 22.32 23.54 22.30 23.04 23.80 26.05 26.40 24.57 23.06 23.15 30.18
      Ac 0.96 1.53 1.50 1.41 2.59 3.25 3.66 2.95 3.08 3.10 3.40 2.81 3.50 4.09 1.47
      Mg# 66.48 67.93 66.31 66.28 67.69 65.30 67.10 66.36 65.05 61.66 62.22 63.91 66.32 66.12 57.16
      Cr# 1.25 0.08 0.00 0.00 0.27 0.04 0.00 0.08 0.00 0.19 0.43 0.60 0.00 0.13 3.95
      Spot No. LJS-16 LJS-17 LJS-18 LJS-19 LJS-20 LJS-21 LJS-22 LJS-23 LJS-24 LJS-25 LJS-26 LJS-27 LJS-28 LJS-29 LJS-30
      SiO2 50.79 51.16 51.42 51.71 52.00 50.65 49.26 49.21 49.78 49.46 49.42 50.58 51.52 49.51 49.06
      TiO2 0.15 0.14 0.08 0.03 0.05 0.67 0.10 0.12 0.16 0.50 0.47 0.12 0.05 0.13 0.10
      Al2O3 5.56 4.22 3.73 3.67 2.84 4.40 6.67 6.83 6.57 5.76 4.90 4.31 3.46 5.31 5.55
      Cr2O3 0.12 0.12 0.10 0.15 0.18 0.17 0.18 0.15 0.12 0.07 0.14 0.09 0.09 0.07 0.03
      FeO* 12.97 13.20 16.19 16.67 15.78 14.96 12.51 12.51 11.59 12.52 13.79 16.89 16.07 16.62 16.57
      MnO 0.33 0.33 0.35 0.32 0.33 0.30 0.24 0.29 0.27 0.29 0.29 0.38 0.29 0.32 0.35
      MgO 14.12 15.11 12.30 12.65 12.90 12.79 14.12 13.94 14.59 14.81 13.28 11.85 12.58 11.59 11.28
      CaO 12.96 12.48 12.93 12.61 12.83 12.95 13.06 13.02 12.98 13.14 13.02 12.37 13.15 12.62 12.84
      Na2O 0.66 0.47 0.48 0.46 0.35 0.51 0.85 0.80 0.77 0.68 0.65 0.55 0.48 0.60 0.64
      K2O 0.08 0.09 0.08 0.11 0.08 0.12 0.08 0.10 0.09 0.09 0.10 0.10 0.08 0.13 0.15
      P2O5 0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.00 0.01 0.00 0.01 0.00 0.05 0.01 0.00
      NiO 0.07 0.00 0.02 0.04 0.08 0.02 0.07 0.03 0.02 0.04 0.03 0.00 0.04 0.02 0.02
      Total 97.80 97.30 97.69 98.42 97.42 97.55 97.16 97.00 96.94 97.36 96.12 97.24 97.85 96.92 96.58
      Si 1.922 1.945 1.975 1.973 1.998 1.941 1.879 1.879 1.891 1.884 1.918 1.957 1.977 1.925 1.917
      Al(ⅳ) 0.078 0.055 0.025 0.027 0.002 0.059 0.121 0.121 0.109 0.116 0.082 0.043 0.023 0.075 0.083
      Al(ⅵ) 0.170 0.134 0.144 0.138 0.127 0.140 0.179 0.187 0.186 0.142 0.142 0.154 0.133 0.168 0.173
      Ti 0.004 0.004 0.002 0.001 0.001 0.019 0.003 0.004 0.006 0.014 0.014 0.004 0.001 0.004 0.003
      Cr 0.004 0.004 0.003 0.005 0.005 0.005 0.006 0.005 0.004 0.002 0.004 0.003 0.003 0.002 0.001
      Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
      Fe2+ 0.413 0.422 0.526 0.537 0.514 0.484 0.399 0.400 0.370 0.399 0.450 0.552 0.521 0.544 0.544
      Mn 0.010 0.011 0.011 0.010 0.011 0.010 0.008 0.009 0.009 0.009 0.010 0.013 0.010 0.011 0.012
      Mg 0.797 0.856 0.704 0.720 0.739 0.731 0.803 0.793 0.826 0.841 0.768 0.684 0.719 0.672 0.657
      Ca 0.526 0.508 0.532 0.516 0.528 0.532 0.534 0.533 0.528 0.536 0.542 0.513 0.541 0.526 0.537
      Na 0.049 0.034 0.036 0.034 0.026 0.038 0.063 0.059 0.057 0.050 0.049 0.042 0.036 0.046 0.049
      K 0.004 0.005 0.004 0.006 0.004 0.006 0.004 0.005 0.004 0.004 0.005 0.005 0.004 0.007 0.008
      Wo 29.28 27.75 29.41 28.38 29.06 29.62 29.54 29.68 29.52 29.21 29.78 28.46 29.60 29.25 29.88
      En 44.40 46.74 38.93 39.60 40.67 40.72 44.44 44.20 46.18 45.82 42.26 37.92 39.39 37.37 36.54
      Fs 23.61 23.63 29.69 30.15 28.85 27.53 22.53 22.82 21.13 22.23 25.26 31.31 29.04 30.84 30.89
      Ac 2.71 1.88 1.97 1.87 1.42 2.12 3.49 3.30 3.18 2.74 2.70 2.31 1.97 2.53 2.70
      Mg# 65.85 66.97 57.26 57.25 59.00 60.14 66.79 66.47 69.10 67.84 63.08 55.33 58.01 55.27 54.71
