• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于ICEEMDAN的锚杆锚固缺陷超声导波无损检测

    刘磊磊 朱骏 张绍和 孙平贺

    刘磊磊, 朱骏, 张绍和, 孙平贺, 2025. 基于ICEEMDAN的锚杆锚固缺陷超声导波无损检测. 地球科学, 50(9): 3691-3703. doi: 10.3799/dqkx.2022.102
    引用本文: 刘磊磊, 朱骏, 张绍和, 孙平贺, 2025. 基于ICEEMDAN的锚杆锚固缺陷超声导波无损检测. 地球科学, 50(9): 3691-3703. doi: 10.3799/dqkx.2022.102
    Liu Leilei, Zhu Jun, Zhang Shaohe, Sun Pinghe, 2025. Non-Destructive Detection of Anchor Defects Using Ultrasonic Guided Wave and ICEEMDAN Method. Earth Science, 50(9): 3691-3703. doi: 10.3799/dqkx.2022.102
    Citation: Liu Leilei, Zhu Jun, Zhang Shaohe, Sun Pinghe, 2025. Non-Destructive Detection of Anchor Defects Using Ultrasonic Guided Wave and ICEEMDAN Method. Earth Science, 50(9): 3691-3703. doi: 10.3799/dqkx.2022.102

    基于ICEEMDAN的锚杆锚固缺陷超声导波无损检测

    doi: 10.3799/dqkx.2022.102
    基金项目: 

    中南大学中央高校基本科研业务费专项资金项目 2020zzts678

    详细信息
      作者简介:

      刘磊磊(1987-),男,博士,副教授,主要从事地质灾害防治与风险控制方面的研究工作. ORCID:0000-0001-7799-6027. E-mail:csulll@foxmail.com

      通讯作者:

      孙平贺, E-mail: pinghesun@csu.edu.cn

    • 中图分类号: P631

    Non-Destructive Detection of Anchor Defects Using Ultrasonic Guided Wave and ICEEMDAN Method

    • 摘要: 为了对锚固体内部缺陷进行定量检测,提出利用有限元方法模拟超声导波在缺陷锚杆中的传播过程,采用改进的自适应噪声完备集合经验模态分解(ICEEMDAN)方法处理超声导波反射信号,并根据分解后的固有模态函数的峰值,获取缺陷反射波的到达时间,从而确定锚固缺陷的位置及长度.参数分析表明,基于所提出方法推断的缺陷位置与实际情况吻合较好,并且单个缺陷长度的计算误差为3.3%,多个缺陷长度的计算误差在10%以内.因此,基于ICEEMDAN的超声导波法可以作为锚杆内部缺陷检测的有效手段.

       

    • 图  1  锚固锚杆示意

      a.锚固密实锚杆;b.锚固缺陷锚杆

      Fig.  1.  Schematic diagram of anchoring bolt

      图  2  锚杆几何模型

      a.自由锚杆;b.全长锚固密实锚杆;c.锚杆自由段为0.3 m;d.缺陷位于锚固体上部;e.缺陷位于锚固体中部;f.缺陷位于锚固体下部;g.一个长度为0.9 m的缺陷;h;两个长度为0.45 m的缺陷;i. 三个长度为0.3 m的缺陷;j. 一个长度为0.6 m的缺陷;k.两个长度为0.6 m的缺陷

      Fig.  2.  Geometric models of anchors

      图  3  锚杆有限元模型

      Fig.  3.  The finite element models of anchors

      图  4  激励信号

      Fig.  4.  Excitation signal

      图  5  不同缺陷位置的锚杆中超声导波波形

      a.原始信号;b.放大后的信号

      Fig.  5.  Waveforms of ultrasonic guided waves in bolts with different defect positions

      图  6  不同缺陷个数的锚杆中超声导波波形

      a.原始信号;b.放大后的信号

      Fig.  6.  Waveforms of ultrasonic guided waves in bolts with different numbers of defects