      Cr# 1.43 1.87 1.80 2.71 3.96 2.50 1.80 1.47 1.18 0.84 1.88 1.35 1.70 0.82 0.31
      Spot No. LJS-31 LJS-32 LJS-33 LJS-34 LJS-35 LJS-36 LJS-37 LJS-38 LJS-39 LJS-40 LJS-41 LJS-42 LJS-43 LJS-44 LJS-45
      SiO2 49.06 50.49 49.65 50.58 50.07 52.19 51.69 51.82 51.40 51.22 52.02 51.68 49.74 50.81 51.13
      TiO2 0.12 0.10 0.12 0.13 0.07 0.09 0.02 0.04 0.08 0.43 0.09 0.09 0.14 0.05 0.06
      Al2O3 5.47 4.68 5.77 4.96 4.04 3.48 3.60 3.57 3.47 3.17 3.59 3.94 5.34 3.82 3.83
      Cr2O3 0.18 0.14 0.14 0.00 0.07 0.06 0.08 0.13 0.05 0.06 0.07 0.03 0.04 0.04 0.10
      FeO* 17.01 15.33 15.97 12.85 16.79 15.18 15.69 15.02 15.46 15.28 15.05 15.43 13.92 15.54 15.96
      MnO 0.30 0.32 0.31 0.23 0.35 0.28 0.35 0.33 0.27 0.29 0.29 0.34 0.30 0.28 0.35
      MgO 11.64 12.68 12.34 14.15 11.95 13.54 12.91 13.17 13.02 12.96 13.07 12.88 13.26 12.65 12.47
      CaO 12.66 12.85 12.97 12.99 12.66 12.93 13.19 13.02 12.86 13.29 12.89 12.79 13.07 13.10 12.72
      Na2O 0.61 0.59 0.73 0.74 0.58 0.42 0.46 0.41 0.49 0.36 0.40 0.50 0.64 0.41 0.47
      K2O 0.14 0.12 0.13 0.09 0.11 0.09 0.09 0.09 0.09 0.07 0.09 0.10 0.14 0.09 0.08
      P2O5 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.01 0.00 0.00 0.04 0.02 0.02 0.01 0.00
      NiO 0.00 0.09 0.02 0.01 0.00 0.00 0.00 0.03 0.06 0.05 0.08 0.01 0.02 0.00 0.06
      Total 97.17 97.37 98.13 96.72 96.70 98.28 98.09 97.63 97.24 97.18 97.67 97.8 96.61 96.79 97.23
      Si 1.908 1.942 1.903 1.935 1.953 1.980 1.973 1.980 1.977 1.973 1.986 1.973 1.919 1.966 1.972
      Al(ⅳ) 0.092 0.058 0.097 0.065 0.047 0.020 0.027 0.020 0.023 0.027 0.014 0.027 0.081 0.034 0.028
      Al(ⅵ) 0.159 0.154 0.164 0.159 0.139 0.135 0.135 0.141 0.135 0.117 0.147 0.151 0.162 0.140 0.146
      Ti 0.003 0.003 0.003 0.004 0.002 0.003 0.001 0.001 0.002 0.013 0.003 0.003 0.004 0.001 0.002
      Cr 0.006 0.004 0.004 0.000 0.002 0.002 0.002 0.004 0.001 0.002 0.002 0.001 0.001 0.001 0.003
      Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
      Fe2+ 0.555 0.497 0.513 0.413 0.551 0.487 0.506 0.486 0.502 0.498 0.487 0.498 0.451 0.508 0.520
      Mn 0.010 0.010 0.010 0.008 0.012 0.009 0.011 0.011 0.009 0.010 0.009 0.011 0.010 0.009 0.012
      Mg 0.675 0.727 0.705 0.807 0.695 0.766 0.735 0.750 0.746 0.745 0.744 0.733 0.763 0.730 0.717
      Ca 0.528 0.530 0.533 0.532 0.529 0.526 0.540 0.533 0.530 0.549 0.527 0.523 0.540 0.543 0.526
      Na 0.046 0.044 0.054 0.055 0.044 0.031 0.034 0.031 0.036 0.027 0.030 0.037 0.048 0.031 0.035
      K 0.007 0.006 0.006 0.004 0.005 0.004 0.005 0.004 0.004 0.003 0.004 0.005 0.007 0.004 0.004
      Wo 29.11 29.30 29.35 29.33 28.90 28.92 29.56 29.46 29.06 30.02 29.34 29.02 29.82 29.85 29.05
      En 37.21 40.22 38.86 44.45 37.97 42.12 40.25 41.44 40.93 40.74 41.38 40.67 42.10 40.08 39.62
      Fs 31.17 28.05 28.82 23.18 30.73 27.26 28.32 27.42 28.02 27.76 27.62 28.25 25.45 28.39 29.39
      Ac 2.52 2.44 2.97 3.04 2.40 1.70 1.87 1.69 1.98 1.48 1.66 2.05 2.62 1.68 1.94
      Mg# 54.85 59.41 57.89 66.13 55.78 61.14 59.23 60.70 59.78 59.93 60.43 59.54 62.83 58.96 57.95
      Cr# 2.15 1.99 1.59 0.00 1.12 1.08 1.46 2.31 0.88 1.17 1.28 0.50 0.53 0.68 1.75
      注:阳离子数的计算以6个氧原子数为基准;Mg#=100×Mg/(Mg+Fe2+),Cr#=100×Cr/(Cr+Al),Wo=100×Ca/(Ca+Mg+Fe2+),En=100×Mg/(Ca+Mg+Fe2+),Fs=100×Fe2+/(Ca+Mg+Fe2+).
      下载: 导出CSV

      表  2  罗家山辉长岩中斜长石电子探针成分分析结果(%)

      Table  2.   Chemical composition (%) of plagioclase in the Luojiashan gabbro

      Spot No. LJS-1 LJS-2 LJS-3 LJS-4 LJS-5 LJS-6 LJS-7 LJS-8 LJS-9 LJS-10 LJS-11 LJS-12 LJS-13 LJS-14 LJS-15 LJS-16
      SiO2 67.84 67.74 67.89 69.40 67.39 68.24 68.59 67.87 68.87 67.88 68.11 68.81 68.39 67.82 67.30 67.62
      TiO2 0.00 0.03 0.00 0.00 0.00 0.04 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.01
      Al2O3 19.37 19.74 19.36 20.29 19.53 19.64 19.61 19.25 20.24 19.40 19.26 20.18 19.85 18.79 18.96 19.60
      Cr2O3 0.00 0.00 0.00 0.03 0.01 0.01 0.02 0.00 0.00 0.01 0.03 0.01 0.00 0.00 0.00 0.00
      FeO* 0.06 0.04 0.00 0.07 0.08 0.00 0.01 0.09 0.07 0.05 0.02 0.06 0.10 0.03 0.09 0.06
      MnO 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.00 0.01 0.00
      MgO 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.01
      CaO 0.13 0.07 0.19 0.07 0.11 0.07 0.10 0.12 0.08 0.14 0.14 0.19 0.08 0.13 0.11 0.23
      Na2O 12.53 12.60 12.50 12.81 12.23 12.31 12.54 12.25 12.21 12.12 12.50 12.26 12.69 12.32 12.37 12.33
      K2O 0.05 0.05 0.07 0.05 0.15 0.04 0.07 0.05 0.05 0.07 0.04 0.07 0.06 0.06 0.05 0.06
      P2O5 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.06 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00
      NiO 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.02 0.01 0.04 0.02 0.00 0.00 0.00 0.00 0.03
      Total 99.99 100.28 100.04 102.73 99.58 100.35 100.94 99.74 101.56 99.72 100.16 101.62 101.20 99.16 98.90 99.95
      Si 2.978 2.966 2.978 2.966 2.973 2.979 2.979 2.986 2.970 2.984 2.985 2.969 2.969 2.998 2.987 2.970
      Al 1.002 1.019 1.001 1.022 1.015 1.011 1.004 0.998 1.029 1.005 0.995 1.026 1.015 0.979 0.992 1.015
      Ca 0.006 0.003 0.009 0.003 0.005 0.003 0.005 0.006 0.004 0.007 0.007 0.009 0.004 0.006 0.005 0.011
      Na 1.066 1.070 1.063 1.062 1.046 1.042 1.056 1.045 1.021 1.033 1.062 1.025 1.068 1.056 1.064 1.050
      K 0.003 0.003 0.004 0.003 0.009 0.002 0.004 0.003 0.003 0.004 0.002 0.004 0.003 0.003 0.003 0.003
      An 0.58 0.31 0.83 0.30 0.47 0.32 0.45 0.55 0.37 0.63 0.62 0.83 0.35 0.59 0.48 1.02
      Ab 99.16 99.43 98.81 99.44 98.73 99.48 99.16 99.19 99.38 99.01 99.18 98.80 99.34 99.12 99.27 98.66
      Or 0.26 0.26 0.36 0.27 0.80 0.21 0.39 0.26 0.25 0.37 0.19 0.37 0.30 0.29 0.25 0.32
      Spot No. LJS-17 LJS-18 LJS-19 LJS-20 LJS-21 LJS-22 LJS-23 LJS-24 LJS-25 LJS-26 LJS-27 LJS-28 LJS-29 LJS-30 LJS-31 LJS-32
      SiO2 66.84 66.06 68.26 67.56 67.89 67.94 67.43 68 70.38 65.93 68.15 68 67.92 67.08 68.01 67.84
      TiO2 0.00 0.00 0.00 0.00 0.06 0.00 0.02 0.02 0.02 0.00 0.01 0.00 0.04 0.00 0.01 0.52
      Al2O3 19.16 18.68 19.65 19.07 19.83 20.17 19.77 19.47 20.67 19.35 19.99 19.98 19.86 19.58 19.69 19.83
      Cr2O3 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00
      FeO* 0.09 0.09 0.06 0.09 0.03 0.08 0.07 0.01 0.12 0.68 0.06 0.10 0.01 0.02 0.09 0.16
      MnO 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00
      MgO 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.46 0.00 0.01 0.00 0.02 0.04 0.04
      CaO 0.13 0.22 0.05 0.19 0.07 0.26 0.17 0.07 0.22 0.19 0.22 0.17 0.20 0.30 0.14 0.53
      Na2O 12.21 11.62 12.28 12.43 12.45 11.71 12.29 12.51 7.34 11.35 11.09 12.40 12.14 11.48 12.34 12.40
      K2O 0.12 0.13 0.08 0.06 0.09 0.09 0.09 0.09 0.06 0.07 0.10 0.08 0.07 0.13 0.07 0.06
      P2O5 0.01 0.03 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.01 0.00 0.00 0.02
      NiO 0.00 0.02 0.00 0.04 0.00 0.04 0.02 0.00 0.03 0.01 0.02 0.00 0.04 0.00 0.00 0.02
      Total 98.58 96.83 100.39 99.45 100.48 100.29 99.88 100.19 98.87 98.08 99.63 100.76 100.30 98.61 100.4 101.42
      Si 2.977 2.990 2.980 2.984 2.967 2.966 2.965 2.978 3.048 2.975 2.984 2.963 2.970 2.976 2.973 2.960
      Al 1.006 0.997 1.011 0.992 1.021 1.038 1.024 1.005 1.055 1.029 1.032 1.026 1.023 1.024 1.014 1.020
      Ca 0.006 0.011 0.003 0.009 0.003 0.012 0.008 0.004 0.010 0.009 0.011 0.008 0.009 0.014 0.007 0.025
      Na 1.055 1.019 1.039 1.065 1.055 0.991 1.048 1.062 0.616 0.993 0.942 1.048 1.029 0.988 1.046 1.049
      K 0.007 0.007 0.005 0.003 0.005 0.005 0.005 0.005 0.003 0.004 0.005 0.004 0.004 0.007 0.004 0.003
      An 0.60 1.03 0.24 0.83 0.32 1.20 0.73 0.32 1.64 0.93 1.08 0.75 0.89 1.41 0.62 2.29
      Ab 98.76 98.26 99.33 98.87 99.19 98.32 98.81 99.23 97.81 98.67 98.35 98.84 98.75 97.88 98.99 97.41
      Or 0.64 0.71 0.43 0.30 0.49 0.48 0.46 0.44 0.54 0.39 0.57 0.41 0.36 0.71 0.39 0.30
      Spot No. LJS-33 LJS-34 LJS-35 LJS-36 LJS-37 LJS-38 LJS-39 LJS-40 LJS-41 LJS-42 LJS-43 LJS-44 LJS-45 LJS-46 LJS-47 LJS-48