      图  7  锚杆中超声导波波形

      a.自由锚杆;b.全长锚固密实锚杆

      Fig.  7.  Waveforms of ultrasonic guided waves in bolts

      图  8  锚杆原始信号

      Fig.  8.  The original signal of bolt

      图  9  原始信号的ICEEMDAN分解结果

      a~j表示IMF1~IMF10

      Fig.  9.  The decomposition results of the original signal by ICEEMDAN

      图  10  缺陷锚杆中的超声导波位移云图

      Fig.  10.  Displacement cloud images of ultrasonic guided wave in defective bolt

      图  11  单一缺陷且长度为0.6 m时原始信号的ICEEMDAN分解结果(IMF2)

      Fig.  11.  The decomposition results of the original signal by ICEEMDAN(IMF2) under a single defect of 0.6 m

      图  12  单一缺陷且长度为0.9 m时原始信号的ICEEMDAN分解结果(IMF2)

      Fig.  12.  The decomposition results of the original signal by ICEEMDAN(IMF2) under a single defect of 0.9 m

      图  13  两个缺陷且缺陷长为0.45 m时原始信号的ICEEMDAN分解结果(IMF2)

      Fig.  13.  The decomposition results of the original signal by ICEEMDAN(IMF2) under two equal length defects of 0.45 m

      图  14  两个缺陷且缺陷长为0.6 m时原始信号的ICEEMDAN分解结果(IMF2)

      Fig.  14.  The decomposition results of the original signal by ICEEMDAN(IMF2) under two equal length defects of 0.6 m