      SiO2 67.90 66.02 67.10 67.82 66.69 65.28 67.85 68.15 67.42 68.37 68.50 64.41 65.13 66.85 66.59 67.12
      TiO2 0.00 0.04 0.01 0.00 0.02 0.00 0.00 0.01 0.01 0.02 0.00 0.04 0.01 0.00 0.00 0.00
      Al2O3 19.50 19.10 19.89 19.7 19.70 19.67 19.72 19.82 19.41 20.85 21.16 18.67 19.19 20.23 20.63 20.67
      Cr2O3 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.01 0.01 0.01 0.00
      FeO 0.09 0.12 0.42 0.16 0.55 1.11 0.04 0.13 0.05 0.49 0.37 0.15 0.12 0.32 0.51 0.40
      MnO 0.00 0.02 0.00 0.00 0.05 0.03 0.03 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.01 0.00
      MgO 0.01 0.00 0.51 0.06 0.45 0.87 0.00 0.00 0.00 0.33 0.23 0.01 0.03 0.12 0.25 0.27
      CaO 0.07 0.08 0.29 0.22 0.28 0.35 0.41 0.27 0.17 0.25 0.29 0.23 0.10 0.31 0.22 0.27
      Na2O 12.26 11.87 11.85 12.30 12.01 11.23 12.34 12.28 12.27 7.22 6.79 12.14 12.18 12.07 11.00 8.20
      K2O 0.07 0.17 0.08 0.09 0.07 0.09 0.11 0.09 0.09 0.09 0.08 0.11 0.22 0.08 0.09 0.09
      P2O5 0.02 0.01 0.12 0.00 0.00 0.01 0.00 0.03 0.01 0.00 0.02 0.07 0.04 0.03 0.00 0.00
      NiO 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.02 0.03 0.01 0.00 0.00
      Total 99.92 97.43 100.25 100.36 99.81 98.64 100.51 100.77 99.45 97.64 97.54 95.87 97.04 100.01 99.31 97.01
      Si 2.980 2.976 2.962 2.970 2.961 2.956 2.966 2.970 2.975 3.023 3.022 2.963 2.956 2.946 2.949 2.999
      Al 1.009 1.014 1.035 1.017 1.031 1.050 1.016 1.018 1.010 1.087 1.100 1.012 1.027 1.051 1.077 1.088
      Ca 0.003 0.004 0.014 0.010 0.013 0.017 0.019 0.013 0.008 0.012 0.014 0.011 0.005 0.014 0.011 0.013
      Na 1.043 1.037 1.014 1.044 1.034 0.986 1.046 1.037 1.050 0.619 0.581 1.083 1.072 1.031 0.945 0.710
      K 0.004 0.010 0.005 0.005 0.004 0.005 0.006 0.005 0.005 0.005 0.005 0.006 0.013 0.005 0.005 0.005
      An 0.31 0.34 1.31 0.96 1.28 1.69 1.78 1.19 0.77 1.86 2.30 1.03 0.43 1.38 1.11 1.79
      Ab 99.31 98.74 98.23 98.57 98.37 97.8 97.63 98.32 98.75 97.30 96.94 98.39 98.40 98.17 98.35 97.51
      Or 0.37 0.91 0.45 0.47 0.35 0.50 0.58 0.49 0.48 0.83 0.76 0.58 1.17 0.45 0.54 0.70
      下载: 导出CSV

      表  3  罗家山辉长岩的LA⁃ICP⁃MS锆石U⁃Pb测年数据

      Table  3.   The datas of LA⁃ICP⁃MS zircon U⁃Pb dating for Luojiashan gabbro

      点号 (10‒6) Th/U 比值 年龄(Ma)
      Th U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
      20020-01 332.10 427.71 0.78 0.073 00 0.000 97 1.762 89 0.026 97 0.174 92 0.001 48 1 014 18 1 032 10 1 039 8
      20020-02 1 213.61 964.01 1.26 0.065 39 0.001 02 1.143 21 0.022 26 0.126 58 0.001 17 787 25 774 11 768 7
      20020-03 1 098.56 2 087.20 0.53 0.073 64 0.000 69 1.820 21 0.042 39 0.178 20 0.003 26 1 032 22 1 053 15 1 057 18
      20020-04 258.06 2 279.32 0.11 0.071 61 0.000 65 1.620 16 0.023 20 0.163 78 0.001 49 975 15 978 9 978 8
      20020-05 265.15 335.47 0.79 0.114 19 0.001 15 5.375 51 0.076 13 0.341 20 0.003 06 1 867 13 1 881 12 1 892 15
      20020-06 2 526.81 3 793.33 0.67 0.076 60 0.000 88 1.336 90 0.024 20 0.126 47 0.001 78 1 111 17 862 11 768 10
      20020-07 1 921.89 4 594.95 0.42 0.071 41 0.000 70 1.249 55 0.033 06 0.126 52 0.002 97 969 24 823 15 768 17
      20020-08 990.66 1 309.82 0.76 0.157 49 0.001 83 9.887 60 0.130 64 0.454 90 0.003 70 2 429 12 2 424 12 2 417 16
      20020-09 3 274.53 3 856.46 0.85 0.075 21 0.000 75 1.773 08 0.022 63 0.171 03 0.001 32 1 074 14 1 036 8 1 018 7
      20020-10 281.17 291.25 0.97 0.069 47 0.002 05 1.209 18 0.035 65 0.126 66 0.001 51 913 41 805 16 769 9
      20020-11 236.87 494.63 0.48 0.194 32 0.001 66 14.210 64 0.193 05 0.531 46 0.005 06 2 779 11 2 764 13 2 748 21
      20020-12 559.39 987.38 0.57 0.156 83 0.001 95 9.461 85 0.120 01 0.438 92 0.004 89 2 422 10 2 384 12 2 346 22
      20020-13 2 313.97 981.55 2.36 0.076 00 0.000 78 1.910 09 0.025 36 0.182 96 0.001 38 1 095 15 1 085 9 1 083 8
      20020-14 1 013.84 516.34 1.96 0.071 84 0.001 14 1.642 52 0.030 27 0.166 45 0.002 00 981 19 987 12 993 11
      20020-15 821.93 2 067.25 0.40 0.083 36 0.000 85 2.327 43 0.031 82 0.203 62 0.001 87 1 278 13 1 221 10 1 195 10
      20020-16 481.61 1 346.66 0.36 0.073 34 0.001 31 1.671 15 0.022 82 0.161 44 0.001 25 1 023 16 998 9 965 7
      20020-17 4 601.43 3 687.12 1.25 0.080 90 0.000 69 1.853 19 0.023 11 0.166 46 0.001 27 1 219 13 1 065 8 993 7
      20020-18 1 274.70 2 095.80 0.61 0.074 00 0.000 68 1.534 40 0.022 77 0.150 53 0.001 55 1 041 15 944 9 904 9
      20020-19 381.27 398.60 0.96 0.077 33 0.001 06 2.041 26 0.033 45 0.191 72 0.001 55 1 130 20 1 129 11 1 131 8
      20020-20 387.97 300.11 1.29 0.078 03 0.001 30 1.729 86 0.034 04 0.160 73 0.001 58 1 148 24 1 020 13 961 9
      20020-21 6 175.99 3 514.19 1.76 0.074 97 0.000 92 1.310 99 0.020 51 0.126 85 0.001 46 1 068 15 851 9 770 8
      20020-22 140.41 275.20 0.51 0.082 14 0.001 40 2.494 45 0.053 64 0.220 68 0.002 96 1 249 22 1 270 16 1 285 16
      20020-23 336.39 612.38 0.55 0.066 54 0.001 00 1.543 99 0.024 78 0.168 83 0.001 60 824 18 948 10 1 006 9
      20020-24 619.07 2 432.08 0.25 0.083 32 0.000 90 2.436 07 0.057 46 0.211 39 0.003 57 1 277 22 1 253 17 1 236 19
      20020-25 2 434.84 6 471.75 0.38 0.072 91 0.001 26 1.269 53 0.028 60 0.126 75 0.001 56 1 011 26 832 13 769 9
      20020-26 3 481.25 7 347.11 0.47 0.060 37 0.000 70 1.051 34 0.020 61 0.126 82 0.001 74 617 21 730 10 770 10
      20020-27 159.94 238.88 0.67 0.069 04 0.003 19 2.107 38 0.062 80 0.195 08 0.004 82 900 28 1 151 21 1 149 26
      下载: 导出CSV

      表  4  罗家山辉长岩的单斜辉石‒熔体平衡温度、压力和深度

      Table  4.   Clinopyroxene-melt equilibrium temperatures, pressures and depth of Luojiashan gabbro

      Spot No. T(℃) P(GPa) D(km) Spot No. T(℃) P(GPa) D(km)
      LJS-1 1 284 1.53 50.49 LJS-24 1 291 2.22 73.26
      LJS-2 1 286 1.78 58.74 LJS-25 1 286 2.13 70.29
      LJS-3 1 285 1.77 58.41 LJS-26 1 286 2.11 69.63
      LJS-4 1 285 1.74 57.42 LJS-27 1 289 2.03 66.99
      LJS-5 1 288 2.10 69.3 LJS-28 1 284 1.93 63.69
      LJS-6 1 288 2.23 73.59 LJS-29 1 289 2.08 68.64
      LJS-7 1 291 2.30 75.90 LJS-30 1 288 2.12 69.96
      LJS-8 1 289 2.17 71.61 LJS-31 1 288 2.09 68.97
      LJS-9 1 288 2.21 72.93 LJS-32 1 287 2.06 67.98
      LJS-10 1 289 2.20 72.60 LJS-33 1 288 2.18 71.94
      LJS-11 1 290 2.26 74.58 LJS-34 1 288 2.19 72.27
      LJS-12 1 288 2.14 70.62 LJS-35 1 286 2.05 67.65
      LJS-13 1 292 2.28 75.24 LJS-36 1 286 1.85 61.05
      LJS-14 1 292 2.37 78.21 LJS-37 1 285 1.90 62.70
      LJS-15 1 287 1.76 58.08 LJS-38 1 286 1.84 60.72
      LJS-16 1 289 2.12 69.96 LJS-39 1 285 1.95 64.35
      LJS-17 1 287 1.92 63.36 LJS-40 1 282 1.76 58.08
      LJS-18 1 286 1.94 64.02 LJS-41 1 286 1.83 60.39
      LJS-19 1 287 1.91 63.03 LJS-42 1 287 1.96 64.68
      LJS-20 1 285 1.75 57.75 LJS-43 1 287 2.11 69.63
      LJS-21 1 286 1.97 65.01 LJS-44 1 285 1.84 60.72
      LJS-22 1 290 2.27 74.91 LJS-45 1 287 1.93 63.69
      注:1 GPa对应按33 km计算.
      下载: 导出CSV
    • Campbell, I. H., Borley, G. D., 1974. The Geochemistry of Pyroxenes from the Lower Layered Series of the Jimberlana Intrusion, Western Australia. Contributions to Mineralogy and Petrology, 47(4): 281-297. https://doi.org/10.1007/BF00390151
      Cui, X. Z., Jiang, X. S., Deng, Q., et al., 2016. Zircon U-Pb Geochronological Results of the Danzhou Group in Northern Guangxi and Their Implications for the Neoproterozoic Rifting Stages in South China. Geotectonica et Metallogenia, 40(5): 1049-1063 (in Chinese with English abstract).
      Deng, Q., Wang, J., Wang, Z. J., et al., 2016. Middle Neoproterozoic Magmatic Activities and Their Constraints on Tectonic Evolution of the Jiangnan Orogen. Geotectonica et Metallogenia, 40(4): 753-771 (in Chinese with English abstract).
      Ge, W. C., Li, X. H., Li, Z. X., et al., 2001. Mafic Intrusions in Longsheng Area: Age and Its Geological Implications. Chinese Journal of Geology, 36(1): 112-118 (in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2001.01.013
      Kou, C. H., Liu, Y. X., Li, T. D., et al., 2016. Geochronology and Geochemistry of Neoproterozoic Ultrabasic Rocks in the Western Segment of Jiangnan Orogenic Belt and Constraints on Their Sources. Acta Petrologica et Mineralogica, 35(6): 947-964 (in Chinese with English abstract).
      Kou, C. H., Liu, Y. X., Li, T. D., et al., 2017a. Mineralogical Characteristics of Clinopyroxene from the Neoproterozoic Changjie Olivine Pyroxenolite in Tongdao County, Western Hunan: An Evidence for the Intraplate Rift Origin. Geological Review, 63(4): 881-893 (in Chinese with English abstract).
      Kou, C. H., Liu, Y. X., Li, T. D., et al., 2017b. Mineralogy and Mineral Chemistry of the Jinche Gabbro in the Longsheng Area of Northern Guangxi in the Western Segment of the Jiangnan Orogen and Its Geological Significance. Acta Petrologica et Mineralogica, 36(1): 20-35 (in Chinese with English abstract).
      Kou, C. H., Liu, Y. X., Li, T. D., et al., 2021. Petrogenesis and Tectonic Implications of the Neoproterozoic Mafic-Ultramafic Rocks in the Western Jiangnan Orogen: Insights from in Situ Analysis of Clinopyroxenes. Lithos, 392-393: 106156. https://doi.org/10.1016/j.lithos.2021.106156
      Kou, C. H., Zhang, Z. C., Liao, B. L., et al., 2011. Mineralogy of Clinopyroxene in Jianchuan Picritic Porphyrite of Western Yunnan Province and Its Geological Significance. Acta Petrologica et Mineralogica, 30(3): 449-462 (in Chinese with English abstract).