    • Bai, X. Y., Zhang, M. Y., Kuang, Z., et al., 2020. Load Distribution Function Model of Full-Length Bond GFRP Antifloating Anchor. Journal of Central South University (Science and Technology), 51(7): 1977-1988 (in Chinese with English abstract).
      Beard, M. D., Lowe, M. J. S., Cawley, P., 2003. Ultrasonic Guided Waves for Inspection of Grouted Tendons and Bolts. Journal of Materials in Civil Engineering, 15(3): 212-218. https://doi.org/10.1061/(asce)0899-1561(2003)15:3(212)
      Cheng, J. L., Sun, X. Y., Feng, L., et al., 2012. Experimental Study on Non-Destructive Testing of Rock Bolts Based on Pseudo-Random Signal. Safety Science, 50(4): 783-786. https://doi.org/10.1016/j.ssci.2011.08.034
      Colominas, M. A., Schlotthauer, G., Torres, M. E., 2014. Improved Complete Ensemble EMD: A Suitable Tool for Biomedical Signal Processing. Biomedical Signal Processing and Control, 14: 19-29. https://doi.org/10.1016/j.bspc.2014.06.009
      Cui, Y., Zou, D. H., 2006. Numerical Simulation of Attenuation and Group Velocity of Guided Ultrasonic Wave in Grouted Rock Bolts. Journal of Applied Geophysics, 59(4): 337-344. https://doi.org/10.1016/j.jappgeo.2006.04.003
      Huang, N. E., Shen, Z., Long, S. R., et al., 1998. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proceedings of the Royal Society of London Series A, 454(1971): 903-998. https://doi.org/10.1098/rspa.1998.0193
      Lee, I. M., Han, S. N., Kim, H. J., et al., 2012. Evaluation of Rock Bolt Integrity Using Fourier and Wavelet Transforms. Tunnelling and Underground Space Technology, 28: 304-314. https://doi.org/10.1016/j.tust.2011.11.009
      Lee, J. S., Min, B. K., Yu, J. D., et al. 2008. Applicability of Non-Destructive Evaluation Technique for Rock Bolt Integrity Using Time-Frequency Analysis. Proceedings of the World Tunnel Congress-2008.
      Madenga, V., Zou, D. H., Zhang, C., 2006. Effects of Curing Time and Frequency on Ultrasonic Wave Velocity in Grouted Rock Bolts. Journal of Applied Geophysics, 59(1): 79-87. https://doi.org/10.1016/j.jappgeo.2005.08.001
      Maio, L., Memmolo, V., Ricci, F., et al., 2015. Ultrasonic Wave Propagation in Composite Laminates by Numerical Simulation. Composite Structures, 121: 64-74. https://doi.org/10.1016/j.compstruct.2014.10.014
      Moser, F., Jacobs, L. J., Qu, J. M., 1999. Modeling Elastic Wave Propagation in Waveguides with the Finite Element Method. NDT & E International, 32(4): 225-234. https://doi.org/10.1016/S0963-8695(98)00045-0
      Rong, X., Lin, P., Liu, J., et al., 2017. A New Approach of Waveform Interpretation Applied in Nondestructive Testing of Defects in Rock Bolts Based on Mode Identification. Mathematical Problems in Engineering, 2017: 7920649. https://doi.org/10.1155/2017/7920649
      Rucka, M., Zima, B., 2015. Elastic Wave Propagation for Condition Assessment of Steel Bar Embedded in Mortar. International Journal of Applied Mechanics and Engineering, 20(1): 159-170. https://doi.org/10.1515/ijame-2015-0011
      Shi, Z. M., Liu, L., Peng, M., et al., 2018. Non-Destructive Testing of Full-Length Bonded Rock Bolts Based on HHT Signal Analysis. Journal of Applied Geophysics, 151: 47-65. https://doi.org/10.1016/j.jappgeo.2018.02.001
      Song, W., 2013. The Development and Application of Testing Instrument of Bolt Anchorage Based on Chirp Signal (Dissertation). Yangtze University, Jingzhou (in Chinese with English abstract).
      Sun, R. L., He, S. W., Huang, K., 2021. Study on the Influencing Factors of Specific Yield of Unconfined Aquifer Using Laboratory Column Drainage Experiment. Earth Science, 46(5): 1840-1847 (in Chinese with English abstract).
      Tang, F., Wang, J., Jiao, Y. Y., et al. 2021. Current Situation and Development of Urban Underground Space Suitability Evaluation. Earth Science, 46(5): 1896-1908 (in Chinese with English abstract).
      Wang, B., Ning, Y., Feng, T., et al., 2019. Uniaxial Mechanical Characteristics of Anchored Sandstone and Its Mechanism of Controlling Buckling Rockburst. Journal of Central South University (Science and Technology), 50(9): 2285-2294 (in Chinese with English abstract).