      Leterrier, J., Maury, R. C., Thonon, P., et al., 1982. Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo-Volcanic Series. Earth and Planetary Science Letters, 59(1): 139-154. https://doi.org/10.1016/0012-821X(82)90122-4
      Li, J. H., Mu, J., 1999. Tectonic Constraints from Chinese Cratonic Blocks for the Reconstruction of Rodinia. Chinese Journal of Geology, 34(3): 259-272 (in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.1999.03.001
      Li, W. X., Li, X. H., Li, Z. X., et al., 2008. Obduction-Type Granites within the NE Jiangxi Ophiolite: Implications for the Final Amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research, 13(3): 288-301. https://doi.org/10.1016/j.gr.2007.12.010
      Li, X. H., 1999. U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and Implications for Rodinia Assembly. Precambrian Research, 97(1-2): 43-57. https://doi.org/10.1016/S0301-9268(99)00020-0
      Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1-2): 117-128. https://doi.org/10.1016/j.precamres.2009.07.004
      Li, X. H., Wang, X. C., Li, W. X., et al., 2008. Petrogenesis and Tectonic Significance of Neoproterozoic Basaltic Rocks in South China: From Orogenesis to Intracontinental Rifting. Geochimica, 37(4): 382-398 (in Chinese with English abstract).
      Li, Y. X., Yin, C. Q., Lin, S. F., et al., 2021. Geochronology and Geochemistry of Bimodal Volcanic Rocks from the Western Jiangnan Orogenic Belt: Petrogenesis, Source Nature and Tectonic Implication. Precambrian Research, 359: 106218. https://doi.org/10.1016/j.precamres.2021.106218
      Li, Z. X., Zhang, L. H., Powell, C. M., 1995. South China in Rodinia: Part of the Missing Link between Australia-East Antarctica and Laurentia? Geology, 23(5): 407-410. https://doi.org/10.1130/0091-7613(1995)0230407:scirpo>2.3.co;2 doi: 10.1130/0091-7613(1995)0230407:scirpo>2.3.co;2
      Liang, W. B., Guo, R. Q., Liu, G. P., et al., 2019. LA-ICP-MS Zircon U-Pb Age and Geochemistry of the Olivine Gabbro Dike in the Western Segment of Kuruktag, Xinjiang and Its Tectonic Significance. Bulletin of Geological Science and Technology, 38(1): 58-67 (in Chinese with English abstract).
      Lin, M. S., Peng, S. B., Jiang, X. F., et al., 2016. Geochemistry, Petrogenesis and Tectonic Setting of Neoproterozoic Mafic-Ultramafic Rocks from the Western Jiangnan Orogen, South China. Gondwana Research, 35: 338-356. https://doi.org/10.1016/j.gr.2015.05.015
      Lindsley, D. H., 1983. Pyroxene Thermometry. American Mineralogist, 68: 477-493.
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Y. Z., Qin, Y., Feng, Z. H., et al., 2021. New Geochronological and Geochemical Data of the Longsheng Mafic-Ultramafic Suite in Northern Guangxi, China, and Their Implications in Rodinia Breakup. Arabian Journal of Geosciences, 14(2): 1-18. https://doi.org/10.1007/s12517-020-06360-0
      Ludwig, K. R., 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Mircrosoft Excel. Berkeley Geochronology Center. Berkeley.
      McKenzie, D., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 29(3): 625-679. https://doi.org/10.1093/petrology/29.3.625
      Morimoto, N., Pabries, J., Ferguson, K., et al., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55-76. https://doi.org/10.1007/BF01226262
      Nisbet, E. G., Pearce, J. A., 1977. Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings. Contributions to Mineralogy and Petrology, 63(2): 149-160. https://doi.org/10.1007/BF00398776
      Putirka, K. D., Mikaelian, H., Ryerson, F., et al., 2003. New Clinopyroxene-Liquid Thermobarometers for Mafic, Evolved, and Volatile-Bearing Lava Compositions, with Applications to Lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10): 1542-1554. https://doi.org/10.2138/am-2003-1017
      Qi, L., Xu, Y. J., Cawood, P. A., et al., 2021. Implications for Supercontinent Reconstructions of Mid-Late Neoproterozoic Volcanic-Sedimentary Rocks from the Cathaysia Block, South China. Precambrian Research, 354: 106056. https://doi.org/10.1016/j.precamres.2020.106056
      Qin, X. F., Wang, Z. Q., Wang, T., et al., 2015. The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi: Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt. Acta Geoscientica Sinica, 36(3): 283-292 (in Chinese with English abstract).
      Qin, Y., Feng, Z. H., Wan, L., et al., 2022. LA-ICP-MS Zircon U-Pb Age of Shanglang Metamafic Rocks in Longsheng, Northern Guangxi and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 52(1): 109-133 (in Chinese with English abstract).
      Qin, Y., Feng, Z. H., Huang, J. Z., et al., 2021. Discovery of Sanmen Ductile Shear Zone in North Guangxi and Its Tectonic Significances. Earth Science, 46(11): 4017-4032 (in Chinese with English abstract).
      Qiu, J. X., Liao, Q. A., 1996. Petrogenesis and Cpx Mineral Chemistry of Cenozoic Basalts from Zhejiang and Fujian of Eastern China. Volcanology & Mineral Resources, 17(S1): 16-25 (in Chinese with English abstract).
      Seyler, M., Bonatti, E., 1994. Na, AlIV and AlVI in Clinopyroxenes of Subcontinental and Suboceanic Ridge Peridotites: A Clue to Different Melting Processes in the Mantle? Earth and Planetary Science Letters, 122(3-4): 281-289. https://doi.org/10.1016/0012-821X(94)90002-7
      Simith, J. V., Brown, W. L., 1974. Feldspar Minerals. Springer-Verlag, Berlin.
      Streck, M. J., 2008. Mineral Textures and Zoning as Evidence for Open System Processes. Reviews in Mineralogy and Geochemistry, 69(1): 595-622. https://doi.org/10.2138/rmg.2008.69.15
      Su, H. M., Jiang, S. Y., Shao, J. B., et al., 2021. New Identification and Significance of Early Cretaceous Mafic Rocks in the Interior South China Block. Scientific Reports, 11: 11396. https://doi.org/10.1038/s41598-021-91045-1
      Sun, C. M., 1994. Genetic Mineralogy of Pyroxenes from the Yanbian Proterozoic Ophiolites (Sichuan, China), and Its Geotectonic Implications. Mineralogy and Petrology, 14(3): 1-15 (in Chinese with English abstract).
      Tian, Y., Wang, W., Wang, L. Z., et al., 2020. Age and Petrogenesis of the Yingyangguan Volcanic Rocks: Implications on Constraining the Boundary between Yangtze and Cathaysia Blocks, South China. Lithos, 376-377: 105775. https://doi.org/10.1016/j.lithos.2020.105775
      Vuorinen, J. H., Hålenius, U., Whitehouse, M. J., et al., 2005. Compositional Variations (Major and Trace Elements) of Clinopyroxene and Ti-Andradite from Pyroxenite, Ijolite and Nepheline Syenite, Alnö Island, Sweden. Lithos, 81(1-4): 55-77. https://doi.org/10.1016/j.lithos.2004.09.021
      Wang, J., Jiang, X. S., Zhuo, J. W., et al., 2019. Neoproterozoic Rift Basin Evolution and Lithofacies Paleogeography in South China. Science Press, Beijing (in Chinese).
      Wang, J., Liu, B. J., Pan, G. T., 2001. Neoproterozoic Rifting History of South China Significance to Rodinia Breakup. Mineralogy and Petrology, 21(3): 135-145 (in Chinese with English abstract).
      Wang, L. Z., Tian, Y., Li, X., et al., 2020. Composition and Deformation of the Yingyangguan Tectonic Mélange in Eastern Guangxi. Geotectonica et Metallogenia, 44(3): 340-356 (in Chinese with English abstract).
      Wang, L. Z., Tu, B., Tian, Y., et al., 2019. New Progress in 1: 50 000 Regional Geological and Mineral Survey in Yingyangguan Area, Eastern Guangxi. Geology and Mineral Resources of South China, 35(3): 283-292 (in Chinese with English abstract).
      Wang, P. M., Yu, J. H., Sun, T., et al., 2012. Geochemistry and Detrital Zircon Geochronology of Neoproterozoic Sedimentary Rocks in Eastern Hunan Province and Their Tectonic Significance. Acta Petrologica Sinica, 28(12): 3841-3857 (in Chinese with English abstract).
      Wang, X. C., Li, Z. X., Li, X. H., et al., 2011. Geochemical and Hf-Nd Isotope Data of Nanhua Rift Sedimentary and Volcaniclastic Rocks Indicate a Neoproterozoic Continental Flood Basalt Provenance. Lithos, 127(3-4): 427-440. https://doi.org/10.1016/j.lithos.2011.09.020
      Wang, X. L., Shu, L. S., Xing, G. F., et al., 2012. Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from Ca. 800-760 Ma Volcanic Rocks. Precambrian Research, 222-223: 404-423. https://doi.org/10.1016/j.precamres.2011.07.003
      Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen: Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1-2): 117-131. https://doi.org/10.1016/j.precamres.2007.06.005
      Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2006. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China: Implications for Tectonic Evolution. Precambrian Research, 145(1-2): 111-130. https://doi.org/10.1016/j.precamres.2005.11.014
      Wang, Y. J., Zhang, F. F., Fan, W. M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. https://doi.org/10.1029/2010TC002750
      Xu, X. S., Liu, W., Men, Y. P., et al., 2012. Probe into the Tectonic Nature of Neoproterozoic Southern Hunan-Northern Guangxi Marine Basin. Acta Geologica Sinica, 86(12): 1890-1904 (in Chinese with English abstract).
      Yin, F. G., Wan, F., Chen, M., 2003. The Multi-Arc Basin System on the South-Eastern Margin of the Pan-Cathaysian Continental Group. Journal of Chengdu University of Technology (Science & Technology Edition), 30(2): 126-131 (in Chinese with English abstract).
      Yin, H. F., Wu, S. B., Du, Y. S., et al., 1999. South China Defined as Part of Tethyan Archipelagic Ocean System. Earth Science, 24(1): 1-12 (in Chinese with English abstract).
      Zhang, C. L., Qin, Y., Feng, Z. H., et al., 2020. Chronological Characteristics and Significance of Diaozhushan Diabase in Longsheng, Northern Guangxi. Journal of Guilin University of Technology, 40(1): 1-14 (in Chinese with English abstract).
      Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. China South China Continental Structure and Problems. Science in China (Series D), 43(10): 1553-1582 (in Chinese).
      Zhang, Z. C., Mahoney, J. J., Mao, J. W., et al., 2006. Geochemistry of Picritic and Associated Basalt Flows of the Western Emeishan Flood Basalt Province, China. Journal of Petrology, 47(10): 1997-2019. https://doi.org/10.1093/petrology/egl034
      Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004
      Zhou, H. W., Li, X. H., Wang, H. R., et al., 2002. U-Pb Zircon Geochronology of Basic Volcanic Rocks of the Yingyangguan Group in Hezhou, Guangxi, and Its Tectonic Implications. Geological Review, 48(S1): 22-25 (in Chinese with English abstract). http://www.researchgate.net/publication/284108020_U-Pb_zircon_geochronology_of_basic_volcanic_rocks_within_the_Yingyangguan_Group_in_Hezhou_Guangxi_and_its_tectonic_implications?ev=auth_pub
      Zhou, J. B., Li, X. H., Ge, W. C., et al., 2007. Geochronology, Mantle Source and Geological Implications of Neoproterozoic Ultramafic Rocks from Yuanbaoshan Area of Northern Guangxi. Geological Science and Technology Information, 26(1): 11-18 (in Chinese with English abstract).
      Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Some Neoproterozoic Geological Events Involved in the Development of the Jiangnan Orogen. Geological Journal of China Universities, 15(4): 453-459 (in Chinese with English abstract).
      Zhou, J. C., Wang, X. L., Qiu, J. S., 2014. Neoproterozoic Tectonic-Magmatic Evolution of Jiangnan Orogenic Belt. Science Press, Beijing (in Chinese).