      Wang, C., He, W., Ning, J. G., et al., 2009. Propagation Properties of Guided Wave in the Anchorage Structure of Rock Bolts. Journal of Applied Geophysics, 69(3-4): 131-139. https://doi.org/10.1016/j.jappgeo.2009.08.005
      Xia, D. L., Lyu, S. L., Xiao, B. X., 2003. An Analysis of Bolt Bonding Integrity Based on Wavelet Time Frequency. Geophysical and Geochemical Exploration, 27(4): 312-315, 319 (in Chinese with English abstract).
      Yang, T. C., Wu, Y. Q., Xia, D. L., 2009. An Analytic Method for Rock Bolt's Non-Destructive Testing Signals by Phase Deducted Method. Journal of China Coal Society, 34(5): 629-633 (in Chinese with English abstract).
      Yu, J. D., Bae, M. H., Lee, I. M., et al., 2013. Nongrouted Ratio Evaluation of Rock Bolts by Reflection of Guided Ultrasonic Waves. Journal of Geotechnical and Geoenvironmental Engineering, 139(2): 298-307. https://doi.org/10.1061/(asce)gt.1943-5606.0000767
      Yu, J. D., Byun, Y. H., Lee, J. S., 2019. Experimental and Numerical Studies on Group Velocity of Ultrasonic Guided Waves in Rock Bolts with Different Grouted Ratios. Computers and Geotechnics, 114: 103130. https://doi.org/10.1016/j.compgeo.2019.103130
      Yu, J. D., Lee, J. S., Yoon, H. K., 2021. Effects of Rock Weathering on Guided Wave Propagation in Rock Bolts. Tunnelling and Underground Space Technology, 115: 104069. https://doi.org/10.1016/j.tust.2021.104069
      Zhang, C. S., Zou, D. H., Madenga, V., 2006. Numerical Simulation of Wave Propagation in Grouted Rock Bolts and the Effects of Mesh Density and Wave Frequency. International Journal of Rock Mechanics and Mining Sciences, 43(4): 634-639. https://doi.org/10.1016/j.ijrmms.2005.09.006
      Zhang, W. L., Huang, L., Juang, C. H., 2020. An Analytical Model for Estimating the Force and Displacement of Fully Grouted Rock Bolts. Computers and Geotechnics, 117: 103222. https://doi.org/10.1016/j.compgeo.2019.103222
      Zhang, W. L., Song, Y. H., Huang, L., et al., 2022. Analytical Relations for the Mechanical Properties of Full-Length Bonded Rock Bolts when Subjected to Freeze-Thaw Processes. Computers and Geotechnics, 145: 104667. https://doi.org/10.1016/j.compgeo.2022.104667
      Zhang, Y. Z., Wang, G., Ma, M., et al., 2017. Macro-Micro Study on Failure Mechanism of Rock Mass Anchorage Joints under Different Roughness. Journal of Central South University (Science and Technology), 48(12): 3373-3383 (in Chinese with English abstract).
      Zima, B., Rucka, M., 2017. Non-Destructive Inspection of Ground Anchors Using Guided Wave Propagation. International Journal of Rock Mechanics and Mining Sciences, 94: 90-102. https://doi.org/10.1016/j.ijrmms.2017.03.005
      Zou, D. H., Cui, Y., Madenga, V., et al., 2007. Effects of Frequency and Grouted Length on the Behavior of Guided Ultrasonic Waves in Rock Bolts. International Journal of Rock Mechanics and Mining Sciences, 44(6): 813-819. https://doi.org/10.1016/j.ijrmms.2006.12.002
      白晓宇, 张明义, 匡政, 等, 2020. 全长黏结GFRP抗浮锚杆荷载分布函数模型研究. 中南大学学报(自然科学版), 51(7): 1977-1988.
      宋伟, 2013. 基于Chirp信号锚杆锚固质量检测仪器开发与应用(硕士学位论文). 荆州: 长江大学.
      孙蓉琳, 何世伟, 黄康, 2021. 基于土柱排水实验探讨潜水含水层给水度的影响因素. 地球科学, 46(5): 1840-1847. https://d.wanfangdata.com.cn/periodical/dqkx202105022
      谭飞, 汪君, 焦玉勇, 等, 2021. 城市地下空间适宜性评价研究国内外现状及趋势. 地球科学, 46(5): 1896-1908. https://d.wanfangdata.com.cn/periodical/dqkx202105027
      王斌, 宁勇, 冯涛, 等, 2019. 加锚砂岩单轴力学特性及屈曲型岩爆控制机制. 中南大学学报(自然科学版), 50(9): 2285-2294.
      夏代林, 吕绍林, 肖柏勋, 2003. 基于小波时频分析的锚固缺陷诊断方法. 物探与化探, 27(4): 312-315, 319.
      杨天春, 吴燕清, 夏代林, 2009. 基于相位推算法的锚杆施工质量无损检测分析方法. 煤炭学报, 34(5): 629-633.
      张永政, 王刚, 马明, 等, 2017. 不同粗糙度下锚固节理破坏机理宏细观研究. 中南大学学报(自然科学版), 48(12): 3373-3383.
    • 加载中
    图(14)
    计量
    • 文章访问数:  5
    • HTML全文浏览量:  4
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-02
    • 网络出版日期:  2025-10-10
    • 刊出日期:  2025-09-25

    目录

      /

      返回文章
      返回