      Zhou, X. Y., Yu, J. H., Wang, L. J., et al., 2015. Compositions and Formation of the Basement Metamorphic Rocks in Yunkai Terrane, Western Guangdong Province, South China. Acta Petrologica Sinica, 31(3): 855-882 (in Chinese with English abstract).
      崔晓庄, 江新胜, 邓奇, 等, 2016. 桂北地区丹洲群锆石U-Pb年代学及对华南新元古代裂谷作用期次的启示. 大地构造与成矿学, 40(5): 1049-1063. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201605014.htm
      邓奇, 王剑, 汪正江, 等, 2016. 江南造山带新元古代中期(830~750 Ma)岩浆活动及对构造演化的制约. 大地构造与成矿学, 40(4): 753-771. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201604010.htm
      葛文春, 李献华, 李正祥, 等, 2001. 龙胜地区镁铁质侵入体: 年龄及其地质意义. 地质科学, 36(1): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD202302007.htm
      寇彩化, 刘燕学, 李廷栋, 等, 2016. 江南造山带西段新元古代超基性岩体年代学和岩石地球化学研究及其对源区的约束. 岩石矿物学杂志, 35(6): 947-964. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201606003.htm
      寇彩化, 刘燕学, 李廷栋, 等, 2017a. 湘西通道地区新元古代长界橄榄辉石岩中单斜辉石矿物学特征及其板内裂谷成因论证. 地质论评, 63(4): 881-893. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201704004.htm
      寇彩化, 刘燕学, 李廷栋, 等, 2017b. 江南造山带西段桂北龙胜地区金车辉长岩矿物化学研究及其地质意义. 岩石矿物学杂志, 36(1): 20-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201701002.htm
      寇彩化, 张招崇, 廖宝丽, 等, 2011. 滇西剑川苦橄玢岩中单斜辉石的矿物学特征及其地质意义. 岩石矿物学杂志, 30(3): 449-462. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201103011.htm
      李江海, 穆剑, 1999. 我国境内格林威尔期造山带的存在及其对中元古代末期超大陆再造的制约. 地质科学, 34(3): 259-272. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199903001.htm
      李献华, 王选策, 李武显, 等, 2008. 华南新元古代玄武质岩石成因与构造意义: 从造山运动到陆内裂谷. 地球化学, 37(4): 382-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200804011.htm
      梁文博, 郭瑞清, 刘桂萍, 等, 2019. 新疆库鲁克塔格西段橄榄辉长岩脉LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义. 地质科技通报, 38(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901007.htm
      覃小锋, 王宗起, 王涛, 等, 2015. 桂东鹰扬关群火山岩时代和构造环境的重新厘定: 对钦杭结合带西南段构造格局的制约. 地球学报, 36(3): 283-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201503003.htm
      秦亚, 冯佐海, 万磊, 等, 2022. 桂北龙胜上朗变镁铁质岩锆石U-Pb年龄及其地质意义. 吉林大学学报(地球科学版), 52(1): 109-133. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202201008.htm
      秦亚, 冯佐海, 黄靖哲, 等, 2021. 桂北地区三门韧性剪切带的厘定及其构造意义. 地球科学, 46(11): 4017-4032. doi: 10.3799/dqkx.2020.353?viewType=HTML
      邱家骧, 廖群安, 1996. 浙闽新生代玄武岩的岩石成因学与Cpx矿物化学. 火山地质与矿产, 17(S1): 16-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ1996Z1001.htm
      孙传敏, 1994. 四川盐边元古代蛇绿岩中辉石的成因矿物学及其大地构造意义. 矿物岩石, 14(3): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS403.000.htm
      王剑, 江新胜, 卓皆文, 2019. 华南新元古代裂谷盆地演化与岩相古地理. 北京: 科学出版社.
      王剑, 刘宝珺, 潘桂棠, 2001. 华南新元古代裂谷盆地演化: Rodinia超大陆解体的前奏. 矿物岩石, 21(3): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200103020.htm
      王令占, 田洋, 李响, 等, 2020. 桂东鹰扬关构造混杂岩物质组成及变形特征. 大地构造与成矿学, 44(3): 340-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202003002.htm
      王令占, 涂兵, 田洋, 等, 2019. 桂东鹰扬关地区1∶5万区域地质矿产调查成果与主要进展. 华南地质与矿产, 35(3): 283-292. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201903001.htm
      王鹏鸣, 于津海, 孙涛, 等, 2012. 湘东新元古代沉积岩的地球化学和碎屑锆石年代学特征及其构造意义. 岩石学报, 28(12): 3841-3857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212005.htm
      许效松, 刘伟, 门玉澎, 等, 2012. 对新元古代湘桂海盆及邻区构造属性的探讨. 地质学报, 86(12): 1890-1904. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201212004.htm
      尹福光, 万方, 陈明, 2003. 泛华夏大陆群东南缘多岛弧盆系统. 成都理工大学学报(自然科学版), 30(2): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200302002.htm
      殷鸿福, 吴顺宝, 杜远生, 等, 1999. 华南是特提斯多岛洋体系的一部分. 地球科学, 24(1): 1-12. http://www.earth-science.net/article/id/749
      张成龙, 秦亚, 冯佐海, 等, 2020. 桂北龙胜吊竹山辉绿岩年代学及其地质意义. 桂林理工大学学报, 40(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX202001001.htm
      张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学(D辑), 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm
      周汉文, 李献华, 王汉荣, 等, 2002. 广西鹰扬关群基性火山岩的锆石U-Pb年龄及其地质意义. 地质论评, 48(S1): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1005.htm
      周继彬, 李献华, 葛文春, 等, 2007. 桂北元宝山地区超镁铁岩的年代、源区及其地质意义. 地质科技情报, 26(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200701001.htm
      周金城, 王孝磊, 邱检生, 2009. 江南造山带形成过程中若干新元古代地质事件. 高校地质学报, 15(4): 453-459. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200904003.htm
      周金城, 王孝磊, 邱检生, 2014. 江南造山带新元古代构造-岩浆演化. 北京: 科学出版社.
      周雪瑶, 于津海, 王丽娟, 等, 2015. 粤西云开地区基底变质岩的组成和形成. 岩石学报, 31(3): 855-882 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201503018.htm
    • 加载中
    图(9) / 表(4)
    计量
    • 文章访问数:  274
    • HTML全文浏览量:  134
    • PDF下载量:  48
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-02-06
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回